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Abstract: Extracellular vesicles (EVs) are membranous structures derived from the endosomal
system or generated by plasma membrane shedding. Due to their composition of DNA, RNA,
proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell
communication, with various implications in physiological and pathological processes. EVs are
not only a highly heterogeneous population by means of size and biogenesis, but they are also a
source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of
biological samples have facilitated the development of databases comprised of characteristic genomic,
transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth
approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative
methods have been applied to analyze the molecular interplay in these targeted delivery systems.
New perspectives arise from the field of systems biology, where accounting for heterogeneity may
lead to finding patterns in an apparently random pool of data. In this review, we map the biological
and methodological causes of heterogeneity in EV multi-omics data and present current applications
or possible statistical methods for integrating such data while keeping track of the current bottlenecks
in the field.
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1. Introduction

In the past 10 years, the scientific community’s perspective toward extracellular vesicles (EVs) has
markedly focused on their role as mediators of intercellular communication, adding more insights to
their known diversity and functions [1,2]. Underestimated in terms of heterogeneity, these membranous
structures carry a diverse pool of functional biomolecules, most of them having unknown roles. So far,
many attempts to screen these molecules or to construct reliable and reproducible molecular profiles
of EV load have begun. Simultaneously, the rise of high-throughput applications in EV biology has
enabled the collection of biological data at faster rates. These data are reported in various formats
across a plethora of repositories, making searching and comparing results increasingly difficult.
Computational methods can be used to provide integration strategies so that biological data can be
observed in a system-wide manner, thus reflecting the elaborate interplay among biological variation
at different levels of regulation [3].
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The interest in multi-omics data integration emerges from the nature of a cell’s response to
different conditions, which is best explained mechanistically when corroborating all omics levels [4].
Previous successful attempts of integrating multi-omics data have led to the characterization of
informationally dense networks that accurately model human pathologies. By integrating genes and
their known phenotypic profiles, groups of molecules that are involved in the same biological process
(functional modules) have been identified [5]. Using a network-based data analysis approach, one could
quantify how these modules are shared by similar diseases. According to how interconnected these
modules are, disease-related genes having high association rates with a wide array of biomolecules
may have a central role in the human interactome, often coding proteins acting as hubs in modulating
systemic responses [6].

This review advances the idea that targeted cell-to-cell communication which occurs via EV
mediation is more specific than previously believed and can be explored using multi-omics. Even though
molecular cargo associated with EVs is highly heterogeneous and appears to be randomly distributed
across EV subpopulations, there are putative proofs of an oriented cellular cross-talk through functional
molecules. For example, tumor-derived EVs show specific integrin profiles recognized by the recipient
cells in preferential metastatic locations of lung, liver, and brain cancers respectively, suggesting that
EVs could prepare the pre-metastatic niche and facilitate organ-specific metastasis [7]. Here, we review
existing EV multi-omics assays, highlight the biological and methodological causes of heterogeneity in
EV-derived data, and present current applications or putative statistical methods for integrating such
data, while keeping track of bottlenecks in this field.

2. Biological Diversity of EVs

EVs are membranous structures produced in the endosomal system or generated by plasma
membrane shedding. They are mainly found in biological fluids and are considered a viable way of
cell-to-cell communication, with various implications in physiological and pathological processes [8,9].
So far, EVs have been isolated from a large variety of biological fluids such as plasma [10], urine [11],
saliva [12], cerebrospinal fluid [13], breast milk [14], ascitic fluid [15], gastric juice [16], bile [17],
sputum [18], bronchoalveolar lavage fluid [19], epididymal fluid [20], and tears [21]. EVs are a
highly heterogeneous population, not only by means of size and biogenesis, but also composition
and biomarkers, having specific DNA, RNA, protein, lipid, and metabolite cargo. For a long period
of time, size was the main characteristic used to classify EVs into exosomes and microvesicles
(MVs), but contradictory results made it difficult and confusing, creating the need for alternative
criteria [22-25]. As the EV biogenesis involves two main pathways that generate MVs and exosomes by
membrane-trafficking processes, differentially expressed markers started being taken into consideration
for a more accurate classification. Exosomes derive from the endosomal system, being synthesized as
intraluminal vesicles within multivesicular bodies. Their sorting machineries are either dependent or
independent of the endosomal sorting complex required for transport (ESCRT) proteins. MV generation
is simpler, by plasma membrane shedding. In spite of the different packing mechanisms, the molecular
profiles derived from both biogenesis processes overlap, making the MVs—exosomes dichotomy no
longer useful [8,23,26] (Table 1).

EVs exert various biological roles, being involved in the immune response [37,38], regeneration [32],
and as components of the extracellular matrix [39]. Early studies of EV function suggested
antigen-presenting properties and the ability to stimulate T cell responses [34,40-42]. More recent
studies indicate that EVs participate as well in autoimmune modulation processes in type 1 diabetes,
as islets of Langerhans release EVs that are capable of activating peripheral blood mononuclear cells
(PBMCs) [43]. In cancer, EVs are exchanged by cells within the tumor microenvironment in order to
promote tumor growth and metastasis [44], vascularization [45], dormancy [46], chemoresistance [47],
and metabolic reprogramming [48], mainly by transferring non-coding RNA molecules, such as
miRNAs. Recently, EVs have been described as agents in modulating the spread of cancer cells toward
their preferred metastases locations. Before invading other tissues and organs, tumors assure their
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growth by promoting the formation of a favorable micro-environment named the pre-metastatic niche
(PMN) [49]. In colorectal and lung cancer, EVs enriched in small RNA species participate in activating
pro-inflammatory processes through Toll-like receptor (TRL) pathways [50,51]. Other mechanisms that
support metastasis are the mesothelial to mesenchymal transition and the promotion of angiogenesis
through delivering miR-21-5p and miR-25-3p [52,53]. PMN formation as a result of cell-to-cell
communication mediated by EVs was also observed in pancreatic, ovarian, and lung cancer [54-56].

Table 1. Evolution of extracellular vesicles (EV) dichotomous classification according to the
accumulation of recent knowledge.

Historical Criteria Early Knowledge Current Knowledge

Classification no longer in use, MVs can
be smaller than 100 nm, exosomes have
an upper limit based on endosomal size
(up to 150 nm or larger); “small EVs”
and “medium/large EVs” nomenclature
is preferred [25]

MVs range between 100 and 1000 nm,
Size while exosomes have dimeters smaller than
100 nm [23,27]

Different marker profiles due to biogenesis:
GTP-binding proteins (ARF6),
vesicle-associated membrane protein

3 (VAMP3), proteasomes,
mitochondria-related proteins for MVs,
transduction or scaffolding proteins
(Syntenin 1), extracellular matrix,

cell adhesion, receptor binding proteins and
endosome-binding proteins (TSG101) for
exosomes [24,28,29]

No molecular markers that could
characterize specifically each EV
subtype, yet validation with three
markers from three different classes is
required in order to evaluate tissue
specificity, lipid, or membrane-binding
ability and purity [25]

Protein content

Lipid ratios in EVs are not yet
established [25]; more studies are

Enriched contents according to the EV needed in order to compare the lipid
Lipid content subtype: ceramides and sphingomyelinsin  profiles of EVs with co-isolated
MVs, cardiolipins in exosomes [29] lipoproteins and validate characteristic

EV lipid contents such as
lysoglycerophospholipids [30]

DNA, mRNA, ncRNA, and especially

Nucleic acid content miRNA in both MVs and exosomes; Confirmed specific incorporation of
origin-specific miRNA profiles for RNAs into subtypes of EVs [25]
exosomes [8,31]
Differential centrifugation or No “golden standard” method to isolate
Isolation and ultracentrifugation (10,000-20,000x g for and/or purify EVs, the choice is to be
P MVs, 100,000-125,000% g for exosomes), made based on the downstream
purification methods size exclusion chromatography, applications, recovery, and specificity
immunoaffinity capture [32-36] rates [24,25]

As EVs play an important role in tumor growth and metastasis, it is fair to consider that they
may represent therapeutic targets as well. For this matter, three strategies that might alleviate the
EV contribution to tumor development were postulated: the elimination of circulating EVs based
on specific surface markers, the inhibition of EV release, and the impairment of EV absorption [57].
For example, targeting the gene for the autophagy related 5 (ATGS5) protein that stimulates in vivo
metastasis through EV production might have promising results in holding tumor progression [58].
Drug repurposing is another promising alternative, as FDA-approved compounds such as the antibiotic
sulfisoxazole impair EV secretion in breast cancer cells [59]. Taken together, EVs are of great interest
not only for their crucial implications in physiological and pathological processes but also for their
clinical promise.
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3. Heterogeneous Methods and Data in EV Biology

Extensive debates on the concentration of EV cargo required mediating a biological effect or the
influence of co-purified molecules (cytokines, chemokines) on assumed targets have been unfolding
in the scientific community. Initially seen as questionable carriers of biomolecules [60,61], EVs now
represent reliable sources of heterogeneous biological data spanning across all omics. One of the
main challenges that arises even before data collection or analysis is the isolation of EVs. Most often,
the difficulties stem in their small size, hydrophobic character, and low abundance in biofluids-which
is usually several orders of magnitude lower than other well-known components such as albumin in
blood [62].

In the past decade, as high-throughput technologies have been evolving, multi-omics data
acquisition started to be a feasible method for EV study. Growing interest has been recorded for
transcriptomics, proteomics, and metabolomics screenings, yet omics approaches for the DNA load of
EVs are still difficult and costly to implement. Simultaneously, the ongoing debate around adequate
bioinformatics methods to be used for such multi-level data has been focusing on integrative approaches
(Figure 1).
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Figure 1. Evolution of interest in omics studies for EVs, according to the number of annual publications
on PubMed. Stacked histogram created using R software [63].

