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Abstract: The wiping of high-touch healthcare surfaces made of metals, ceramics and plastics to
remove bacteria is an accepted tool in combatting the transmission of healthcare-associated infections
(HCAIs). In practice, surfaces may be repeatedly wiped using a single wipe, and the potential for
recontamination may be affected by various factors. Accordingly, we studied how the surface to be
wiped, the type of fibre in the wipe and how the presence of liquid biocide affected the degree of
recontamination. Experiments were conducted using metal, ceramic and plastic healthcare surfaces,
and two different wipe compositions (hygroscopic and hydrophilic), with and without liquid biocide.
Despite initially high removal efficiencies of >70% during initial wiping, all healthcare surfaces were
recontaminated with E. coli, S. aureus and E. faecalis when wiped more than once using the same
wipe. Recontamination occurred regardless of the fibre composition of the wipe or the presence of a
liquid biocide. The extent of recontamination by E. coli, S. aureus and E. faecalis bacteria also increased
when metal healthcare surfaces possessed a higher microscale roughness (<1 um), as determined by
Atomic Force Microscopy (AFM). The high propensity for healthcare surfaces to be re-contaminated
following initial wiping suggests that a “One wipe, One surface, One direction, Dispose” policy
should be implemented and rigorously enforced.
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1. Introduction

Wipes used in combination with liquid biocides frequently form part of disinfection and
decontamination regimens to remove and kill microorganisms, including pathogenic bacteria, bacterial
endospores, fungi and viruses, from high-touch clinical surfaces [1]. The overall goal is to minimise the
transmission of healthcare-associated infections (HCAIs) as well as the associated morbidity, mortality
and financial impacts [2-6]. Wiping is intended to remove all bacterial contamination, as well as to
prevent the transfer of wiped microorganisms from one surface to another to minimise transmission.
Further information on this can be found in the work of Siani et al. [7]

The addition of an aqueous medium such as a biocide to a wipe is known to substantially improve
the removal efficiency of bacteria, depending on the absorptive capacity of the nonwoven fabric,
and the same is true for solid contaminants [8,9]. However, less is known about the factors affecting
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the degree of recontamination of surfaces due to repeated wiping. If bacteria cannot be effectively
retained by the wipe during repeated wiping cycles, the mechanisms that lead to bacterial death may
be compromised, depending on the antimicrobial biocides in the wipe. It is therefore important to
understand the degree to which the healthcare surface itself, which is typically metal, ceramic or
plastic, affects recontamination. It is also essential to minimise the risk of spreading pathogenic bacteria
over a wider area and increasing the potential for HCAI transmission [1,10]. Accordingly, the pu of
liquid biocide.

2. Results

Low-maintenance solid surfaces made of metals, ceramics and plastics are commonplace as
high-touch materials in clinical settings [11-14]. The structure and chemical composition of a healthcare
surface potentially influences the way in which bacteria interact and adhere [15]. Furthermore, it is
known that some biocides can degrade healthcare surfaces due to prolonged or repeated exposure [16],
and this wear and tear, as well as multiple cycles of cleaning and disinfection over the course of their
lifetime, can affect their properties [17,18].

2.1. Analysis of Surfaces

The EDX data enabled the proportion by weight of elements present in each healthcare surface to
be determined before and after wiping (Table 1). The elemental composition of the uncontaminated
control surfaces and the biocide-wiped surfaces differed due to the presence of biocide residue on each
of the three different healthcare surfaces after wiping (PMMA, Steel and Ceramic). SEM micrographs
(Figure 1) confirmed the presence of surface deposits after the surface had been wiped with a nonwoven
wipe containing the quaternary ammonium compound biocide (Figure 1c) compared to wiping with
water (dH,O) alone (Figure 1a,b). The change in surface characteristics due to the deposit of the biocide
was most noticeable on steel (Figure 1c), but was also apparent on the other substrates. One possible
reason for the deposit being more evident on steel was that the “brushed” surface finish limits the
ability of fluid to bead on the material surface.

