SUPPLEMENTARY MATERIALS

Figure S1. Titration of surfactant DMHNHC₁₄ at 25°C. The curve shows the fitting of the experimental points to the acid base equations including the presence of CO₂.

Figure S2. Surface tension as a function of concentration for mixtures of histidine surfactant with $C_{12}C_3L$ at 25 $^{\circ}$ C

Figure S3. I1/I3 values for pyrene as a function of DMHNHC14/C3C12L catanionic mixtures concentration (■20:80HL ● 40:60 ▲ 60:80HL ▼80:20HL)

Figure S4. H¹NMR of the pure surfactants and the catanionic mixtures obtained from 5 mM solutions at 25 °C (1 Histidine, 2 80:20HM, 3 60:40HM, 4 40:60HM, 5 20:80HM, 6 Myristate)

Figure S5.Intensity as a function of diameter as obtained from dynamic light scattering obtained at 25 °C for the different compositions of DMHNHC14/C $_3$ C $_{12}$ L \vee 80:20HL \wedge 60:80HL \bullet 40:60 \square 20:80HL

Figure S6. DMHNHC14/C₃C₁₂L 80:20 HL SAXS intensity as a function of scattering vector q at different times. Note that the peak at 1=1.5 nm⁻¹ decreases in intensity while the intensity at small q increases. The peak at q=2.25 nm⁻¹ appears after 10 s measurement.

Figure S7. DMHNHC14/ $C_3C_{12}L$ 40:60 HL SAXS intensity as a function of scattering vector q at different times.. The overall intensity increases wiht time, the band around 2 nm⁻¹ becomes less marked.

Figure S8. DMHNHC14/C₃C₁₂L 20:80 HL SAXS intensity as a function of scattering vector q at different times... The behaviour is similar to 80:20 HL but the peak at q= 2.25 nm⁻¹ appears after 30 s.

Figure S9. ¹HNMR spectrum of C₁₂C₃L

Figure S10. ¹³CNMR spectrum of C₁₂C₃L

Figure S11. COSY spectrum of $C_{12}C_3L$

Figure S12. HSQC spectrum of $C_{12}C_3L$

Figure S13. HPLC chromatogram of $C_{12}C_3L$

Table S1 Surface tension and fluorescence aggregation parameters of the pure surfactants and the catanionic mixtures and ζ -potential of the mixtures.

His%	α His¹	A_m^2	CMC_{γ}^{3}	$\gamma_{\rm cmc}^{}$	CMC _F ³	ζ-potential ⁵
100	1	57	5.2	33	3.8	
80:20HL	0.748	19	0.33	28	0.07	+41mV

60:40HL	0.527	22	0.19	28	0.15	+41mV
40:60HL	0.331	30	0.17	29.5	0.13	+41mV
20:80HL	0.157	14	0.09	26.5	0.15	~0

¹ Histidine molar fraction in the mixture.

² Area per molecule according to Gibbs adsorption isotherm using n=1 in nm².

³ CMC obtained by surface tension or Fluorescence in mM.

⁴ Surface tension at CMC in mNm⁻¹.

 $^{^5}$ ζ-potential in mV.