3.1. Genomic Heterogeneity

Although EVs have been reported to carry DNA molecules ranging in length from 100 base
pairs to several kilobase pairs [64], EV DNA remains poorly understood and lacks genome-wide
analyses. The subject of EV DNA is still controversial due to the limited evidence for its presence outside
pathological intercellular communication in cancer and immune disease [65]. So far, cardiomyocytes [66]
and acinar cells of the prostate gland [67] have been reported as releasing EVs containing DNA in
physiological processes. It has been proved that EVs are associated with a wide range of DNA species:
single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), mitochondrial DNA, and even
oncogenes (c-myc) [64] (Figure 2A). Recently, whole-genome sequencing started being used in order to
elucidate the identity and function of EV-transferred DNA, as it seems to cover unique regions of the
genome and has differential topology [68]. However, the major limitation in preserving and isolating
DNA from EVs is that the fragments seem to be preferentially oriented on the outside or on the surface
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of EVs, while only a small fraction is encapsulated by the lipid bilayer and protected from enzymatic
degradation [68]. Even so, the possible clinical applications of characterizing EV DNA from blood and
liquid biopsies seem more promising than other explored methods. For example, EV-derived DNA
characterization could be preferred to circulating DNA characterization, since this last biomarker is
highly unstable and represents a passive product of DNA fragmentation following cell death [69].
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Figure 2. Correlation between EVs content in RNA, protein, lipid, and metabolites types and the
multiple omics analyses that EV data integration can generate. Several areas of biology and medical
research (input) generate complex genomics, transcriptomics, proteomics, lipidomics, and metabolomics
analysis that can contribute to understanding several biological processes and functions (output).
By means of bioinformatics tools, these data will be preprocessed and then integrated in order to answer
various biological questions regarding intercellular communication (A). General structure of an EV,
with specific EV markers—CD9, CD63, CD80, CD81, flotillin 1, Alix, and TSG101 (B). Figure created

with BioRender.com.

3.2. Transcriptomic Heterogeneity

A special interest has been paid to EVs transporting RNA molecules, mostly non-coding RNAs,
since they modulate multiple pathways in health and disease. Most of these studies focus on
malignant pathologies and try to characterize reliable RNA signatures for screening [70], diagnosis [71],
or prognosis [72]. Applications in other diseases such as rheumatic heart disease, osteoarthritis,
and tuberculosis [73-75] have been reported as well. The most popular screening method for
EV-derived RNA is quantitative reverse transcriptase-PCR (qRT-PCR) due to low quantities of required
samples (1 ng total RNA followed by a pre-amplification step), low costs, and straightforward data
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analysis that does not require bioinformatics methods. However, the major drawbacks of this technique
are the limited heterogeneity of explored RNA populations due to pre-selected primers, which are
often subject to bias, and the need of endogenous controls for RNA expression normalization [76].
So far, a vast panel of intravesicular RNAs has been described, comprised mostly of stable micro
RNAs (miRNA), but having also representative fractions of messenger RNAs (mRNA), ribosomal RNA
(rRNA), transfer RNA (tRNA), small nucleolar RNA (snoRNA), small nuclear (snRNA), long non-coding
RNA (IncRNA), long intergenic non-coding RNA (lincRNA), and non-coding RNA (ncRNA) [77].
More recently, next-generation sequencing (NGS) proved to be an adaptable method for more
comprehensive analyses of the RNA bestiary, showing an enrichment of EV cargo in small non-coding
RNAs, such as Y-RNA, vault RNA, and signal recognition particle RNA (SRP-RNA) [78] (Figure 2A).
So far, a considerable number of studies performed deep sequencing analyses on the RNA cargo of
EVs isolated from human samples [79,80]. Even so, the distribution of coding and non-coding RNA
can vary dramatically according to the library preparation method used for sequencing.

3.3. Proteomic Heterogeneity

The protein cargo of EVs is both cell and disease-type dependent, being analyzed so far using Western
blotting or mass spectrometry (MS). In order to validate isolated particles such as EVs, the most popular
approach is to screen samples for common markers such as CD63, CD9, CD81, TSG101, and HSP70 [81]
(Figure 2B). More complex, high-throughput studies are required in order to map the heterogeneous
protein cargo profiles of EVs. So far, EV proteomic profiles have been successfully characterized in both
gel-based (electrophoresis setup) and gel-free (chromatographic setup) systems in mass spectrometry,
shotgun proteomics, or targeted proteomics. Most often, proteins are extracted using a lysis buffer with
or without detergents and are digested before the MS analysis [62]. Such attempts have been useful in
evaluating the differential protein expression of EV cargo in normal cells as compared to cancer cells [82],
map chemotherapy-induced variations [83], mediate tumor education and metabolic reprogramming [84],
chemoresistance, and other functional adaptations of the recipient cells [85].

Although identifying the proteins present in EVs is a notable milestone for the scientific
community, there are deeper layers of knowledge that require additional exploration in order to
functionally understand EV proteomics. For example, post-translational modifications (PTM) such as
phosphorylations, glycosilations, sumoylations, and ubiquitinations can be assayed in order to map the
activation status of various proteins. These modifications can easily modulate protein conformation
and function by changing the physicochemical characteristics of the protein—-protein interactions
(PPi) [76]. For example, the sumoylation of RNA-biding proteins responsible for molecule trafficking
in EVs such as the heterogeneous nuclear ribonucleoprotein hnRNPa2B1 has been reported to facilitate
selected miRNA incorporation, predominantly miR-17 and miR-93 [86].

3.4. Lipidomic Heterogeneity

From a structural perspective, lipids are one of the most heterogeneous classes of biomolecules due
to their permutations in head groups and fatty acid chains. The limited working sample size requires
in this case as well techniques with increased sensitivity in order to detect individual constituents of
the EV lipidome. Even if mass spectrometers offer such high sensitivity and specificity rates, they can
only provide accurate measurements of the molecular weight of the analyzed lipid, while overlaps
in different classes of lipids are still posing great challenges in exact identifications [76] (Figure 2A).
More recently, thin layer chromatography (TLC) coupled with mass spectrometry systems such as
MALDI-TOF has also been described as an efficient method in discriminating the lipidomic content of
EVs. Notably, this approach has been recently used not only to identify but also differentiate between
the lipid composition of EV subpopulations [87].

Even if we expect that the lipid composition of EVs should be similar to the membrane composition
of the releasing cell, direct comparison studies have shown different fractions of lipids as being
enriched in EV profiles, such as glycerophospatidylcholines, glycerophospatidylethanolamines,



Int. ]. Mol. Sci. 2020, 21, 8550 7 of 21

glycerophospatidylserines, sphingomyelin, cholesterol, and ganglioside GM3, contributing to their
stability and structural rigidity [88,89]. In breast cancer, there are various observations associating
lipids and malignancy. EV lipidomics are also aligned to this theory, as observations on triple-negative
breast cancer cell lines have shown differential lipid composition between EVs versus releasing cells,
as well as tumor cells with low metastatic potential versus high metastatic potential [90].

3.5. Metabolomic Heterogeneity

During their biogenesis, EVs might integrate sub-nanomole concentrations of small metabolites
such as carbohydrates, amino acids, nucleotides, enzymatic cofactors, and lipids. As compared to
other frequent contaminants of EV lysates such as lipids and lipoproteins, metabolites are a pool of
small-sized analytes; therefore, even the most sensitive targeted mass spectrometry detection systems
may not be able to detect them. Hence, an enrichment in metabolites using solid phase extraction
cartridges is preferred prior to spectrometry assays [76].

Despite experimental hardships that limit the study of metabolomics, EVs are already recognized
as independent metabolic units that can modulate systemic changes in recipient cells [91]. For example,
EVsrichin prostaglandins can be used in triggering prostaglandin-dependent pathways of inflammation
in the recipient cell [92]. In contrast, the polyunsaturated fatty acids (PUFA) in EVs can serve as
precursors of anti-inflammatory processes [93]. Therefore, the metabolic cargo of EVs can rewire
biological pathways within cells and lead to a cascade toward pathological changes (Figure 2A).

The next big candidate for EVs screening that would complete the heterogeneous panel of EV
omics is the study of their glycomes. Since glycomics would involve the identification of complex
carbohydrate structures, sensitive high-throughput implementations are required. However, at the
moment of writing this review, these methods have not been optimized for EV samples.

It is important to note that the omics profiles of EVs are not only diverse in terms of components,
but they are also dynamic when observing disease evolution. In cancer initiation, progression,
and metastasis, a comprehensive landscape of EV-derived cargo has specific functions in space (PMN
formation, tumor microenvironment) and time [94]. For example, stage-specific molecular signatures of
EVs can be observed in monitoring breast cancer patients as the communication in between malignant
and stromal cells unfolds [95]. Metastasis due to EVs released by breast cancer cells is gradually
mediated at the endothelial cell level, where angiogenesis is being promoted and the destruction of
vascular endothelial barriers occurs by disruption in the formation of tight junctions [96].

4. Strategies of Preprocessing EV Omics Data

Following omics data acquisition, preprocessing is an essential step toward curating high-quality
molecular profiles that could be used for integrative purposes. Several aspects such as accounting for
contamination, using reference materials, and normalization protocols in order to correct systemic
errors should represent the first stages of any bioinformatics approach. The goal of the preprocessing
step should be the curation of comparable, scalable, and reproducible derived data regardless of the
platform used in primary data collection, as long as the experimental conditions (health or disease
status, EV source) are preserved.

