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Abstract: The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and
NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth
factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development.
Loss of function alterations in these genes can lead to nervous system development problems;
conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival
and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of
pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions
have been detected with extremely variable frequencies in many pediatric and adult cancer types,
including central nervous system (CNS) tumors. These alterations can be detected by different
laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches
has specific advantages and limitations which must be taken into account for an appropriate use in
diagnostics or research. Moreover, therapeutic targeting of this molecular marker recently showed
extreme efficacy. Considering the overall lack of effective treatments for brain neoplasms, it is expected
that detection of NTRK fusions will soon become a mainstay in the diagnostic assessment of CNS
tumors, and thus in-depth knowledge regarding this topic is warranted.

Keywords: central nervous system; glioma; pediatric tumors; molecular pathology; NTRK; gene
fusion; targeted therapies; precision medicine

1. Introduction

Traditionally, tumor diagnosis and prognostic evaluation, as well as therapeutic management,
were addressed by histological examination alone, which was based on tumor morphology and
complementary immunohistochemical profiling. Nowadays this approach is no longer adequate
for complete tumor characterization since molecular profiling has become necessary for optimal
patient management [1–5]. As a result, diagnostic algorithms are undergoing substantial changes
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for many tumor types: this molecular revolution has been fully undertaken by the latest 2016 World
Health Organization (WHO) classification of central nervous system (CNS) neoplasms, as molecular
markers (e.g., IDH1/IDH2 (Isocitrate dehydrogenase 1/2), 1p/19q codeletion, ATRX (transcriptional
regulator ATRX), TP53 (tumor protein p53) etc.) have become mandatory for a conclusive diagnosis
of many specific tumor entities [6–9]. Moreover, in the following few years since its publication,
the diagnostic/prognostic/predictive importance of many additional molecular traits have been
demonstrated and they are now being quickly translated into the routine clinical practice [10–12].

Despite the rarity, neurotrophic tropomyosin receptor kinase (NTRK) alterations recently gained
attention because of the impressive therapeutic results achieved through their specific targeting. Since
NTRK fusions have been found at significant frequencies in CNS tumors, which typically lack effective
therapies, their detection is expected to soon become a mainstay in the diagnostic assessment of these
tumors, and specific expertise in this topic will become mandatory.

In this Review, we will discuss the biology and physiological role of TRK receptors as well as their
role in pathological conditions, focusing on the recently collected knowledge in brain tumors.

2. Biology of TRK Signaling

2.1. Characteristics of NTRK Genes and of TRK Signaling

Tyrosine receptor kinases are a group of cell-membrane high-affinity receptors sharing similar
structures and intracellular signaling pathways, but with different mechanisms of activation
and regulation. These receptors have specific growth factors as ligands and are involved in
several fundamental functions for cell survival and activation, such as growth, differentiation, and
apoptosis [13–16]. The oncogenic role of their alterations is well documented, as well as their possible
exploitation as therapeutic targets [17–25].

NTRK are part of this group, consisting in a family of genes (NTRK-1, NTRK-2, and NTRK-3) located
on chromosomes 1 (1q22), 9 (9q22), and 15 (15q25) and encoding for the TRK-A, TRK-B, and TRK-C
proteins, respectively [26]. They were first identified and described as oncogenes in colorectal cancer
by Pulciani et al. in 1982 [27], and then recognized as high-affinity neurotrophin receptors in 1989 [28].
They present the canonical structure of tyrosine kinase receptors, consisting of an intracellular domain
with tyrosine-dependent kinase activity linked through the transmembrane structure to an extracellular
domain made of two immunoglobulin-like high-affinity receptors and three leucine-rich motifs, the
latter being specific of the NTRK family [13,14]. Specific neurotrophins, a subset of growth factors, are
the main ligands of TRK proteins. TRK-A is probably the most studied and well-characterized receptor
of the NTRK family and is preferentially bound by the nerve growth factor (NGF) [29]. Neurotrophin-3
(NT-3) binds TRK-C, while TRK-B has a lower binding specificity since both brain-derived growth
factor (BDNF) and neurotrophin-4 (NT-4) can be ligands of this receptor [30–34]. Furthermore, also
p75NTR, a membrane receptor, member of the tumor necrosis factor (TNF) receptor family, binds
all the spectrum of neurotrophins described above and plays a crucial role in balancing cell survival
versus death during CNS development [35]. Indeed, these last ligand-receptor relationships should be
considered of low affinity [36,37]. p75NTR can also be considered a sort of “sparring partner” of TRK
receptors, since their coexpression can enhance the activity of TRKs by improving the affinity between
each TRK receptor and the corresponding ligands [38,39].