Table 1. EDX results for “Biocide” and “Control” surfaces, reporting the relative weight % of surface
composition. Steel (R) denotes rough steel samples.

PMMA Weight % Steel (R) Weight % Ceramic Weight %
Element Biocide Control Element Biocide Control Element Biocide Control
Carbon (C) 3571 61.88 C 3264 748 C 32.47 -
Oxygen (O) 4238 38.12 (@) 8.05 - (@) 29.53  43.95
Sodium (Na) 14.20 - Na 3.07 - Na 4.59 -
Phosphorus (P) 6.34 - P 0.98 - Aluminium (Al)  2.70 4.26
Chlorine (Cl) 1.37 - Cl 0.39 - Silicon (Si) 17.34 3197
Chromium (Cr) 1032  18.42 Cl 0.48 -
Manganese (Mn) 1.3 1.65 Potassium (K) 2.48 3.84
Iron (Fe) 39.55  65.07 Calcium (Ca) 4.36 6.74

Nickel (Ni) 3.69 7.56 Zinc (Zn) 6.05 9.23
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Figure 1. SEM images of poly (methyl methacrylate) (PMMA), steel (Rough) and ceramic surface
samples. (A) Sterile control; (B) dH,O; (C) biocide.

2.2. Residual Antimicrobial Activity

The residual biocidal deposits on each healthcare surface detected by the SEM and EDX
analyses (Figure 1c and Table 1) were further investigated to determine potential for residual

antimicrobial activity.

Referring to Table 2, no statistically significant difference was observed in the number of bacteria
present on the untreated and biocide treated surfaces (p < 0.05), suggesting no residual antimicrobial
effect of the biocide used in this experiment in the dry state. This finding held even when the quantity
of biocide on the surface was artificially high, as was the case in these experiments.

Table 2. Residual antimicrobial activity of biocide. “+” value indicates increase in bacterial recovery

“u_u

versus control;

indicates a reduction in the number of bacteria recovered versus the control.

SE indicates the standard error of the mean. These values were not different from the control or each

other at a statistically significant level (p > 0.05). Steel (R) denotes rough steel samples.

Bacteria Surface Mean Recovery (%) SE

E. coli Ceramic +8 11
S. aureus Ceramic -8 3
E. faecalis Ceramic +7 13

E. coli Steel (R) -3 8
S. aureus Steel (R) -5 3
E. faecalis Steel (R) -12

E. coli PMMA -3 15
S. aureus PMMA -4 14
E. faecalis PMMA -16 27
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2.3. Bacterial Removal Efficiency and the Effect of Surface Roughness

The removal efficiency and recontamination of the healthcare surfaces by wiping were studied
with reference to three common bacteria. A smooth steel surface (Table 3), with a surface roughness
value (R,) of 128 nm, and a rougher variant of 583 nm were included to elucidate the effect of roughness
on bacterial removal and recontamination.

Table 3. Contact angle, wetting tension and roughness of healthcare surfaces. Steel (R) denotes rough
steel samples. Steel (S) denotes smooth steel samples. R, indicates no sharing of a “grouping” letter
and are significantly different-ANOVA with post hoc Tukey’s test (p < 0.05).

Surface Organic Load Contact Angle Wetting Tension Roughness (R,) Tukey-Roughness
o 2
PMMA Clean 29.22 63.54 mJ-m 3.8 nm A
0.015 g'm~2 BSA 62.30° 33.84 mJ-m~2 n/a
. Clean 18.43° 69.06 mJ-m~2 14.8 nm A
Ceramic
0.015 gm~2 BSA 38.37° 57.08 mJ-m~2 n/a
o 2
Steel (S) Clean 38.61 65.95 m]-m 128 nm B
0.015 gom~2 BSA 64.20° 32.67 mJ-m~2 n/a
o . -2
Steel (R) Clean 60.49 72.80 mJ]-m 583 nm C
0.015 g'm~2 BSA 63.90° 32.03 mJ-m~2 n/a

All surfaces (metal, ceramic and polymeric) exhibited hydrophilic behaviour with contact angles
of <90° when clean. Note that the water contact angle may be dependent on bacterial contamination,
and so this was measured before and after surface inoculation with the simulated organic load.