Contamination in EV samples can easily occur and should be accounted before, during and after
EV isolation. After being released in large amounts in a biological system, EVs represent collectively
an interactive surface area that can bind various molecules also present in source biofluids, such as
immunoglobulins, complement proteins, coagulation factors, lipoproteins, and cytokines in blood [97].
Depending on the viscosity of these biofluids, the putative hydrophobic interactions that involve
EVs and the overlapping size and density range with many other particles, contamination with
lipoproteins and protein aggregates can easily occur and interfere with the downstream analysis of
EVs [98]. Purification using methods such as variations in size exclusion chromatography, ion exchange
chromatography, microfiltration, or fluorescence-activated sorting can be used in order to decrease the
concentration of contaminant biomolecules [25].
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In order to account for contaminant levels, an alternative can be using reference materials in
order to identify frequent impurities and filter them out from any further analysis. In the past
years, efforts have been made in order to characterize biological reference materials for EV study,
leading towards the generation of recombinant EVs (rEV) [99]. These constructs are derived from
nanometer-sized immature virus-like particles produced when the gag polyprotein of HIV-1 hijacks
the ESCRT pathway. Since EV budding areas are preferred by overly expressed gag polyproteins,
the rEV composition resembles one of the EVs in terms of lipids and proteins. Spiking rEV in samples
commonly isolated from various biofluids allows tracking of recovering efficiency, compensates for
intra-method and inter-user variability induced by sample handling, and significantly improves
methodological calibrations and data normalization [99].

For NGS, the typical normalization approach for RNA sequencing data derives from a count-based
differential expression analysis. Prior to normalization, it is important to choose adaptations of data
management methods based on the biases present in the dataset, which are most often enrichments
in small non-coding RNAs and rRNA [100]. Data preprocessing is imperious for better sample
management even before normalization: artifacts and low-quality reads corresponding to adaptors,
overly represented k-mers, duplications, or contaminants should be removed using bioinformatics
tools such as FastQC [101]. Further on, alignment steps using BWA [102], Bowtie [103], MAQ [104],
Stampy [105], and NovoAlign [106] can be performed in order to map the reads to the reference genome.
To quantify the expression level of a hit, various raw counts algorithms implemented in packages of the
Bioconductor project (BaySeq, DESeq, DEXUS) can be used [107]. These algorithms estimate counts,
FPKM (Fragments Per Kilobase of transcript per Million mapped reads), and TMP (Transcripts Per
Million) according to the abundance of each transcript based on the alignment, whilst alignment-free
implementations such as Salmon estimate TMP using pseudo-alignments in a k-mer space, according to
an index built on the GRCh37 human transcriptome [108]. Moreover, additional correction steps are
required for comparing transcripts within and between samples, accounting for both sequencing
depth and gene length. For example, FPKM is a good measure of within-sample normalized
transcript expression, yet it requires corrections for gene length when comparing changes within
sample expression, as longer genes tend to accumulate more reads. On the other hand, TMP is
considered to be more comparable between samples [109]. Popular algorithmic implementations of the
correction methods required by differential gene expression analysis are TMM [110], PoissonSeq [111],
and UpperQuartile [112]. Finally, differentially expressed genes can be the subject of gene set enrichment
analysis, allowing interpretations for genome-wide expression profiles, molecular physiology, and
functional genomics (Figure 3A).

In analyzing EV proteomics, one essential step is to validate the protein content as being derived
exclusively from EVs and not abundant or detectable in whole cells, cellular debris, or the biological
fluid used as source. For example, running a Western blot with proteins that should be absent
from the sample such as histones, calnexin, or mitochondrial markers could be a good negative
control prior to any further analysis involving cell culture media isolates [25]. Relative and absolute
quantification for protein levels in EV samples are often made in comparison to internal standards
using stable isotope labeling of amino acids in cell culture (SILAC) methods [113], or, more recently,
they are based on the addition of isobaric tags in the assay samples, such as the iTRAQ labeling
system [114]. For EV proteomics on serum and plasma, the presence of soluble proteins such as
albumin and lipoprotein co-isolates require adaptations of the isolation methods and proteomic
approach. A combination of ultracentrifugation/density cushion and size exclusion chromatography
was proposed in order to better separate EVs from other lipid vesicles present in human plasma and
biofluids [115]. Additionally, approaches such as micro-size exclusion chromatography for LC-MS
shotgun proteomics using EV isolates from small samples (<1 mL of serum) seem more successful in
untargeted characterizations, especially if two EV and lipoprotein-enriched fractions are comparatively
analyzed [116]. The case of tissue-derived EV proteomic analyses is still challenging due to the
difficulty of EV isolation without degrading their surface markers. So far, methods such as DNase I
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and collagenase treatments of tissue samples have proven successful in increasing the yield of EVs in
isolates and show a minimal reduction of EV surface markers [117]. Relative protein quantification
can be achieved in these cases as well by using tagged MS systems, such as the tandem mass tag
technology [118]. Further on, the analysis of mass spectrometry data can be done using publicly available
tools such as OpenMS [119] or LIPID MAPS (https://www.lipidmaps.org/), offering both individual or
“in bulk” search algorithms for precursor ion or product ion peaklists and a wide array of statistical
tools for user-uploaded data: normalization and scaling options, univariate analysis, clustering and
correlation, multivariate analysis, classification and feature analysis [120]. Similarly, metabolomics
mass spectrometry data can be analyzed using open source resources as HMDB (https://hmdb.ca/) for
mapping annotations or pathways [121] (Figure 3).
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Figure 3. Preprocessing steps for omics data. For sequencing data, reads are curated and then
aligned to a reference sequence; further on, gene and transcript quantification occurs through
count-based methods (A). For mass spectrometry data, ion peaklists are mapped using database entries;
then, identified molecule abundance is normalized for a final biomolecule profile (B). Figure created
with BioRender.com.

5. Computational Methods for EV Data Integration

Some of the major challenges in understanding systemic effects and adaptations of biological
systems such as EVs are their high dimensionality (many agents involved) and connectivity (many
connections in between agents), which are often explorable by multi-omics data integration approaches.
Various computational methods have been described as associating heterogeneous data in the attempt
to gain comprehensive biological insights at the organism level, yet no previous studies were reported
in the case of intercellular communication systems such as EVs. Integrative methods can be used
to assess modulatory relationships between omics layers in order to investigate complex biological
problems that have been unsolvable so far with less complex approaches. In health, one could evaluate
the molecular exchange between cells within and across tissues and its role in functional adaptation to
the environment. In disease, studies on the systematic response to drug treatment could be monitored
using EV cargo. Furthermore, the molecular states of disease progression could be characterized so
that new panels of membrane-coated, circulating biomarkers could be described and monitored in
clinical applications.

As the main goal of data integration strategies has been so far the development of precision
medicine models, not all current methodologies may be translatable to EV study. Some of the most
popular approaches which are of potential interest in EV data integration are further analyzed in
this review: correlation-based methods, network-based methods, Bayesian methods, and multi-step
methods. One common characteristic of these methods is that once multiple associations point at the
same molecules, false positives are less likely to occur [3]. Ideally, as heterogeneous data coming from
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different sources reflecting the same phenomenon are combined, the positive signals are often mutually
reinforcing, while uncorrelated noise tends to cancel itself out [122].

5.1. Correlation-Based Methods

Believed to be some of the most approachable and popular implementations of data integration,
correlation-based methods can be used in order to investigate the relationship between two sets of
variables [123]. For example, correlations can be estimated between two different sets of omics recorded
on the same EV samples, under the assumption of cause—effect relationships. Correlations between
genomics and transcriptomics, transcriptomics and proteomics, and transcriptomics and metabolomics
might be firstly investigated as they follow the logic of the central dogma of molecular biology [124].
However, the current perspective regarding the cross-talk between omics layers recognizes their
bidirectional modulation; therefore, correlations between metabolomics and genomics might be of
interest as well [125].

Stemming in the bidimensional representation of quantified omics data as matrices, the use of
mathematical operations could characterize and evaluate in terms of significance novel relationships
between the recorded pairs. By multiplying two matrices that share one axis, correlations between the
remaining axes can be easily achieved. A measure of the strength of the correlation can be even the color
embedded in the resulting matrix in a heatmap visualization (Figure 4A). Moreover, by clustering the
resulting matrix by rows and columns, one could evaluate groups that share common features
in biological processes [122]. One bottleneck of this approach is the management of outliers,
which can drastically influence the strength of the correlation for measures such as Pearson’s p.
Alternative methods can use other rank-based correlations such as Kendall or Spearman, which are less
sensitive to outliers. In some instances, outlier detection and removal approaches may be preferable,
yet usually, these are not desired unless clearly advocated.

Proteins Lipids Metabolites

Samples
Samples
Samples

Network-based
B

A Correlation-based
methods

methods

" Transeript

Transcripts

Figure 4. Putative strategy for EV multi-omics data integration. Multi-omics profiles can be observed
from a qualitative perspective, accounting for biomolecules preferentially present or absent in certain
pathophysiological states, or from a quantitative perspective, accounting for biomolecule abundancies
(color gradient) and functional enrichments. Integration of multi-omics data can be achieved using
correlation-based methods, a strategy endorsed for a 2 by 2 analysis of omics profiles across samples
(A), or network-based methods, where the diversity of omics layers can be observed in graph-like
structures where biomolecules are nodes and the relationships between them are weighted edges (B).
The goal of this last approach is to identify functional modules which are activated during EV-mediated
cell-to-cell communication. Figure created with BioRender.com.
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5.2. Network-Based Methods

Modeling complex biological interactions through the network-based method is a useful approach
in EV data integration. Nodes could be represented by biomolecules (genes, transcripts, proteins,
lipids from EVs cargo), and edges would define the relationships between them. Connections can
be weighted according to data values or embed additional layers of information based on previous
knowledge such as ontologies (standardized formulations that define the cause—effect relationships
in between biomolecules, e.g., “is-a”, “is-modulated-by”, “interacts-with”). So far, approaches based
on Bayesian networks that evaluate the likelihood between possible biological causes (pathologies)
and their known effects (symptoms) have been successful in integrating heterogeneous, noisy data.
Novel approaches put an emphasis on the topology of these networks and can be used to detect
significant pathways involved in EV biology or discover network sub-clusters with functional roles [123]
(Figure 4B). For example, by accounting for the internal similarity in high-throughput data and seeking
sub-network modules that manifest high similarity, biologically meaningful and relevant functional
modules can be obtained [126]. The major advantages of network-based methods are their resemblance
to the natural interconnectivity of biological systems and the user-friendly visualization that invites
systemic exploration [122].