TRK receptors activation by their ligands leads to homodimerization of the intracellular domain,
followed by phosphorylation of several tyrosine residues and consequent activation of the downstream
signaling cascades (Figure 1). So far, TRK-A tyrosine residues have been thoroughly defined (Y496,
Y676, Y680, Y681, and Y791) and TRK-B and TRK-C show a similar intracellular domain and
activity. The intracellular domain, once phosphorylated, engages at least three different signaling
cascades: the Ras-mitogen-activated protein kinase (MAPK), the phospholipase C-γ (PLC-γ), and
the phosphatidylinositol 3-kinase (PI3-K) pathways. The final result of these interactions causes the
activation of the neural cells, enabling their development and maintenance [40,41].
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Figure 1. Physiological and rearranged NTRK genes/TRK receptors and intracellular signaling. The 
PLC-γ, MAPK, and PI3-K intracellular pathways (here represented by the DAG/IP3, RAS/MEK/ERK, 
and PI3-K/AKT components, respectively) are activated either from the wild-type form of NTRK, and 
the chimeric fusion receptors (e.g., BCAN-NTRK1 and ETV6-NTRK3). However, the latter happens in 
a ligand-free constitutively activated fashion, leading to oncogenic activation. The NTRK inhibitors 
(TKI, here represented by entrectinib and larotrectinib) achieve their antitumor activity by interacting 
with the intracellular domain of the chimeric receptors, inhibiting the recruitment of the signaling 
pathway. 

Another important signal transduction mechanism of TRK signaling is represented by the 
endocytic pathway. After binding with their respective partners, TRK receptors can be internalized 
within signaling endosomes which then can be transported back to the cell body where they can exert 
their function [42,43]. This mechanism, although it has been demonstrated for multiple receptor 
types, is especially relevant for neurons, since the cell soma can be significantly distant from the axon 
extremity. In particular, it has been shown that both signaling at the distal axon extremity and the 
retrograde trafficking of TRK-A bound with NGF are both necessary for neuronal survival and 
development. 

Isoforms have been described for all three TRK, resulting from splicing variants of the NTRK 
genes and lacking specific subsets of exons [41]. Despite the consequent structural modifications, 
these isoforms keep the ability to transduce the signal once the ligand is bound [44,45,46]. However, 
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Figure 1. Physiological and rearranged NTRK genes/TRK receptors and intracellular signaling. The
PLC-γ, MAPK, and PI3-K intracellular pathways (here represented by the DAG/IP3, RAS/MEK/ERK,
and PI3-K/AKT components, respectively) are activated either from the wild-type form of NTRK, and
the chimeric fusion receptors (e.g., BCAN-NTRK1 and ETV6-NTRK3). However, the latter happens in a
ligand-free constitutively activated fashion, leading to oncogenic activation. The NTRK inhibitors (TKI,
here represented by entrectinib and larotrectinib) achieve their antitumor activity by interacting with
the intracellular domain of the chimeric receptors, inhibiting the recruitment of the signaling pathway.

Another important signal transduction mechanism of TRK signaling is represented by the
endocytic pathway. After binding with their respective partners, TRK receptors can be internalized
within signaling endosomes which then can be transported back to the cell body where they can exert
their function [42,43]. This mechanism, although it has been demonstrated for multiple receptor types,
is especially relevant for neurons, since the cell soma can be significantly distant from the axon extremity.
In particular, it has been shown that both signaling at the distal axon extremity and the retrograde
trafficking of TRK-A bound with NGF are both necessary for neuronal survival and development.

Isoforms have been described for all three TRK, resulting from splicing variants of the NTRK
genes and lacking specific subsets of exons [41]. Despite the consequent structural modifications,
these isoforms keep the ability to transduce the signal once the ligand is bound [44–46]. However,
each specific isoform presents peculiar characteristics both in terms of expression (e.g., expression in
different tissues or with different timings) and activity [47–50].

2.2. The Physiological Role of NTRK Signaling and Its Role in Non-Neoplastic Diseases

The role of NTRK in the nervous system has been widely investigated (Figure 2): overall,
TRK-B is probably the most represented receptor (mainly located in cortex, cerebellum, striatum, and
hippocampus), while TRK-A and TRK-C show more restricted expression profiles, the former being
limited to mature forebrain cholinergic neurons, and the latter mainly observed during neuronal
development [51,52]. TRKs activation promotes and regulates the growth and elongation of dendrites
and axons regardless of the site of origin and of the specific function [52,53].
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Figure 2. Neurophysiological functions of TRK signaling and possible consequences of its alterations.

In the peripheral nervous system (PNS), neutrophins binding and NTRK signaling is required for
the survival of sensory and sympathetic ganglia [52–56]. Loss of NTRK expression in the development
phase of mice and zebrafish has several consequences on their sensory systems, such as gustatory
deficits and hearing and vision impairment [57,58]. Within CNS, NTRK gene expression is fundamental
for neuron migration to the cortical layer (in particular for cerebellar granule neurons), and for their
growth and maturation. Moreover, the hippocampal long-term maturation is strictly associated with
NTRK expression by resident neurons [55,59–62].

Because of the significant role played in the physiology of nervous system development and
maintenance, the level of expression of NTRK genes has been widely studied in pathological non-tumoral
CNS conditions [63]. A significant downregulation of these receptors has been observed in the frontal
cortex and in cholinergic basal nuclei of patients with Alzheimer’s disease. Moreover, a truncated
isoform of TRK-B receptor resulted more expressed than the complete isoform in the cerebral cortex and
the hippocampus of these patients. TRK-B truncated isoform lacks the intracellular tyrosine-dependent
kinase domain, leading to a non-functional receptor [64].

Also, altered TRK signaling has been suggested in schizophrenia. Although the limited
understanding of the pathogenetic mechanisms behind this disorder and the presumptive involvement
of multiple genes, the 15q25 region has been identified as a possible culprit. This locus includes the
NTRK3 gene: dysfunction of the corresponding TRK-C receptor could impair neural connections,
plasticity, and development of the hippocampus and of the prefrontal cortex in these patients, together
with a reduction of the overall levels of neurotrophins [65–67].