The contact angle increased, and the wetting tension decreased as the organic load increased on
all surfaces (Table 3). This is attributable to the proteinaceous nature of BSA and the salts in the PBS,
and confirms data reported in other sources [19].

The PMMA and ceramic surfaces were extremely smooth with nanoscale roughness values of
<100 nm (R,), compared to both steel samples, which also varied significantly between the smooth and
rough variants, with R, values of 128 nm and 583 nm, respectively (all p < 0.05).

Wiping experiments were carried out to determine the influence of surface roughness on the
bacterial removal and surface recontamination using “low organic load” conditions and wipes
manufactured in the laboratory. Wiping removal efficiencies in the range of 73-89% were obtained
(Tables 4 and 5), but no significant difference was observed in the removal efficiency between bacteria,
wipe substrate or surface type. Therefore, over the range of values studied, roughness has no significant
effect on the removal efficiency of bacteria by PP or Lyocell nonwoven wipes loaded with quaternary
ammonium compound biocidal lotion. Lee et al. [20] reported similar findings, after comparing
removal from “smooth” plastic and “rough” metal surfaces, finding no significant difference (p > 0.05)
in the number of E. coli and E. faecalis CFUs.

Table 4. Removal of bacteria and recontamination of surfaces by a 100% Lyocell nonwoven wipe. Steel
(R) denotes rough steel samples. Steel (S) denotes smooth steel samples.

Bacteria Surface Removal (%) SE CFUonWipe* T1(%) T2(%) T3(%) Total (%)

E. coli Ceramic 83 5 4,900,000 12 6 6 24
S. aureus Ceramic 81 4 10,250,000 7 2 2 11
E. faecalis ~ Ceramic 73 7 2,016,667 12 3 2 17

E. coli PMMA 85 7 7,700,000 8 1 1 10
S. aureus PMMA 82 1 4,116,667 2 6 2 10
E. faecalis PMMA 84 1 5,133,333 3 4 1 8

E. coli Steel (S) 80 6 4,916,667 9 5 1 15
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Table 4. Cont.

Bacteria Surface Removal (%) SE CFUon Wipe* T1(%) T2(%) T3(%) Total (%)

S. aureus Steel (S) 84 4 8,350,000 8 6 2 16
E. faecalis  Steel (S) 87 2 3,666,667 11 9 1 21

E. coli Steel (R) 83 5 4,600,000 22 2 3 27
S.aureus  Steel (R) 89 1 9,800,000 7 7 3 17
E. faecalis ~ Steel (R) 84 2 3,800,000 20 14 3 37

* Average number of colony-forming units on the nonwoven fabric following wiping, calculated as the difference
between bacteria remaining on the surface before and after wiping [10]. T1, T2 and T3 represent the three consecutive
transfers of bacteria. SE indicates the standard error of the mean.

Table 5. Removal of bacteria and recontamination of surfaces by a 100% polypropylene nonwoven
wipe. Steel (R) denotes rough steel samples. Steel (S) denotes smooth steel samples. * Average number
of colony-forming units on the nonwoven fabric following wiping, calculated as the difference between
bacteria remaining on the surface before and after wiping [9]. T1, T2 and T3 represent the three
consecutive transfers of bacteria. SE indicates the standard error of the mean.

Bacteria Surface Removal (%) SE CFUonWipe* T1(%) T2(%) T3(%) Total (%)

E. coli Ceramic 85 6 3,383,333 12 4 1 17
S. aureus Ceramic 89 5 12,483,333 16 1 2 19
E. faecalis ~ Ceramic 80 2 2,483,333 11 3 1 15

E. coli PMMA 79 3 9,866,667 7 2 1 10
S. aureus PMMA 80 3 7,633,333 5 4 3 12
E.faecalis ~ PMMA 78 6 4,300,000 3 3 5 11

E. coli Steel (S) 83 3 4,550,000 9 5 2 16
S. aureus Steel (S) 83 3 8,250,000 6 4 1 11
E. faecalis  Steel (S) 83 6 4,700,000 10 6 1 17