One successful attempt of using network-based methods in EV biology is the case of
discovering novel biomarkers in primary open-angle glaucoma (POAG). As a multifactorial,
chronic neurodegenerative disease, POAG starts showing symptoms only in late stages. The need for
predictive biomolecules that could be used in early diagnosis has led to an extensive proteomic and
metabolomic screen of EV-derived cargo. Pathway analysis has correctly identified the capability of
EV cargo in triggering inflammatory responses, which is an observation that was later confirmed by
a genome-wide association study linking POAG etiology with endopeptidase activity in apoptotic
processes [127]. Another application of network-based methods is the study of enriched EV components.
By studying colorectal cancer-derived EVs, interaction networks were modeled using differentially
expressed metabolites, lipids, and proteins in cell culture as compared to serum-isolated EVs. The joint
networks for the two screened samples showed that fatty acid and amino acid metabolism is significantly
altered in colorectal cancer [128].

Additional candidates for data integration strategies are also Bayesian methods and multi-step
methods. One of the main advantages of using Bayesian methods for EV data integration is that they
can be used for making assumptions on two different layers, on different types of data, as well as on
the previously described correlations between those types of data [123]. Multi-step methods solve
data integration in modular stages: first, they find relationships between the different data types;
second, they map the connections between these relationships and a trait or phenotype of choice [3].

6. Challenges in EV Multi-Omics Integration

An ongoing debate in the scientific community is whether EVs have signal sorting mechanisms
and represent a selective cellular communication pathway, or their cargo is randomly packed and
therefore difficult to analyze in comprehensive approaches. Even though systemic perspectives can
lead to a better understanding of EV functionality, as computational biology tends to bring order into
chaotic aspects of life [129], various obstacles still need to be overcome.

First, the standardization of sample collection and processing is a key player in having access
to reproducible datasets that could be compared for integrative purposes. As the methods used in
EV biology are diverse, strategies for improving the signal-to-noise ratio need to be developed in
order to prevent the accumulation of more contaminants than analytes in EV isolates. Depending on
the EV isolation technique and the biofluid used as source material, contamination with proteins,
lipids, chylomicrons, low-density lipoproteins, and high-density lipoproteins can easily occur [130].
Protocol optimizations are required for each study and should be adapted according to the desired EV
recovery and specificity rates for the experimental hypothesis [25].
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Second, improved reporting of experimental design and results is needed for consistency in the
literature and reproducibility. One tool that aims to centralize knowledge in EV research and enable
transparent reporting of best methodologies of EV isolation and characterization is EV-TRACK, which is
a crowdsourced database created by a multinational consortium [131]. EV-TRACK records experimental
guidelines in order to map the evolution of EV research, enables informed dialogs in the scientific
community, and ultimately facilitates the standardization of the field, ensuring the comparability
of results in a meta-analysis approach. The key feature that serves this purpose is an EV-METRIC,
which is a quantifiable measure on how a study maps the ongoing EV isolation (specifications
of the used separation methods, such as ultracentrifugation or density gradient), protein analysis
(on both EV enriched and non-EV enriched proteins, antibody specifications, lysate preparation),
and particle analysis (implementation of both qualitative methods such as electron microscopy and
quantitative methods such as nanoparticle tracking analysis). Studies in the past five years show an
average EV-METRIC of 41%, indicating that EV research is still deficient in transparent methodological
reporting [131].

Third, the availability and consistency of previously reported data is a major limitation for
validation and meta-analysis studies. Although data heterogeneity can be substantially induced by
sample preparation protocols, large collections of data can yield more reproducible and biologically
interpretable observations. Ultimately, such online databases developed for EV research can be
used in order to validate original findings and check distributions of multi-omic profiles according
to reproducible experimental setups. Often, these databases comprise of extensive transcriptomic,
proteomic, metabolomic, and lipidomic datasets, standard experimental parameters in EV isolation and
characterization protocols, as well as functional annotations. For example, Vesiclepedia (http://www.
microvesicles.org/) is a continuously evolving database having protein, mRNA, miRNA, and lipid
entries that allows users to both query and download data regarding EV cargo and enables biological
pathway enrichment analyses using the FunRich plug-in [132,133]. ExoCarta (http://exocarta.org/) is a
manually curated database of EV proteins, RNA, and lipids from both published and unpublished
studies [134]. EVpedia (http://evpedia.info/) is a web-based database that aims to be a fundamental
repository in the advancement of EV research, which provides a wide palette of tools for Gene
Ontology (GO) enrichment analysis, network-based analysis for proteins and RNA, or ortholog
identification [135]. More targeted databases offer even wider sets of previously mapped biomolecules
in specific tissues and diseases, such as EVmiRNA (http://bioinfo.life.hust.edu.cn/EVmiRNA), which is
a comprehensive gene expression database for 461 miRNAs isolated from healthy controls or cancerous
tissues that are annotated with pathway information and putative targets [136].

Once challenges in acquiring and reporting single-omics data for EVs are overcome, the integration
of high-throughput data is mostly limited to the degree of connectivity within and between omics
layers [122]. Additionally, good quality annotations are required to observe and formulate testing
hypotheses on the integrative dataset. The integration of transcriptomics data with other types
of EV-wide data can facilitate a better understanding of how gene expression relates to molecular
physiology. For example, the integration of RNA sequencing data and miRNA sequencing data has
the potential to disclose some of the regulatory effects of miRINA on transcript levels [109]. The main
limitation of this approach is poor target prediction for miRNA molecules. Several bioinformatics
tools such as miRBase [137] and SePIA [138] try to overcome the need of annotations by testing
significant associations between genes, miRNAs, pathways, and Gene Ontology (GO) terms.
Alternatively, integrating transcriptomics data with proteomics and metabolomics is just as challenging
due to the limited availability of EV-derived mRNA data and generally low correlation between these
datasets, which is roughly 0.4 [139].

Analyzing the relationships between different layers of omics also has its own obstacles.
For example, distinguishing confounding effects from biologically relevant mechanisms is a challenging
task. Defined as variables whose presence affects the variables being studied so that results do not
reflect the actual relationships among data, confounders should be looked into and properly addressed
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using advanced statistical models [140]. Assuming that the quantity and quality of patient-derived EVs
can be affected by numerous factors including age, sex, body mass index, disease, use of medications,
general lifestyle, and dietary habits, statistical methods are required to take into account these
effects [141]. Ideally, in addition to a validated control normalization, further steps toward cancelling
any possible confounding effects should be performed in order to minimize artifacts in EV analyses.

7. Conclusions

As EVs are recognized as trans-genomic agents that have emerging roles in disease evolution,
applications of integrative analyses on EV-derived data are not utopic endeavors and can help us
better understand the relationships between their surface markers and their cargo. Since EVs can be
seen as less complex biological systems, their study could benefit from novel integrative approaches
developed at the cutting-edge of computational biology, as long as standardization in EV isolation
and characterization, transparent reporting, and data availability are assured. Since the interest in EV
research is increasing and bioinformatics tools for normalization and processing become friendlier to
users with non-computational backgrounds, we might gain more insights into the intricate cellular
communication and modulation systems in the following years.
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DNA deoxyribonucleic acid

dsDNA double-stranded DNA

ESCRT endosomal sorting complex required for transport
EVs extracellular vesicles

FPKM Fragments Per Kilobase of transcript per Million mapped reads
GO Gene Ontology

lincRNA long intergenic non-coding ribonucleic acid
IncRNA long non-coding ribonucleic acid

miRNA micro-ribonucleic acid

mRNA messenger ribonucleic acid

MS mass spectrometry

MVs microvesicles

ncRNA non-coding ribonucleic acid

ng nanogram

PBMC peripheral blood mononuclear cells

PCR polymer chain reaction

PMN pre-metastatic niche

POAG primary open-angle glaucoma

PPi protein-protein interactions

PTM post-translational modifications

PUFA polyunsaturated fatty acids

qRT-PCR quantitative reverse transcriptase polymer chain reaction

rEV recombinant extracellular vesicles
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RNA ribonucleic acid

rRNA ribosomal ribonucleic acid

SILAC stable isotope labeling of amino acids in cell culture
snoRNA small nucleolar ribonucleic acid

snRNA small nuclear ribonucleic acid

SRP-RNA signal recognition particle ribonucleic acid

ssDNA single-stranded DNA

TLC thin layer chromatography

T™P Transcripts Per Million

tRNA transfer ribonucleic acid

References

1. Gyorgy, B.; Szabé, T.G.; Paszt6i, M.; Pal, Z.; Misjak, P,; Aradi, B.; Laszl6, V.; Pallinger, E.; Pap, E.; Kittel, A ;

10.

11.

12.

13.

14.

15.