NTRK alterations have been proposed in many other neurological and psychiatric conditions,
ranging from epilepsy (where increased levels of BDNF and of TRK-B resulted correlated with seizure
induction and severity) to depression and addictive behaviors [67,68]. Additional data regarding the
role of NTRK alterations in non-neoplastic diseases are now available, but this topic falls outside the
scope of the present review.

3. NTRK in Tumor Development

3.1. The Oncogenic Role of NTRK: Fusions Versus Other Alterations

The oncogenic activation of NTRK can occur in several ways, including structural chromosomal
rearrangements leading to gene fusions, splice variants, mutations, copy number alterations and



Int. J. Mol. Sci. 2020, 21, 753 5 of 24

increased expression. Considering their clinical relevance, these alterations can be clustered into
two main groups: NTRK gene fusions leading to constitutively activated receptors versus the other
mechanisms. Importantly, these other types of alterations are overall more frequent than NTRK fusions,
but they cannot be effectively targeted with the currently available drugs (with the important exception
of the NTRK mutations developed as a mechanism of resistance to therapeutic inhibition of NTRK
fusions) and thus are presently considered non-druggable [69,70].

Regarding fusions, more than fifty NTRK fusion partners have been reported so far, confirming the
extremely promiscuous nature of this rearrangement. Nevertheless, the same type of gene structural
rearrangement is preserved: the 3′ region of the NTRK gene is fused with the 5′ region of a partner gene.
The resulting chimeric protein keeps the NTRK tyrosine kinase domain with the ability to activate the
usual intracellular pathway, but it becomes ligand-independent thanks to the partner gene component.
The fusion mechanism described above for NTRK oncogenic activation is comparable to those occurring
in other oncogenes with a kinase-domain component, such as ALK and ROS1 [71–74]. Indeed, gene
fusions of receptor tyrosine kinases is a common oncogenic mechanism shared by multiple tumor
types and leading to oncogene addiction, although the specifically involved genes can vary between
the different neoplasms. For instance, if we consider non-small cell lung cancer, fusions involving ALK,
ROS1, RET, BRAF, EGFR, and NTRK have been reported [75].

Overall, NTRK fusions seem to be rarely present (<1%) in unselected large series of tumors;
conversely, it can be practically considered a pathognomonic marker of specific rare neoplasms including
breast secretory carcinomas, mammary analogue secretory carcinoma of the salivary glands, infantile
fibrosarcomas and congenital/infantile mesoblastic nephroma, narrowing a 100% prevalence [76–80].
Of interest, tumors harboring NTRK fusions often (>50%) present other genomic co-alterations in
genes related to the NTRK intracellular pathways, such as the MAPK and the PI3K signaling cascades,
TP53-associated genes, cell-cycle regulatory proteins and other tyrosine kinases, although strong
mitogenic/driver alterations are usually mutually exclusive [70,81].

The true oncogenic potential of non-fusion NTRK alterations, such as mutations, gene
amplifications and alternative splicing has yet to be confirmed [49,50,82–86]. Moreover, as it will be
furtherly discussed later, these alternative types of alterations can play a crucial role in tumor resistance
against NTRK-fusions inhibitors and therefore are being increasingly investigated [70,87].

3.2. NTRK Alterations in Non-CNS Tumors

Considered that NTRK was discovered as a potential oncogene in colorectal cancer (CRC) [27,88],
and that tumors in which NTRK fusions can be considered pathognomonic belong to non-CNS
cell-lineages as well, the oncogenic potential of this signaling pathway is not restricted to tissues with
NTRK physiological expression [76–80].

Non-CNS NTRK-altered tumors include neoplasms with high incidence, but low frequency of
NTRK fusions and rare tumors with extremely low incidence, but high frequency of this molecular
hallmark. In this latter group, assessment of NTRK fusions can be used also as a diagnostic marker.

Among the first group, which represents the sharp majority of cases, NTRK fusions occur in no more
than 4% of CRCs and the detected fusions so far are the TPM3-NTRK1 [89–91], the LMNA-NTRK1 [92],
and the ETV6-NTRK3 [93]. CRC harboring NTRK, ALK, and ROS1 could be distinctively identified as
tumors with high frequency of metastasis, poor prognosis, and specific mutational profile, characterized
by high microsatellite instability (MSI) and RAS and BRAF wild-type status [70,94]. These observations
can help aim NTRK assessment in this setting. The second main tumor type within this group is lung
adenocarcinoma, in which NTRK rearrangements occur in about 3% of lesions. The main observed
fusions are CD74-NTRK1, MPRIP-NTRK1, and TRIM24-NTRK2 [72,95]. Another carcinoma harboring
NTRK as a potential oncogene is papillary thyroid carcinoma (PTC), with at least two different fusion
products, TPM3-NTRK1 [96,97] and ETV6-NTRK3 [98].

The second group includes three entities, namely secretory carcinoma (either arising from
breast or from salivary glands), congenital/infantile fibrosarcoma and congenital mesoblastic
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nephroma [76,99–101]. All these tumors present an NTRK fusion in more than 95% of cases, usually
the ETV6-NTRK3. This fusion derives from a chromosomal translocation, t(12;15) (p13;q25), which
combines exon 4, 5, or 6 of ETV6 and the kinase domain of NTRK3 [102].