E. coli Steel (R) 88 1 6,600,000 11 8 7 26
S.aureus  Steel (R) 70 6 6,283,333 16 14 4 34
E. faecalis  Steel (R) 80 2 3,900,000 17 9 5 31

2.4. Surface Recontamination during Successive Wiping Cycles

During dynamic wiping, there is potential for bacteria collected by the wipe to be transferred to
another area of the surface, as repeated wiping continues. The retention of the organic load is therefore
an important criterion, as well as the bacterial removal efficiency. Referring to Figures 2 and 3, it is
evident that both wipe substrates, irrespective of their fibre composition, were unable to resist transfer
of their bacterial load to uncontaminated surfaces over successive cycles.

When the surface was made of the same material, e.g., steel (smooth and rough), the proportions
of bacteria transferred from the wipes after the total recontamination wiping cycles (“Total (%)”)
increased with increased surface roughness (R,) (Tables 4 and 5). It is therefore apparent that an
increase in surface roughness, even at the nanoscale (<1 pum), is likely to increase the potential for
surface recontamination during repeated wiping cycles (Figures 2 and 3).

Based on these data, combined with other reported studies on the performance of commercial
wipes [1,21], it is apparent that the transfer of bacteria from wipes to previously sterile surfaces is
highly likely regardless of conditions. Re-contamination implies release of the bacterial load from the
wipe during successive wiping cycles in a timescale that is lower than the average kill time. Note that
biocidal product claims are commonly based on suspension tests, where the contact time is of the order
of 5 min, rather than seconds [22,23]. In practice, a contaminated wipe containing biocide could be
used multiple times across different surfaces well within the minimum 5 min timeframe needed to
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achieve biocidal efficacy. Given that a minimum time period of 5 min is typically needed for biocidal
efficacy within the wipe, there are obvious implications in terms of the potential for the transmission of
HCAIs during wiping in real healthcare environments.
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Figure 2. Total recontamination of surfaces by Lyocell nonwoven wipes versus the average roughness
(Ra) of the healthcare surface being wiped.
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Figure 3. Total recontamination of surfaces by polypropylene nonwoven wipes versus average
roughness (R,) of the healthcare surface being wiped.
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Less bacteria was found to be transferred than has been reported elsewhere using detergent-loaded
wipes [10] and this may be due to the specific chemical composition and more rapid kill time of
the specific biocide used in the present work compared to previous studies. There is also the fact
that, due to their inherent chemical composition, the cellulosic fibres in the wipes may have altered
the composition of the biocidal lotion by effectively removing the cationic surfactant. By contrast,
PP (and therefore the PP fibres) fibres are relatively chemically inert and should not alter the biocidal
lotion. This is a promising avenue for further academic work and wipe product development.

As wiping with a typical quaternary ammonium compound biocide-loaded wipe does not appear
to confer residual antimicrobial activity once applied to a target surface and leads to the recontamination
of previously sterile surfaces irrespective of the roughness or chemical composition, hygiene practices
should be updated to reflect this. Based on this study, and combined with other published work,
regular disinfection of surfaces can be recommended with a “One wipe, One surface, One direction,
Dispose” policy. There is a caveat to this, however, as it is possible to fold the wipe so that it can still
potentially deliver a one wipe (aspect), one surface “rule”. This approach has been suggested in some
healthcare settings. Wipe folding was not studied here and is a target for potential future investigation.
There is the need for further work using different chemical compositions of biocide other than the
quaternary ammonium compound type to see if these results can be replicated or if a given chemistry
can be shown to be more effective in these situations. This should be considered alongside the “LOOK,
PLAN, CLEAN AND DRY” approach reported by Dancer and Kramer [24]. Other methodologies exist
for assessing bacterial transfer, including the ASTM E2967 standard [25].