16.

et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell. Mol. Life Sci.
2011, 68, 2667-2688. [CrossRef]

Witwer, KW.; Théry, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing
a choice of nomenclature. J. Extracell. Vesicles 2019, 8, 1648167. [CrossRef]

Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover
genotype-phenotype interactions. Nat. Rev. Genet. 2015, 16, 85-97. [CrossRef]

Sass, S.; Buettner, F.; Mueller, N.S.; Theis, FJ. A modular framework for gene set analysis integrating
multilevel omics data. Nucleic Acids Res. 2013, 41, 9622. [CrossRef]

Hartwell, L.H.; Hopfield, ].J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology. Nature 1999,
402, C47-C52. [CrossRef]

Goh, K.-I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.-L. The human disease network. Proc. Natl.
Acad. Sci. USA 2007, 104, 8685-8690. [CrossRef]

Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.;
Di Giannatale, A.; Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature
2015, 527, 329-335. [CrossRef]

van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev.
Mol. Cell Biol. 2018, 19, 213-228. [CrossRef]

Yanez-Mo, M.; Siljander, PR.-M.; Andreu, Z.; Bedina Zavec, A.; Borras, FE.; Buzas, E.I; Buzas, K,; Casal, E.;
Cappello, F; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions.
J. Extracell. Vesicles 2015, 4, 27066. [CrossRef]

Caby, M.-P,; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-like vesicles are present
in human blood plasma. Int. Immunol. 2005, 17, 879-887. [CrossRef]

Pisitkun, T.; Shen, R.-F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine.
Proc. Natl. Acad. Sci. USA 2004, 101, 13368-13373. [CrossRef]

Ogawa, Y.; Kanai-Azuma, M.; Akimoto, Y.; Kawakami, H.; Yanoshita, R. Exosome-like vesicles with dipeptidyl
peptidase IV in human saliva. Biol. Pharm. Bull. 2008, 31, 1059-1062. [CrossRef]

Harrington, M.G.; Fonteh, A.N.; Oborina, E.; Liao, P.; Cowan, R.P.; McComb, G.; Chavez, ].N.; Rush, J.;
Biringer, R.G.; Hithmer, A.F. The morphology and biochemistry of nanostructures provide evidence for
synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res. 2009, 6, 10. [CrossRef]
Admyre, C.; Johansson, S.M.; Qazi, K.R,; Filén, ].-].; Lahesmaa, R.; Norman, M.; Neve, EP.A ; Scheynius, A.;
Gabrielsson, S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol.
2007, 179, 1969-1978. [CrossRef]

Gutwein, P; Stoeck, A.; Riedle, S.; Gast, D.; Runz, S.; Condon, T.P.; Marmé, A.; Phong, M.-C.; Linderkamp, O.;
Skorokhod, A.; et al. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian
carcinoma cells. Clin. Cancer Res. 2005, 11, 2492-2501. [CrossRef]

Yamamoto, H.; Watanabe, Y.; Oikawa, R.; Morita, R.; Yoshida, Y.; Maehata, T.; Yasuda, H.; Itoh, F.
BARHL2 Methylation Using Gastric Wash DNA or Gastric Juice Exosomal DNA is a Useful Marker
For Early Detection of Gastric Cancer in an H. pylori-Independent Manner. Clin. Transl. Gastroenterol. 2016,
7,¢e184. [CrossRef]


http://dx.doi.org/10.1007/s00018-011-0689-3
http://dx.doi.org/10.1080/20013078.2019.1648167
http://dx.doi.org/10.1038/nrg3868
http://dx.doi.org/10.1093/nar/gkt752
http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1073/pnas.0701361104
http://dx.doi.org/10.1038/nature15756
http://dx.doi.org/10.1038/nrm.2017.125
http://dx.doi.org/10.3402/jev.v4.27066
http://dx.doi.org/10.1093/intimm/dxh267
http://dx.doi.org/10.1073/pnas.0403453101
http://dx.doi.org/10.1248/bpb.31.1059
http://dx.doi.org/10.1186/1743-8454-6-10
http://dx.doi.org/10.4049/jimmunol.179.3.1969
http://dx.doi.org/10.1158/1078-0432.CCR-04-1688
http://dx.doi.org/10.1038/ctg.2016.40

Int. ]. Mol. Sci. 2020, 21, 8550 15 of 21

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Witek, R.P; Yang, L.; Liu, R.; Jung, Y.; Omenetti, A.; Syn, W.-K.; Choi, S.S.; Cheong, Y.; Fearing, C.M.;
Agboola, KM,; et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression
in hepatic endothelial cells. Gastroenterology 2009, 136, 320-330. [CrossRef]

Porro, C.; Lepore, S.; Trotta, T.; Castellani, S.; Ratclif, L.; Battaglino, A.; Di Gioia, S.; Martinez, M.C.;
Conese, M.; Maffione, A.B. Isolation and characterization of microparticles in sputum from cystic fibrosis
patients. Respir. Res. 2010, 11, 94. [CrossRef]

Wahlund, C.J.E.; Eklund, A.; Grunewald, J.; Gabrielsson, S. Pulmonary Extracellular Vesicles as Mediators of
Local and Systemic Inflammation. Front. Cell Dev. Biol. 2017, 5, 39. [CrossRef]

Gatti, J.-L.; Métayer, S.; Belghazi, M.; Dacheux, F; Dacheux, ].-L. Identification, proteomic profiling, and
origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 2005, 72, 1452-1465. [CrossRef]
Grigor’eva, A.E.; Tamkovich, S.N.; Eremina, A.V,; Tupikin, A.E.; Kabilov, M.R.; Chernykh, V.V.; Vlassov, V.V.;
Laktionov, P.P; Ryabchikova, E.I. Characteristics of exosomes andmicroparticles discovered in human tears.
Biomed. Khim. 2016, 62, 99-106. [CrossRef]

Momen-Heravi, F,; Balaj, L.; Alian, S.; Tigges, J.; Toxavidis, V.; Ericsson, M.; Distel, R.].; Ivanov, A.R.; Skog, J.;
Kuo, W.P. Alternative Methods for Characterization of Extracellular Vesicles. Front. Physiol. 2012, 3, 354.
[CrossRef] [PubMed]

Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection,
Content, Release, and Uptake. Cell. Mol. Neurobiol. 2016, 36, 301-312. [CrossRef] [PubMed]

Lotvall, J.; Hill, A.F; Hochberg, E; Buzas, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, L.V,;
Mathivanan, S.; Quesenberry, P; et al. Minimal experimental requirements for definition of extracellular
vesicles and their functions: A position statement from the International Society for Extracellular Vesicles.
J. Extracell. Vesicles 2014, 3, 26913. [CrossRef]

Théry, C.; Witwer, KW.; Aikawa, E.; Alcaraz, M.].; Anderson, ].D.; Andriantsitohaina, R.; Antoniou, A.;
Arab, T.; Archer, F,; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018
(MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the
MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7. [CrossRef]

Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods
for Exosome Isolation and Analysis. Cells 2019, 8, 727. [CrossRef]

Choi, D.-S.; Kim, D.-K,; Kim, Y.-K.; Gho, Y.S. Proteomics, transcriptomics and lipidomics of exosomes and
ectosomes. Proteomics 2013, 13, 1554-1571. [CrossRef]

Akers, J.C,; Gonda, D.; Kim, R; Carter, B.S.; Chen, C.C. Biogenesis of extracellular vesicles (EV): Exosomes,
microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 2013, 113, 1-11. [CrossRef]
Haraszti, R.A.; Didiot, M.-C.; Sapp, E.; Leszyk, J.; Shaffer, S.A.; Rockwell, H.E.; Gao, F; Narain, N.R,;
DiFiglia, M.; Kiebish, M.A.; et al. High-resolution proteomic and lipidomic analysis of exosomes and
microvesicles from different cell sources. |. Extracell. Vesicles 2016, 5, 32570. [CrossRef]

Sun, Y.; Saito, K.; Saito, Y. Lipid Profile Characterization and Lipoprotein Comparison of Extracellular
Vesicles from Human Plasma and Serum. Metabolites 2019, 9, 259. [CrossRef]

Ji, H.; Chen, M.; Greening, D.W.; He, W.; Rai, A.; Zhang, W.; Simpson, R.J. Deep Sequencing of RNA from
Three Different Extracellular Vesicle (EV) Subtypes Released from the Human LIM1863 Colon Cancer Cell
Line Uncovers Distinct Mirna-Enrichment Signatures. PLoS ONE 2014, 9, e110314. [CrossRef] [PubMed]
Ren, S.; Chen, J.; Duscher, D.; Liu, Y.; Guo, G.; Kang, Y.; Xiong, H.; Zhan, P.; Wang, Y.; Wang, C.; et al.
Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via
AKT and ERK signaling pathways. Stem Cell Res. Ther. 2019, 10, 47. [CrossRef] [PubMed]

Leblanc, P; Arellano-Anaya, Z.E.; Bernard, E.; Gallay, L.; Provansal, M.; Lehmann, S.; Schaeffer, L.; Raposo, G.;
Vilette, D. Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission.
In Exosomes and Miceovesicles; Hill, A., Ed.; Humana Press: New York, NY, USA, 2017; pp. 153-176.
Pérez-Gonzalez, R.; Gauthier, S.A.; Kumar, A.; Saito, M.; Saito, M.; Levy, E. A Method for Isolation of
Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space. In Exosomes and
Microvesicles; Hill, A., Ed.; Humana Press: New York, NY, USA, 2017; pp. 139-151.

Lane, R.E.; Korbie, D.; Trau, M.; Hill, M.M. Purification Protocols for Extracellular Vesicles. In Extracellular
Vesicles; Kuo, W., Jia, S., Eds.; Humana Press: New York, NY, USA, 2017; pp. 111-130.