Considering that the potential therapeutic efficacy has been demonstrated across all tumor
types, NTRK fusions have been evaluated in several other neoplastic entities, ranging from Spitz
tumor and melanoma to sarcomas (especially in the pediatric population), pancreatic cancer
and cholangiocarcinoma, and neuroendocrine tumors [103–109]. Variable frequencies of NTRK
rearrangements have been observed, but they usually are <10%.

3.3. NTRK Fusions in Pediatric CNS Tumors

In Europe and North America, the outcome landscape of pediatric tumors has recently changed:
CNS neoplasms overtook hematological neoplasms as the leading cause of death within this population
mainly because of the limited efficacy of the available treatments [110,111]. For this reason, pediatric
CNS tumors represent an unmet need in oncology, requiring novel approaches for management
and treatment.

Pediatric diffuse low and high-grade gliomas are undergoing significant changes in terms of
diagnostic assessment, due to the increasing importance of molecular markers for classification and
stratification [10,112,113]. These tumors also harbor peculiar molecular profiles which vary significantly
from adult tumors, even in cases with similar histological features. Whenever a definitive diagnosis is
achieved, the clinical behavior is still very heterogeneous and tumor recurrences are frequent even
after multi-modal integrated treatments [112,114–117]. In particular, high-grade pediatric gliomas are
associated with very limited outcomes and the possible treatments, which include radiotherapy, can
lead to severe toxicities in children. A druggable target, like NTRK or other fusions, can thus actually
have a major impact in this setting, improving disease control and allowing to delay other treatments
with less favorable risk/benefit profiles [118].

NTRK alterations have been widely described in pediatric gliomas, both in low-grade and
high-grade lesions (Table 1). Pilocytic astrocytoma (PA) is the most common pediatric glioma and
usually shows a good outcome, especially after complete surgical resection; however, since recurrences
do occur, it has been thoroughly investigated to look for new potential therapeutic targets including
druggable fusions. MAPK pathway is commonly altered in PA and BRAF is the most frequently
involved gene (e.g., KIAA1549: BRAF fusion, BRAF V600E mutation), while KRAS, and NF1 mutations
can be observed in rare cases. Recently, NTRK fusions have also been observed in rare supratentorial
PA with involvement of the NTRK2 gene [112,114,119].

Pediatric high-grade gliomas (pHGGs) are rare lesions with a dismal survival rate: the two-year
survival rate for patients with supratentorial pHGGs range from 10 to 30 percent, and it is even
lower (<10%) for diffuse intrinsic pontine gliomas (DIPGs). In this unsatisfactory scenario, molecular
profiling of pHGGs seems imperative to improve the outcome of these patients by exploitation of
specific therapeutic targets. As expected by their heterogeneity in terms of morphological features and
clinical behavior, their molecular analysis showed a wide and challenging landscape, with several
aberrant pathways and multiple mechanisms of tumor initiation/promotion being concurrently present.
Although these findings are usually associated with intrinsic resistance to targeting of single alterations,
a particular subset of non-brainstem high-grade gliomas has been identified in younger children
(less than three years old) with high frequencies (up to 40%) of NTRK fusions (TPM3-NTRK1 and
ETV6-NTRK3) without significant additional alterations, opening up new treatment scenarios for these
selected cases [117,120–123]. Nevertheless, the overall NTRK-fusion rate of almost 4% observed in
unselected cohorts of pediatric gliomas suggests its routine diagnostic assessment [70].

So far, NTRK fusions have not been detected in ependymoma, another frequent pediatric tumor.
Although chromosomal rearrangements are key drivers of this neoplasm (e.g., RELA-fusion), NTRK
signaling is not likely to be specifically involved based on the available data [120].
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NTRK rearrangements have been investigated and discovered with a notable frequency in mixed
glioneuronal tumors, a rare group of pediatric epileptogenic CNS neoplasms. Once again, although rare,
NTRK (particularly NTRK1) fusions have been identified in both low-grade and high-grade glioneuronal
tumors, ranging from ganglioglioma to diffuse leptomeningeal glioneuronal tumors [124–127].

Medulloblastoma, one of the most common and highly aggressive CNS non-glial pediatric tumors,
showed no NTRK fusions. However, increased expression of non-mutated receptors, TRK-C in
particular, has been found to be associated with a better clinical outcome and prognosis, suggesting
the potential exploitation of NTRK signaling as a prognostic rather than predictive marker [128–131].

3.4. NTRK Fusions in Adult CNS Tumors

CNS tumors represent a challenging context also among adults with discouraging outcomes.
Comprehensive molecular analyses of large cohorts of these tumors have been conducted, focusing on
high grade gliomas (HGG) and glioblastoma (GBM), the latter being the most common glioma in adults
with an extremely severe prognosis. IDH-wildtype GBM (the so-called primary glioblastoma) shows a
broad spectrum of potentially targetable alterations, including a significant rate of fusions: chimeric
fusion genes are often present, and involvement of all of the three NTRK genes has been demonstrated
(Table 1), although with significant differences among the series [132,133]. Up to date, NTRK2 appears
to be the most frequently involved gene (up to 11% of GBM), while NTRK1 fusions are definitely rarer
(about 1%) and NTRK3 fusions seem to be extremely rare (one single case reported) [133–137]. Among
low grade gliomas (LGG), a NTRK1 fusion was reported in an adult pilocytic astrocytoma [133].