3. Materials and Methods

3.1. Nonwoven Production

To minimise variations in the structure and properties of the wipes to be studied in the experimental
study, and to ensure their full manufacturing history was known, samples were produced on pilot
production equipment at the University of Leeds, replicating industrial nonwoven manufacturing
processes. Dry-laid (carded) and hydroentangled nonwoven wipes of 100% polypropylene (PP) fibres
and 100% regenerated cellulose fibres (Lyocell) were manufactured with specifications previously
described by Edwards et al. [19,26].

3.2. Biocide and Neutraliser

3.2.1. Biocide

The wipe samples were impregnated with a commercial biocide formulation used for hard
surface decontamination. The biocide comprised a proprietary blend of a non-ionic surfactant (Cy-Cq3
ethoxylated alcohol Pareth-5), a cationic surfactant (benzalkonium chloride), together with buffering
agents and sequesterants. A 1:20 dilution of the biocide with deionised water (dH,O) led to a
performance consistent with the EN 1276 “Quantitative Suspension Test of Bactericidal Activity of
Chemical Disinfectants” test, giving a 5 log reduction of the pathogenic bacteria S. aureus, E. coli, E. hirae
and P. aeruginosa below 5 min [27]. The diluted biocide surface tension was 37.5 X 1073 N-m~! at 20 °C,
the viscosity was 1.35 mPa-s (60 r min~! at 2.7% torque) and the pH was 9.98.

3.2.2. Neutraliser Toxicity and Efficacy Tests

The neutraliser was prepared according to the method given by Ramm et al. [10]. The toxicity of
the neutraliser and its ability to quench the activity of the biocide was tested according to the method
reported by Knapp et al. [28].
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3.2.3. Impregnation of the Wipe with Biocide

Sample wipes were soaked in 10 mL 1:20 biocide or deionised water (dH;O-the control) for 10 min
before being compressed in a Werner Mathis mangle (4 m'min~") at varying pressures to achieve a
liquid pickup of 150% by weight for both biocide and dH,O, using both the PP and the Lyocell wipes,
as per Berendt et al. [29]. This 150% value was the maximum pick-up that could be achieved with the
PP samples due to the hydrophobicity of the fibres, so was applied to both samples.

3.3. Model Healthcare Surfaces

Poly (methyl methacrylate) (PMMA) surface tiles (registered to ISO 9001), Grade 304 stainless
steel (“Smooth” and “Rough” variants), and glazed ceramic tiles were selected as representative model
healthcare surfaces. Where only one variant of the steel samples was tested, the Rough (R) variant was
used. All surfaces were sterilised with 70% ethanol and left in ambient conditions for 10 min until
visibly dry prior to use.

3.4. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy

The chemical composition and morphology of the PMMA, “rough” steel and ceramic healthcare
surfaces were analysed in the sterile state and after wiping with biocide or water (dH2O) impregnated
wipe samples. Wiping was performed as described by Edwards et al. [19,26], with 10 replicates per
sample. The healthcare surfaces were gold coated using a Quorum Q150RS sputter coater (Quorum
Technologies Ltd.; Lewes, East Sussex, UK). A JEOL JSM-6610 LV scanning electron microscope
(SEM) (JEOL Ltd.; Tokyo, Japan) was then used to image the samples, with an accelerating voltage
of 5 kV, a working distance of 8 mm and a typical magnification of 750X. Energy-dispersive X-ray
spectroscopy (EDX) was carried out using an Oxford Instruments INCA Xmax80 EDS Spectrometer
(Oxford Instruments PLC; Abingdon, UK).

3.5. Surface Roughness

The surface roughness of the healthcare surfaces was analysed via atomic force microscopy (AFM).
A Dimension Fastscan atomic force microscope (Bruker, Billerica, MA, USA) was used in contact dc
mode to probe the surface of the steel, ceramic and PMMA under ambient conditions. Samples were
mounted on a 10 mm diameter circular metal disc using epoxy resin. Nanoscope Analysis v1.5 software
(Advanced Surface Microscopy, Inc., Palo Alto, CA, USA) was used to evaluate the resulting data.