Huang, T.; He, J. Characterization of Extracellular Vesicles by Size-Exclusion High-Performance Liquid
Chromatography (HPLC). In Extracellular Vesicles; Humana Press: New York, NY, USA, 2017; pp. 191-199.


http://dx.doi.org/10.1053/j.gastro.2008.09.066
http://dx.doi.org/10.1186/1465-9921-11-94
http://dx.doi.org/10.3389/fcell.2017.00039
http://dx.doi.org/10.1095/biolreprod.104.036426
http://dx.doi.org/10.18097/PBMC20166201099
http://dx.doi.org/10.3389/fphys.2012.00354
http://www.ncbi.nlm.nih.gov/pubmed/22973237
http://dx.doi.org/10.1007/s10571-016-0366-z
http://www.ncbi.nlm.nih.gov/pubmed/27053351
http://dx.doi.org/10.3402/jev.v3.26913
http://dx.doi.org/10.1080/20013078.2018.1535750
http://dx.doi.org/10.3390/cells8070727
http://dx.doi.org/10.1002/pmic.201200329
http://dx.doi.org/10.1007/s11060-013-1084-8
http://dx.doi.org/10.3402/jev.v5.32570
http://dx.doi.org/10.3390/metabo9110259
http://dx.doi.org/10.1371/journal.pone.0110314
http://www.ncbi.nlm.nih.gov/pubmed/25330373
http://dx.doi.org/10.1186/s13287-019-1152-x
http://www.ncbi.nlm.nih.gov/pubmed/30704535

Int. ]. Mol. Sci. 2020, 21, 8550 16 of 21

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Mallegol, J.; Van Niel, G.; Lebreton, C.; Lepelletier, Y,; Candalh, C.; Dugave, C.; Heath, ] K.; Raposo, G.;
Cerf-Bensussan, N.; Heyman, M. T84-Intestinal Epithelial Exosomes Bear MHC Class II/Peptide Complexes
Potentiating Antigen Presentation by Dendritic Cells. Gastroenterology 2007, 132, 1866-1876. [CrossRef] [PubMed]
Rossaint, J.; Kiihne, K.; Skupski, J.; Van Aken, H.; Looney, M.R.; Hidalgo, A.; Zarbock, A. Directed transport of
neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun.
2016, 7, 13464. [CrossRef]

Rilla, K.; Mustonen, A.-M.; Arasu, U.T.; Harkonen, K.; Matilainen, J.; Nieminen, P. Extracellular vesicles are
integral and functional components of the extracellular matrix. Matrix Biol. 2019, 75-76, 201-219. [CrossRef]
Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J.
B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996, 183, 1161-1172. [CrossRef]

Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.;
Amigorena, S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell
derived exosomes. Nat. Med. 1998, 4, 594-600. [CrossRef]

Théry, C.; Duban, L.; Segura, E.; Véron, P.; Lantz, O.; Amigorena, S. Indirect activation of naive CD4+ T cells
by dendritic cell-derived exosomes. Nat. Immunol. 2002, 3, 1156-1162. [CrossRef]

Rutman, A K; Negi, S.; Gasparrini, M.; Hasilo, C.P; Tchervenkov, J.; Paraskevas, S. Immune Response to
Extracellular Vesicles From Human Islets of Langerhans in Patients With Type 1 Diabetes. Endocrinology
2018, 159, 3834-3847. [CrossRef]

Shinohara, H.; Kuranaga, Y.; Kumazaki, M.; Sugito, N.; Yoshikawa, Y.; Takai, T.; Taniguchi, K.; Ito, Y.; Akao, Y.
Regulated Polarization of Tumor-Associated Macrophages by miR-145 via Colorectal Cancer-Derived
Extracellular Vesicles. . Immunol. 2017, 199, 1505-1515. [CrossRef]

Ludwig, N.; Yerneni, S.S.; Razzo, B.M.; Whiteside, T.L. Exosomes from HNSCC Promote Angiogenesis
through Reprogramming of Endothelial Cells. Mol. Cancer Res. 2018, 16, 1798-1808. [CrossRef] [PubMed]
Bliss, S.A.; Sinha, G.; Sandiford, O.A.; Williams, L.M.; Engelberth, D.J.; Guiro, K.; Isenalumhe, L.L.; Greco, S.J.;
Ayer, S.; Bryan, M.; et al. Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and
Early Breast Cancer Dormancy in Bone Marrow. Cancer Res. 2016, 76, 5832-5844. [CrossRef] [PubMed]
Santos, J.C.; Ribeiro, M.L,; Sarian, L.O.; Ortega, M.M.; Derchain, S.F. Exosomes-mediate microRNAs transfer
in breast cancer chemoresistance regulation. Am. J. Cancer Res. 2016, 6, 2129. [PubMed]

Qadir, F; Aziz, M.A ; Sari, C.P; Ma, H.; Dai, H.; Wang, X.; Raithatha, D.; Da Silva, L.G.L.; Hussain, M.;
Poorkasreiy, S.P; et al. Transcriptome reprogramming by cancer exosomes: Identification of novel molecular
targets in matrix and immune modulation. Mol. Cancer 2018, 17, 97. [CrossRef] [PubMed]

Peinado, H.; Zhang, H.; Matei, L.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.;
Bromberg, ].E; Kang, Y.; et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer
2017, 17,302-317. [CrossRef]

Shao, Y.; Chen, T.; Zheng, X.; Yang, S.; Xu, K,; Chen, X,; Xu, E; Wang, L.; Shen, Y.; Wang, T, et al.
Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver
metastasis. Carcinogenesis 2018, 39, 1368-1379. [CrossRef]

Liu, Y,; Gu, Y;; Han, Y.; Zhang, Q.; Jiang, Z.; Zhang, X.; Huang, B.; Xu, X.; Zheng, J.; Cao, X. Tumor Exosomal
RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit
Neutrophils. Cancer Cell 2016, 30, 243-256. [CrossRef]

Li, Q.; Li, B,; Li, Q.; Wei, S.; He, Z.; Huang, X.; Wang, L.; Xia, Y.; Xu, Z; Li, Z.; et al. Exosomal miR-21-5p
derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition.
Cell Death Dis. 2018, 9, 854. [CrossRef]

Zeng, Z.; Li, Y,; Pan, Y.; Lan, X,; Song, F,; Sun, J.; Zhou, K,; Liu, X.; Ren, X.; Wang, F; et al. Cancer-derived
exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and
angiogenesis. Nat. Commun. 2018, 9, 5395. [CrossRef]

Costa-Silva, B.; Aiello, N.M.; Ocean, A.].; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.;
Mark, M.T.; Molina, H.; et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.
Nat. Cell Biol. 2015, 17, 816-826. [CrossRef]

Feng, W.; Dean, D.C.; Hornicek, EJ.; Shi, H.; Duan, Z. Exosomes promote pre-metastatic niche formation in
ovarian cancer. Mol. Cancer 2019, 18, 124. [CrossRef] [PubMed]


http://dx.doi.org/10.1053/j.gastro.2007.02.043
http://www.ncbi.nlm.nih.gov/pubmed/17484880
http://dx.doi.org/10.1038/ncomms13464
http://dx.doi.org/10.1016/j.matbio.2017.10.003
http://dx.doi.org/10.1084/jem.183.3.1161
http://dx.doi.org/10.1038/nm0598-594
http://dx.doi.org/10.1038/ni854
http://dx.doi.org/10.1210/en.2018-00649
http://dx.doi.org/10.4049/jimmunol.1700167
http://dx.doi.org/10.1158/1541-7786.MCR-18-0358
http://www.ncbi.nlm.nih.gov/pubmed/30042174
http://dx.doi.org/10.1158/0008-5472.CAN-16-1092
http://www.ncbi.nlm.nih.gov/pubmed/27569215
http://www.ncbi.nlm.nih.gov/pubmed/27822407
http://dx.doi.org/10.1186/s12943-018-0846-5
http://www.ncbi.nlm.nih.gov/pubmed/30008265
http://dx.doi.org/10.1038/nrc.2017.6
http://dx.doi.org/10.1093/carcin/bgy115
http://dx.doi.org/10.1016/j.ccell.2016.06.021
http://dx.doi.org/10.1038/s41419-018-0928-8
http://dx.doi.org/10.1038/s41467-018-07810-w
http://dx.doi.org/10.1038/ncb3169
http://dx.doi.org/10.1186/s12943-019-1049-4
http://www.ncbi.nlm.nih.gov/pubmed/31409361

Int. ]. Mol. Sci. 2020, 21, 8550 17 of 21

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Kong, J.; Tian, H.; Zhang, F,; Zhang, Z.; Li, ].; Liu, X,; Li, X.; Liu, J.; Li, X; Jin, D.; et al. Extracellular vesicles
of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts.
Mol. Cancer 2019, 18, 175. [CrossRef] [PubMed]

Urabe, F,; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular vesicles as biomarkers and
therapeutic targets for cancer. Am. J. Physiol. Physiol. 2020, 318, C29-C39. [CrossRef] [PubMed]

Guo, H.; Chitiprolu, M.; Roncevic, L.; Javalet, C.; Hemming, FJ.; Trung, M.T.; Meng, L.; Latreille, E.;
Tanese de Souza, C.; McCulloch, D.; et al. Atg5 Disassociates the V1V0-ATPase to Promote Exosome
Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev. Cell 2017, 43, 716-730.
[CrossRef] [PubMed]

Im, E.-J.; Lee, C.-H.; Moon, P-G.; Rangaswamy, G.G.; Lee, B.; Lee, ].M.; Lee, ].-C.; Jee, ].-G.; Bae, J.-S.;
Kwon, T.-K.; et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the
endothelin receptor A. Nat. Commun. 2019, 10, 1387. [CrossRef] [PubMed]

Pisetsky, D.S. Microparticles as biomarkers in autoimmunity: From dust bin to center stage. Arthritis Res. Ther.
2009, 11, 135. [CrossRef] [PubMed]

Lee, TH.; D’Asti, E.; Magnus, N.; Al-Nedawi, K.; Meehan, B.; Rak, ]J. Microvesicles as mediators of
intercellular communication in cancer—the emerging science of cellular “debris”. Semin. Immunopathol.
2011, 33, 455-467. [CrossRef]

Li, J.; He, X.; Deng, Y.; Yang, C. An Update on Isolation Methods for Proteomic Studies of Extracellular
Vesicles in Biofluids. Molecules 2019, 24, 3516. [CrossRef]

R Core Team. R: A language and environment for statistical computing; R Foundation for Statistical Computing:
Vienna, Austria, 2018.

Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.;
Xiang, J.; et al. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014,
24,766-769. [CrossRef]

Malkin, E.Z.; Bratman, S.V. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 2020,
11, 584. [CrossRef]

Waldenstrom, A.; Gennebick, N.; Hellman, U.; Ronquist, G. Cardiomyocyte Microvesicles Contain DNA/RNA
and Convey Biological Messages to Target Cells. PLoS ONE 2012, 7, e34653. [CrossRef]

Ronquist, G.K.; Larsson, A.; Ronquist, G.; Isaksson, A.; Hreinsson, J.; Carlsson, L.; Stavreus-Evers, A.
Prostasomal DNA characterization and transfer into human sperm. Mol. Reprod. Dev. 2011, 78, 467-476.
[CrossRef]

Lazaro-Ibanez, E.; Lasser, C.; Shelke, G.V.; Crescitelli, R.; Jang, S.C.; Cvjetkovic, A.; Garcia-Rodriguez, A.;
Loétvall, J. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small
extracellular vesicles based on their DNA cargo and topology. . Extracell. Vesicles 2019, 8, 1656993. [CrossRef]
Kim, LA.; Hur, J.Y,; Kim, H.J.; Lee, S.E.; Kim, W.S.; Lee, K.Y. Liquid biopsy using extracellular vesicle-derived
DNA in lung adenocarcinoma. J. Pathol. Transl. Med. 2020. [CrossRef]

Xiao, D.; Li, X;; Rouchka, E.C.; Waigel, S.; Zacharias, W.; McMasters, K.M.; Hao, H. Comparative gene expression
analysis in melanocytes driven by tumor cell-derived exosomes. Exp. Cell Res. 2020, 386, 111690. [CrossRef]
Chen, M.; Xu, R;; Rai, A.; Suwakulsiri, W.; Izumikawa, K.; Ishikawa, H.; Greening, D.W.; Takahashi, N.;
Simpson, R.J. Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for
colorectal cancer. PLoS ONE 2019, 14, €0210003. [CrossRef]

Tan, C,; Cao, J.; Chen, L,; Xi, X;; Wang, S.; Zhu, Y,; Yang, L.; Ma, L.; Wang, D.; Yin, J.; et al. Noncoding RNAs Serve
as Diagnosis and Prognosis Biomarkers for Hepatocellular Carcinoma. Clin. Chem. 2019, 65, 905-915. [CrossRef]
Luo, Y;; Huang, L.; Luo, W.; Ye, S.; Hu, Q. Genomic analysis of IncRNA and mRNA profiles in circulating
exosomes of patients with rheumatic heart disease. Biol. Open 2019, 8. [CrossRef]

Hu, X,; Liao, S.; Bai, H; Wu, L.; Wang, M.; Wu, Q.; Zhou, J; Jiao, L; Chen, X,; Zhou, Y,; et al.
Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine
2019, 40, 564-573. [CrossRef]

Kolhe, R.; Hunter, M.; Liu, S.; Jadeja, R.N.; Pundkar, C.; Mondal, A K.; Mendhe, B.; Drewry, M.; Rojiani, M.V,;
Liu, Y.; et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with
osteoarthritis. Sci. Rep. 2017, 7, 2029. [CrossRef]


http://dx.doi.org/10.1186/s12943-019-1101-4
http://www.ncbi.nlm.nih.gov/pubmed/31796058
http://dx.doi.org/10.1152/ajpcell.00280.2019
http://www.ncbi.nlm.nih.gov/pubmed/31693397
http://dx.doi.org/10.1016/j.devcel.2017.11.018
http://www.ncbi.nlm.nih.gov/pubmed/29257951
http://dx.doi.org/10.1038/s41467-019-09387-4
http://www.ncbi.nlm.nih.gov/pubmed/30918259
http://dx.doi.org/10.1186/ar2856
http://www.ncbi.nlm.nih.gov/pubmed/19954508
http://dx.doi.org/10.1007/s00281-011-0250-3
http://dx.doi.org/10.3390/molecules24193516
http://dx.doi.org/10.1038/cr.2014.44
http://dx.doi.org/10.1038/s41419-020-02803-4
http://dx.doi.org/10.1371/journal.pone.0034653
http://dx.doi.org/10.1002/mrd.21327
http://dx.doi.org/10.1080/20013078.2019.1656993
http://dx.doi.org/10.4132/jptm.2020.08.13
http://dx.doi.org/10.1016/j.yexcr.2019.111690
http://dx.doi.org/10.1371/journal.pone.0210003
http://dx.doi.org/10.1373/clinchem.2018.301150
http://dx.doi.org/10.1242/bio.045633
http://dx.doi.org/10.1016/j.ebiom.2019.01.023
http://dx.doi.org/10.1038/s41598-017-01905-y

Int. ]. Mol. Sci. 2020, 21, 8550 18 of 21

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Ramirez, M.I.; Amorim, M.G.; Gadelha, C.; Milic, I.; Welsh, J.A.; Freitas, V.M.; Nawaz, M.; Akbar, N.;
Couch, Y.; Makin, L.; et al. Technical challenges of working with extracellular vesicles. Nanoscale 2018, 10,
881-906. [CrossRef] [PubMed]

O’Brien, K; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA delivery by extracellular vesicles in
mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585-606. [CrossRef] [PubMed]
Nolte-'t Hoen, EN.M.; Buermans, H.PJ.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.HM.; 't Hoen, PA.C.
Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small
non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012, 40, 9272-9285. [CrossRef]
Huang, X.; Yuan, T,; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R.L.; Liu, Y.; Liang, M.;
et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013,
14, 319. [CrossRef] [PubMed]

Cheng, L.; Sun, X,; Scicluna, B.J.; Coleman, B.M.; Hill, A.F. Characterization and deep sequencing analysis of
exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014, 86, 433—444. [CrossRef]

Yoshioka, Y.; Konishi, Y.; Kosaka, N.; Katsuda, T.; Kato, T.; Ochiya, T. Comparative marker analysis of
extracellular vesicles in different human cancer types. J. Extracell. Vesicles 2013, 2. [CrossRef]

Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, 5.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A;
Weitz, J.; Rahbari, N.; et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature
2015, 523, 177-182. [CrossRef]

Bandari, S.K.; Purushothaman, A.; Ramani, V.C.; Brinkley, G.J.; Chandrashekar, D.S.; Varambally, S.;
Mobley, ].A.; Zhang, Y.; Brown, E.E.; Vlodavsky, I; et al. Chemotherapy induces secretion of exosomes loaded
with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol.
2018, 65, 104-118. [CrossRef]

Liu, W.; Zhu, M.; Wang, H.; Wang, W.; Lu, Y. Diffuse large B cell lymphoma-derived extracellular vesicles
educate macrophages to promote tumours progression by increasing PGC-1f3. Scand. ]. Immunol. 2020,
91, 12841. [CrossRef]

Balbinotti, H.; Cadore, N.A.; Dutra, C.S.; DA Silva, E.D.; Ferreira, H.B.; Zaha, A.; Monteiro, K.M. Protein
Profiling of Extracellular Vesicles Associated With Cisplatin Resistance in Lung Cancer. Anticancer Res. 2020,
40, 5509-5516. [CrossRef]

Villarroya-Beltri, C.; Gutiérrez-Vazquez, C.; Sanchez-Cabo, F; Pérez-Hernandez, D.; Vazquez, J;
Martin-Cofreces, N.; Martinez-Herrera, D.].; Pascual-Montano, A.; Mittelbrunn, M.; Sanchez-Madrid, F.
Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs.
Nat. Commun. 2013, 4, 2980. [CrossRef] [PubMed]

Singhto, N.; Vinaiphat, A.; Thongboonkerd, V. Discrimination of urinary exosomes from microvesicles by
lipidomics using thin layer liquid chromatography (TLC) coupled with MALDI-TOF mass spectrometry.
Sci. Rep. 2019, 9, 13834. [CrossRef] [PubMed]

Weerheim, AM.; Kolb, AM.,; Sturk, A.; Nieuwland, R. Phospholipid composition of cell-derived
microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal. Biochem.
2002, 302, 191-198. [CrossRef] [PubMed]

Wubbolts, R.; Leckie, R.S.; Veenhuizen, P.T.M.; Schwarzmann, G.; Mobius, W.; Hoernschemeyer, J.; Slot, J.-W.;
Geuze, HJ.; Stoorvogel, W. Proteomic and biochemical analyses of human B cell-derived exosomes.
Potential implications for their function and multivesicular body formation. J. Biol. Chem. 2003, 278,
10963-10972. [CrossRef]

Nishida-Aoki, N.; Izumi, Y.; Takeda, H.; Takahashi, M.; Ochiya, T.; Bamba, T. Lipidomic Analysis of Cells
and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020,
10, 67. [CrossRef]