Table 1. NTRK fusions in CNS tumors.

Tumor Entity NTRK Fusions Frequency Most Frequently Reported NTRK Fusions

Glioblastoma

1.1% (Frattini et al.) [134]
1.1% (Shah et al.) [135]

2.6% (Zheng et al.) [124]
1.2% (Kim et al.) [136]

1.7% (Ferguson et al.) [133]

BCAN-NTRK1
NFASC-NTRK1

ARHGEF2-NTRK1
CHTOP-NTRK1
GKAP-NTRK2
KCTD8-NTRK2
TBC1D2-NTRK2

EML4-NTRK3

Non-brainstem
high-grade

glioma
10%–40% (Wu et al.)# [121]

ETV6-NTRK3
TPM3-NTRK1
BTBD1-NTRK3

VCL-NTRK2
AGBL4-NTRK2DIPG◦ 4% (Wu et al.) [121]

Pilocytic
astrocytoma

16.6% (Ferguson et al.) [133]
3.1% (Jones et al.) [114]

BCAN-NTRK1
NACC2-NTRK2

QKI-NTRK2

Anaplastic
astrocytoma 2.3% (Ferguson et al.) [133] NOS1AP-NTRK2

Glioma NOS 4.1% (Ferguson et al.) [133] SQSTM1-NTRK2

Low-grade
glioma

0.7% (Zhang et al.) [112]
0.43% (Stransky et al.) [72]
4.3% (Ferguson et al.) [133]

ETV6-NTRK3
AFAP1-NTRK2
VCAN-NTRK2

High-grade
glioneuronal

tumor
Case report (Kurozumi et al.) [127] ARHGEF2-NTRK1

Ganglioglioma Case report (Prabhakaran et al.) [124] TLE4-NTRK2

# Age-dependent frequency (highest rate was observed in <3yy patients). ◦ Diffuse Intrinsic Pontine Glioma.
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Expression and methylation of wild-type NTRK genes has been investigated in different types of
gliomas as well, revealing that LGGs present higher expression of TRK receptors compared to HGGs.
Although these findings need to be further confirmed, lower expression levels in tumoral cells seem to
be associated with increased malignant potential and poorer prognosis [138,139]. Accordingly, higher
expression of NTRK receptors in neuroblastomas was found to be associated with a better outcome.
This finding is possibly due to immunoregulatory mechanisms, thus widening the potential range of
modulatory effects associated with this signaling pathway [140].

4. NTRK as a Novel Therapeutic Target

4.1. NTRK-Fusions Targeting: A Novel, Effective, Histology-Independent Anti-Neoplastic Treatment

Drug development in oncology has significantly changed since the discovery of targetable
molecular alterations. Since these alterations are shared among completely independent tumor sites
and types, basket trials were initiated, testing cohorts of patients with common molecular targets,
despite the different tumor entity [141]. However, in some cases (e.g., mutated BRAF-inhibitors)
response to treatments was still histology or tissue-dependent and thus drug approval was limited to
specific indications. More recently, pembrolizumab, an anti-PD1 immunomodulatory drug, received
tissue-agnostic approval considered the efficacy in a wide range of advanced tumor types sharing
mismatch repair deficiency or high microsatellite instability. Similarly, NTRK-inhibitors are receiving
tissue-agnostic (FDA) or histology-independent (EMA) approval based on high efficacy in pediatric
and adult tumors harboring NTRK fusion regardless of the tumor site or specific fusion partner. So
far, two first-generation molecules (entrectinib and larotrectinib) received FDA therapeutic approval
for the treatment of NTRK fusion-positive tumors and the latter recently gained EMA approval as
well [41].

Entrectinib (RXDX-101) was the first drug developed against NTRK fusions, targeting also ALK
and ROS1 fusion proteins and harboring a good delivery rate through the blood-brain barrier [142].
In phase-I and II trials (ALKA-372-001, STARTRK-1, STARTRK-2, and STARTRK-NG), it showed
significant results in pediatric and adult solid tumors, with efficacy in both primary and secondary
CNS tumors [69,143]. In a recent series of pediatric high-grade gliomas reported at ASCO 2019, all 4
patients achieved a radiological response, including a complete response (2019 ASCO Annual Meeting,
Abstract #: 10009).

Larotrectinib (LOXO-101) is highly specific for NTRK fusions only, and its efficacy has been
tested in several trials (registered on ClinicalTrials.gov: NCT02637687, NCT02122913, NCT02637687,
and NCT02576431) [144,145], with a well-documented efficacy against CNS tumors [145], as recently
confirmed [146].

These results are important for two main reasons: (i) the overall rate of clinical and radiological
responses is high (even close to 80%); (ii) response is usually durable, with patients achieving disease
control for many months or even years.

Ongoing clinical trials with entrectinib and larotrectinib are now focused on elucidating their
activity profile (e.g., to assess possible correlations with the specific fusion partners) and safety data
(Table 2). Moreover, development and clinical testing of second-generation NTRK inhibitors is already
ongoing (e.g., repotrectinib-TPX-0005 and LOXO-195-BAY2731954) [147,148], in order to compare their
efficacy with first-generation drugs and, more importantly, to tackle tumor resistance to them.