3.6. Bacterial Strains

The microorganisms studied herein were E. coli (ATCC 25922), S. aureus (ATCC 29213) and
E. faecalis (ATCC 29212). These were provided by Leeds Teaching Hospitals NHS Trust Pathology
department (LGL; Leeds, UK). Strains were cultured according to previously published methods [19,26].

3.7. Microorganism Removal Efficiency from Healthcare Surfaces

The removal of bacteria from the model healthcare surfaces was evaluated according to the
method described by Edwards et al. [19]. Briefly, a 900 mm? section of the test fabric was attached to a
20 mm diameter boss and fixed to a Caframo BDC2002 overhead stirrer (Caframo Limited, Ontario,
Canada). This was rotated at 60 r-min~! for 10 s at 4.68 kKN-m~2 applied pressure against the inoculated
surface tile. The bacteria removal efficiency was calculated as in Equation (1):

R = Cct - Cwt/Cct x 100 1)

where, R = removal efficiency (CFU %); Cct = bacterial colonies recovered from control tile; and
Cwt = bacterial colonies recovered from wiped tile.
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3.8. Recontamination of Surfaces

Recontamination of surfaces was measured according to the method outlined by Ramm et al. [10].
The wipe-surface contact time was 30 s at a wiping speed of 60 r-min~".

The proportion of bacteria transferred was estimated based on the assumption that the difference
in the number of colony-forming units (CFU) on the surface before and after wiping ended up either
on or in the wipe. Owing to the nature of the recontamination calculation, statistical analysis could not
be performed. This is because the total recontamination data is the sum of three consecutive transfers

(T1, T2 and T3), such that T1, T2 and T3 are themselves the average transfer values for three replicates.

3.9. Residual Antimicrobial Activity

The assessment of residual antimicrobial activity was based on a modified Association of Official
Analytical Chemists dilution method [30]. Steel, ceramic or PMMA tiles were inoculated with 20 pL of
the biocide. This was spread over the surface with an L-shaped hockey stick (VWR 612-1561) using
five back and forth sweeps left and right, up and down, then left and right, and allowed to dry in
ambient conditions for 20 min.

Each tile was then inoculated with bacteria using the same method described by Ramm et al. [10],
without simulated wiping, and assessed with a control tile (with no biocide addition). Any bacterial
death on the biocide-coated surface versus the control surface was attributed to the residual antimicrobial
activity of the biocide on the surface.

3.10. Surface Wetting Tension

The wetting behaviour of the steel, ceramic and PMMA healthcare surfaces was measured with
milli-Q water using an FTA 1000 contact angle goniometer (First Ten Angstréms, Portsmouth, VA,
USA). The healthcare surfaces were tested in the sterile state and following inoculation with 20 pL of
0.015 g'm~2 BSA in PBS and subsequent drying.

3.11. Statistical Analysis

All data are the results of at least three independent replicates. Where appropriate, a one-way
analysis of variance (ANOVA) at a 95% confidence interval and a post-hoc Tukey’s test were performed.
All analyses were completed in MINITAB software, version 16 (Minitab Inc.; State College, PA, USA).

4. Conclusions

The wiping of surfaces using a wipe that is already contaminated with bacteria during a prior
wipe cycle is highly likely to result in recontamination. Regardless of the composition of the wipe
(100% Lyocell or 100% PP), or the presence of a quaternary ammonium compound biocide deposit on the
surface, successive wiping of a sterile surface using a wipe containing bacteria leads to recontamination.
Furthermore, increasing the micro-roughness of metal healthcare surfaces increases the degree of
recontamination during successive wiping cycles. No significant residual antimicrobial activity was
observed following the deposition of a quaternary ammonium compound biocide on model healthcare
surfaces after wiping (p < 0.05), confirming that there is no substantial residual biocidal activity
following a wiping cycle with a quaternary ammonium compound biocide-loaded nonwoven wipe.
Although quaternary ammonium compound biocide-impregnated wipes remove some of the bacterial
burden from healthcare surfaces during initial wiping, it is clear that they should be used with caution
since there is a risk of recontamination of otherwise uncontaminated surfaces during successive wiping.
This is particularly important if the efficacy of the biocide is of the order of minutes rather than seconds.
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