ClinicalTrials.gov
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Table 2. Main clinical trials evaluating NTRK-fusion inhibitors.

Molecule Population and Enrollment Allocation and
Intervention Model Phase Primary Outcomes Start Date and

Current Status Identifier

Entrectinib
(RXDX-101)

Adult (minimum age: 18
Years)—84 participants

Non-Randomized—Single
Group Assignment I

Dose limiting toxicity
Maximum tolerated dose
Recommended Phase II dose
Overall response rate

2014—Active, Not
Recruiting

NCT02097810
RXDX-101-01
(STARTRK-1)

Entrectinib
(RXDX-101)

Adult (minimum age: 18
Years)—300 participants

(estimated)

Non-Randomized—Parallel
Assignment II Objective response rate 2015—Recruiting

NCT02568267
RXDX-101-02
(STARTRK-2)

Entrectinib
(RXDX-101)

Pediatric and Adult
(maximum age: 22 Years)—65

participants

Non-Randomized—Single
Group Assignment I

Maximum tolerated dose
Recommended Phase II dose
Objective response rate

2016—Recruiting
NCT02650401
RXDX-101-03

(STARTRK-NG)

Larotrectinib
(LOXO-101)

Pediatric and Adult
(minimum age: 18

Years)—6452 participants

Non-Randomized—Parallel
Assignment II Proportion of patients with

objective response 2015—Recruiting
NCT02465060

EAY131
NCI-2015-00054

Larotrectinib
(LOXO-101)

Pediatric and Adult (minimum
age: 12 Years)—320

participants

Non-Randomized—Parallel
Assignment II Best overall response rate 2015—Recruiting

NCT02576431
LOXO-TRK-15002

(NAVIGATE)

Larotrectinib
(LOXO-101)

Pediatric and Adult
(maximum age: 21 Years)

—174 participants

Non-Randomized—Parallel
Assignment I/II

Number and severity of adverse
events (Phase I)
Overall response rate (Phase II)

2015—Recruiting
NCT02637687

LOXO-TRK-15003
(SCOUT)

Larotrectinib
(LOXO-101)

Pediatric and Adult
(from 12 Months to 21

Years)—1000 participants
(estimated)

Non-Randomized—Parallel
Assignment II Objective response rate 2017—Recruiting

NCT03155620
APEC1621SC

NCI-2017-01251

Larotrectinib
(LOXO-101)

Pediatric and Adult
(from 12 Months to 21

Years)—49 participants

Non-Randomized—Single
Group Assignment II Objective response rate 2017—Recruiting

NCT03213704
APEC1621A

NCI-2017-01264

Larotrectinib
(LOXO-101)

Pediatric and Adult
(maximum age: 30 Years)—70

participants

Non-Randomized—Single
Group Assignment II Objective response rate 2019—Recruiting

NCT03834961
ADVL1823

NCI-2019-00015

Repotrectinib
(TPX-0005)

Pediatric and Adult (12 Years
and older)—450 (estimated)

Non-Randomized—Single
Group Assignment I/II

Dose limiting toxicities
Recommended Phase II dose
Overall response rate

2019—Recruiting
NCT03093116
TPX-0005-01
(TRIDENT-1)
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Table 2. Cont.

Molecule Population and Enrollment Allocation and
Intervention Model Phase Primary Outcomes Start Date and

Current Status Identifier

Repotrectinib
(TPX-0005)

Pediatric (4 Years to 12
Years)—12 participants

Non-Randomized—Single
Group Assignment I

Dose limiting toxicities
Pediatric recommended Phase II
dose

2019—Recruiting NCT04094610
TPX-0005-07

Selitrectinib
(LOXO-195)

Pediatric and Adult (minimum
age: 1 Month)

Expanded Access
(Individual Patients) NA NA 2017—Available

(Expanded Access) NCT03206931

Selitrectinib
(LOXO-195)

Pediatric and Adult (minimum
age: 1 Month)—93 participants

Non-Randomized—Sequential
Assignment I/II

Maximum tolerated dose
Recommended dose
Overall response rate

2017—Recruiting NCT03215511
LOXO-EXT-17005

NA: Not applicable.
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4.2. Resistance Mechanisms to First-Generation NTRK Inhibitors

Acquired resistance during long-term treatment with targeted therapies is a major concern, as
experienced with EGFR, ALK, and ROS1 inhibitors [149–154]. NTRK inhibitors make no exception to
this statement, and disease progression has been now observed within the ongoing clinical trials.

Notably, excluding sporadic cases whose failure was related to non-appropriate patient
recruitment [155], at least two broad mechanisms of resistance have been detected. The first one
is related to off-target alterations, which reactivate one of the cellular pathways associated with
NTRK fusions, usually the MAPK. As a matter of fact, MAPK signaling cascade may get activated
by several signal transducers not related to NTRK at all. Examples of this resistance mechanism are
the acquisition of the BRAFV600E or KRASG12D mutations or MET amplification. Of note, in these
cases, prompt treatment with drugs targeting the new resistance-related alterations enabled new tumor
responses [156].

The second tumor escape strategy (the so-called on-target resistance) is related to point
mutations (i.e., solvent front, gatekeeper and xDFG mutations) of the NTRK fusion proteins,
blocking drug binding. In this regard, next-generation NTRK inhibitors (e.g., repotrectnib—TPX-0005,
LOXO-195-BAY2731954) have been developed, showing promising efficacy in targeting these mutated
fusion proteins [87,155,157].

These data open several questions that will be answered by the upcoming trials: can resistance
to first-generation inhibitors be avoided by modulating the treatment over time? Should patients
directly receive second-generation inhibitors? How should patients be monitored during treatment to
promptly detect resistance?

5. Testing for NTRK Fusions. Where Is Waldo?

Based on the previous considerations, NTRK fusions must now be considered an important
molecular marker in CNS tumors, which can enable significant improvement of patients’ outcome
by specific targeting. So, how can we efficiently test for these alterations taken into consideration
their rarity?

NTRK oncogenic activation is a process that, starting from the chromosomal rearrangement,
requires translation of the fusion gene and expression of the chimeric TRK protein. In light of these
consequential steps, different laboratory assays can be used to find out whether a tumor is harboring a
NTRK fusion (Table 3). Firstly, to investigate the DNA status, fluorescence in-situ hybridization (FISH)
and DNA-based next-generation sequencing (NGS) can be used, while reverse transcription-polymerase
chain reaction (RT-PCR), real time-PCR and RNA-based NGS analyses can evaluate the transcribed
RNA. Finally, immunohistochemical staining (IHC) can directly assess the protein product.

Table 3. Available diagnostic assays for detecting NTRK fusions.

Assay Type Advantages Limitations Turnaround Time Main Role in Potential
Diagnostic Algorithms

IHC

• Commonly available
• Limited cost
• Minimal

tissue required
• Allows correlation

with histology
• Confirms

protein expression
• panTRK

antibody available

• Low sensitivity or
specificity in
specific settings

• No information about
the fusion partner

1–2 days Screening
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Table 3. Cont.

Assay Type Advantages Limitations Turnaround Time Main Role in Potential
Diagnostic Algorithms

FISH

• Minimal
tissue required

• High sensitivity and
specificity although
false negative results
are possible

• Specific lab facilities
required and
expertise
for interpretation

• No information about
the fusion partner

• One probe-one gene
evaluation, thus
time-consuming and
higher costs

3–5 days Confirmatory

RT-PCR

• Limited cost
• High sensitivity

and specificity

• Requires knowledge
about the fusion
partners before
testing and specific
primers must
be prepared

• Good pre-analytics
required to
preserve RNA

5–7 days Confirmatory

Real
time-PCR

• Limited cost
• High sensitivity
• High specificity

• Good pre-analytics
required to
preserve RNA

• It does not provide
information
regarding the specific
fusion partners and it
evaluates a
pre-determined set of
rearrangements, thus
novel or rare fusions
will be missed

5–7 days Screening/Confirmatory*

RNA-NGS

• Evaluation of all
potential fusions in a
sample if Total RNA
is analyzed

• Provides
characterization of
fusion partners

• High sensitivity
• High specificity

• Specific lab facilities
required and
expertise
for interpretation

• High costs
• Good pre-analytics

required to
preserve RNA

• Longer TAT

1–3 weeks Screening/Confirmatory*

DNA-NGS

• It can provide an
overall
characterization of
tumor molecular
profile (mutations,
CNV, tumor mutation
burden . . . )

• Provides
characterization of
fusion partners

• High sensitivity with
some caveats

• High specificity

• Chance of detecting
non-significant
chromosomal rearrangements

• Potential low
sensitivity for
specific fusions

• Specific lab facilities
required and
expertise
for interpretation

• High costs
• Longer TAT

1–3 weeks Screening/Confirmatory*
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Table 3. Cont.

Assay Type Advantages Limitations Turnaround Time Main Role in Potential
Diagnostic Algorithms

DNA/RNA
-NGS

• It provides the most
complete
characterization of
tumor molecular
profile (mutations,
CNV, tumor mutation
burden, fusions . . . )

• Provides
characterization of
fusion partners

• High sensitivity
• High specificity

• Specific lab facilities
required and
expertise
for interpretation

• High costs
• Longer TAT

1–3 weeks Screening/Confirmatory*

* depending on each laboratory diagnostic routine workup of a sample (for instance based on tumor type) and
available resources/facilities.

5.1. Immunohistochemistry

IHC is a common, well-known and validated assay, with limited costs, and quick turnaround
time (TAT), allowing histological correlations and also capable of intrinsically confirming the protein
expression. The main limitation is that available antibodies are for the wild-type epitopes of TRK
receptors, thus not specific for fusions and obviously they do not provide any information regarding
the fusion partner. Different TRK antibodies are available, staining either single receptors (so far,
antibodies for TRK-A and TRK-B are available as well as a cocktail of anti-TRK-A and anti-TRK-B) or
all TRK proteins (pan-TRK antibody, clone EPR17341), which is also available for in vitro diagnostics
(Ventana Medical Systems Inc., Tucson, AZ, USA). Of note, different staining patterns can be expected
based on the involved genes: for example, NTRK3 fusions more often lead to a nuclear staining and a
higher rate of false negatives (up to 45%) [77–80,106,158,159]. IHC can thus be used as an effective
screening tool for most tumor types, but unfortunately specificity in CNS neoplasms seems to be low
due to the physiological expression of NTRK in neural tissues. For instance, Solomon et al., reported
an unsatisfactory specificity value of 20.8% in gliomas [160], thus screening by IHC should be avoided
in this setting or used with extreme caution and confirmation by other techniques is warranted. A
significant rate of false positive IHC results has also been observed in cases with smooth muscle or
neuroendocrine differentiation and in small round cell tumors. Of note, in false positive samples,
staining was limited to cytoplasm and/or cell membrane without nuclear staining.

5.2. Fluorescence In-Situ Hybridization

FISH-based assays are well-established to investigate chromosomal alterations, such as
translocations, deletions, or amplifications, thus they could also be applied for evaluating NTRK
fusions. Considered their promiscuous nature, break apart probes must be used which do not provide
information on the fusion partner. Although, as it is true for IHC, FISH requires minimal formalin-fixed
paraffin-embedded material and enables a low TAT, a specific expertise for a correct interpretation is
required. Moreover, since investigation of all three NTRK genes requires three independent assays,
a FISH-based approach cannot be envisaged for screening [161]. On the other hand, FISH has been
suggested as a confirmatory assay with high sensitivity and specificity, although evaluations of larger
series of NTRK-fusion tumors are warranted to assess potential limitations. In particular, if the fusion
breakpoint is non-canonical, a false negative result can be observed.

5.3. DNA and RNA Molecular Testing

The second group of assays that can be used to look for NTRK fusions is based on extraction
and analysis of nucleic acids. These techniques vary significantly in terms of complexity, costs, TAT



Int. J. Mol. Sci. 2020, 21, 753 14 of 24

(which is usually longer than IHC or FISH), required material, information provided, and thus optimal
indications. DNA or RNA can be successfully tested by different assays, but with some important
caveats: (i) RNA is more prone to be damaged, especially in FFPE material, thus special attention
must be payed to pre-analytics; (ii) RNA-based assays usually require simpler analyses as intronic
regions have been already removed; (iii) DNA-based assays can detect rearrangements which are not
even transcribed and thus lack any relevance, while, conversely, they can miss fusions involving large
intronic regions [162].

Considering the specific techniques, RT-PCR can be used for orthogonal validation of a specific
fusion, but fusion partners must be already known, and specific primers must be designed, thus, it cannot
be used for screening despite the low costs. Real-time PCR-based assays are now progressively becoming
available, allowing assessment of a wide range of combinations of specific rearrangements/partners
through an overall inexpensive analysis. The main limitations of this approach are that it usually does
not provide information regarding the specific fusion partners and, since it evaluates a pre-determined
set of rearrangements, rare or novel fusions will not be detected.

Regarding NGS, DNA assays are becoming routinely used in diagnostics as they can assess a
wide range of clinically relevant alterations (mutations, copy number variations, tumor mutation
burden), but reporting time and costs are significant, and specific facilities and expertise are required.
Chromosomal rearrangements can also be detected, but sensitivity depends on the probe coverage of the
involved genes. For example, the breakpoint of NTRK3 fusions often occurs within a highly repetitive,
intronic region, leading to high false negative rates. Indeed, Solomon et al. found a 76.9% sensitivity
when evaluating NTRK3 fusions using the MSK-IMPACT DNA-based NGS assay [160]. Conversely,
RNA-NGS, including total RNA analysis, represent the optimal tools to investigate the whole fusion
landscape of a tumor sample with high sensitivity and specificity. Integrated DNA/RNA-NGS assays
can thus be used to achieve complete molecular profiling of a tumor and they will probably enter the
diagnostic routine practice in the coming years considered the demands posed by precision medicine,
of which targeting of NTRK fusions is an example.

Since every technique presents specific advantages and disadvantages, it is difficult to designate
gold standard technique. Indeed, several algorithms have been already suggested, tailored to the
different settings or tumor types. Most of them combine IHC staining as a screening tool, followed by
confirmation through other techniques: following these algorithms, tumors are first evaluated by a rapid
and cost-effective (but less specific) assay, allowing to focus more expensive, but highly specific tests
on a smaller subset of cases [123,160,161,163–167]. For CNS tumors, considering the ever-increasing
importance of extensive molecular profiling to achieve a correct diagnosis/classification, integration of
NTRK fusion assessment in a dedicated NGS workflow seems desirable in the medium-term. However,
as NGS availability is still limited for routine diagnostics in many centers and that IHC-screening
efficacy is limited in this setting (because of a low specificity), real time-PCR assays could represent a
good compromise in terms of cost-efficacy.

Finally, the optimal strategy for molecular profiling at disease progression after NTRK
fusions-targeting should now be investigated. Present data suggest efficacy of liquid-based assessment,
but given the wide range of both on-target and off-target resistance mechanisms, comprehensive assays
seem to be necessary [156].

6. Conclusions

Management of CNS tumors represents a challenging therapeutic issue as curative surgical
resection is often not feasible, and radiotherapy may have significant negative long-term consequences
on neurocognitive functions (especially in children). The efficacy of chemotherapy drugs is limited,
also due to the fact that blood-brain barrier considerably limits the chance of drugs to reach the tumor.
Although the recognition of NTRK as a potential oncogene is now dated, the proper understanding of
the specific mechanisms involved and their appreciation as a potential therapeutic target is far more
recent. Despite the rarity of NTRK fusions, the potential clinical benefit for the small group of patients



Int. J. Mol. Sci. 2020, 21, 753 15 of 24

harboring these alterations appears to be extremely significant, thus fully awareness by physicians
caring for brain tumors is now mandatory.
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