Cuperlovié—Culf, M.; Khieu, N.H.; Surendra, A.; Hewitt, M.; Charlebois, C.; Sandhu, ] K. Analysis and Simulation
of Glioblastoma Cell Lines-Derived Extracellular Vesicles Metabolome. Metabolites 2020, 10, 88. [CrossRef]
Subra, C.; Grand, D.; Laulagnier, K.; Stella, A.; Lambeau, G.; Paillasse, M.; De Medina, P.; Monsarrat, B.;
Perret, B.; Silvente-Poirot, S.; et al. Exosomes account for vesicle-mediated transcellular transport of
activatable phospholipases and prostaglandins. J. Lipid Res. 2010, 51, 2105-2120. [CrossRef]

Colas, R.A.; Shinohara, M.; Dalli, J.; Chiang, N.; Serhan, C.N. Identification and signature profiles for
pro-resolving and inflammatory lipid mediators in human tissue. Am. J. Physiol. Cell Physiol. 2014, 307,
C39-C54. [CrossRef]


http://dx.doi.org/10.1039/C7NR08360B
http://www.ncbi.nlm.nih.gov/pubmed/29265147
http://dx.doi.org/10.1038/s41580-020-0251-y
http://www.ncbi.nlm.nih.gov/pubmed/32457507
http://dx.doi.org/10.1093/nar/gks658
http://dx.doi.org/10.1186/1471-2164-14-319
http://www.ncbi.nlm.nih.gov/pubmed/23663360
http://dx.doi.org/10.1038/ki.2013.502
http://dx.doi.org/10.3402/jev.v2i0.20424
http://dx.doi.org/10.1038/nature14581
http://dx.doi.org/10.1016/j.matbio.2017.09.001
http://dx.doi.org/10.1111/sji.12841
http://dx.doi.org/10.21873/anticanres.14563
http://dx.doi.org/10.1038/ncomms3980
http://www.ncbi.nlm.nih.gov/pubmed/24356509
http://dx.doi.org/10.1038/s41598-019-50195-z
http://www.ncbi.nlm.nih.gov/pubmed/31554842
http://dx.doi.org/10.1006/abio.2001.5552
http://www.ncbi.nlm.nih.gov/pubmed/11878797
http://dx.doi.org/10.1074/jbc.M207550200
http://dx.doi.org/10.3390/metabo10020067
http://dx.doi.org/10.3390/metabo10030088
http://dx.doi.org/10.1194/jlr.M003657
http://dx.doi.org/10.1152/ajpcell.00024.2014

Int. ]. Mol. Sci. 2020, 21, 8550 19 of 21

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Hu, W,; Liu, C; Bi, Z.-Y,; Zhou, Q.; Zhang, H.; Li, L.-L.; Zhang, J.; Zhu, W.; Song, Y.-Y.-Y.; Zhang, F;
et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression,
metastasis and cancer immunology. Mol. Cancer 2020, 19, 102. [CrossRef]

Vinik, Y.; Ortega, E.G.; Mills, G.B.; Lu, Y.; Jurkowicz, M.; Halperin, S.; Aharoni, M.; Gutman, M.; Lev, S.
Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression,
recurrence, and response. Sci. Adv. 2020, 6, eaba5714. [CrossRef]

Jella, K.K.; Nasti, T.H.; Li, Z.; Malla, S.R.; Buchwald, Z.S.; Khan, M.K. Exosomes, Their Biogenesis and Role
in Inter-Cellular Communication, Tumor Microenvironment and Cancer Immunotherapy. Vaccines 2018,
6, 69. [CrossRef] [PubMed]

Buzas, EL; Téth, E.A.; Sédar, BW.,; Szabo-Taylor, K.E. Molecular interactions at the surface of extracellular
vesicles. Semin. Immunopathol. 2018, 40, 453-464. [CrossRef] [PubMed]

Abramowicz, A.; Widlak, P.; Pietrowska, M. Proteomic analysis of exosomal cargo: The challenge of high
purity vesicle isolation. Mol. Biosyst. 2016, 12, 1407-1419. [CrossRef]

Geeurickx, E.; Tulkens, J.; Dhondt, B.; Van Deun, J.; Lippens, L.; Vergauwen, G.; Heyrman, E.; De Sutter, D.;
Gevaert, K.; Impens, E; et al. The generation and use of recombinant extracellular vesicles as biological
reference material. Nat. Commun. 2019, 10, 3288. [CrossRef] [PubMed]

Lefebvre, F.A.; Benoit Bouvrette, L.P.; Perras, L.; Blanchet-Cohen, A.; Garnier, D.; Rak, J.; Lécuyer, E.
Comparative transcriptomic analysis of human and Drosophila extracellular vesicles. Sci. Rep. 2016,
6,27680. [CrossRef]

Andrews, S. FastQC: A Quality Control Tool for High throughput Sequence Data. Available online:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 5 October 2020).

Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics
2009, 25, 1754-1760. [CrossRef]

Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 2009, 10, R25. [CrossRef]

Li, H.; Ruan, J.; Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality
scores. Genome Res. 2008, 18, 1851-1858. [CrossRef]

Lunter, G.; Goodson, M. Stampy: A statistical algorithm for sensitive and fast mapping of lllumina sequence
reads. Genome Res. 2011, 21, 936-939. [CrossRef]

NovoAlign. Available online: http://www.novocraft.com/ (accessed on 1 October 2020).

Gentleman, R.C.; Carey, VJ.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.;
Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics.
Genome Biol. 2004, 5, R80. [CrossRef]

Jin, H.; Wan, Y.-W.; Liu, Z. Comprehensive evaluation of RNA-seq quantification methods for linearity.
BMC Bioinform. 2017, 18, 117. [CrossRef] [PubMed]

Conesa, A.; Madrigal, P; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcze$niak, M.W.;
Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol.
2016, 17, 13. [CrossRef] [PubMed]

Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq
data. Genome Biol. 2010, 11, R25. [CrossRef] [PubMed]

Li, J.; Witten, D.M.; Johnstone, LM.; Tibshirani, R. Normalization, testing, and false discovery rate estimation
for RNA-sequencing data. Biostatistics 2012, 13, 523-538. [CrossRef] [PubMed]

Bullard, J.H.; Purdom, E.; Hansen, K.D.; Dudoit, S. Evaluation of statistical methods for normalization and
differential expression in mRNA-Seq experiments. BMC Bioinform. 2010, 11, 94. [CrossRef]

Harel, M.; Oren-Giladi, P.; Kaidar-Person, O.; Shaked, Y.; Geiger, T. Proteomics of microparticles with
SILAC Quantification (PROMIS-Quan): A novel proteomic method for plasma biomarker quantification.
Mol. Cell. Proteomics 2015, 14, 1127-1136. [CrossRef]

Lin, Y;; Liang, A.; He, Y,; Li, Z.; Li, Z.; Wang, G.; Sun, E. Proteomic analysis of seminal extracellular vesicle
proteins involved in asthenozoospermia by iTRAQ. Mol. Reprod. Dev. 2019, 86, 1094-1105. [CrossRef]
Karimi, N.; Cvjetkovic, A.; Jang, S.C.; Crescitelli, R.; Hosseinpour Feizi, M.A.; Nieuwland, R.; Lotvall, J.;
Lésser, C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins.
Cell. Mol. Life Sci. 2018, 75, 2873-2886. [CrossRef]


http://dx.doi.org/10.1186/s12943-020-01199-1
http://dx.doi.org/10.1126/sciadv.aba5714
http://dx.doi.org/10.3390/vaccines6040069
http://www.ncbi.nlm.nih.gov/pubmed/30261592
http://dx.doi.org/10.1007/s00281-018-0682-0
http://www.ncbi.nlm.nih.gov/pubmed/29663027
http://dx.doi.org/10.1039/C6MB00082G
http://dx.doi.org/10.1038/s41467-019-11182-0
http://www.ncbi.nlm.nih.gov/pubmed/31337761
http://dx.doi.org/10.1038/srep27680
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1101/gr.111120.110
http://www.novocraft.com/
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/s12859-017-1526-y
http://www.ncbi.nlm.nih.gov/pubmed/28361706
http://dx.doi.org/10.1186/s13059-016-0881-8
http://www.ncbi.nlm.nih.gov/pubmed/26813401
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
http://dx.doi.org/10.1093/biostatistics/kxr031
http://www.ncbi.nlm.nih.gov/pubmed/22003245
http://dx.doi.org/10.1186/1471-2105-11-94
http://dx.doi.org/10.1074/mcp.M114.043364
http://dx.doi.org/10.1002/mrd.23224
http://dx.doi.org/10.1007/s00018-018-2773-4

Int. ]. Mol. Sci. 2020, 21, 8550 20 of 21

116.

117.

118.

119.

120.
121.

122.

123.

124.
125.

126.

127.

128.

129.
130.

131.

132.

133.

134.

135.

136.

137.

Smolarz, M.; Pietrowska, M.; Matysiak, N.; Mielariczyk, L.; Widlak, P. Proteome Profiling of Exosomes
Purified from a Small Amount of Human Serum: The Problem of Co-Purified Serum Components. Proteomes
2019, 7, 18. [CrossRef]

Crescitelli, R,; Lasser, C.; Jang, S.C.; Cvjetkovic, A.; Malmhall, C.; Karimi, N.; Ho6g, J.L.; Johansson, I.; Fuchs, J.;
Thorsell, A.; et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by
quantitative proteomics after optimized isolation. J. Extracell. Vesicles 2020, 9, 1722433. [CrossRef]

Dayon, L.; Sanchez, ].-C. Relative Protein Quantification by MS/MS Using the Tandem Mass Tag Technology.
In Quantitative Methods in Proteomics; Humana Press: Totowa, NJ, USA, 2012; pp. 115-127.

Rost, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.;
Gutenbrunner, P.; Kenar, E.; et al. OpenMS: A flexible open-source software platform for mass spectrometry
data analysis. Nat. Methods 2016, 13, 741-748. [CrossRef]

Mullard, A. Finding the way with LIPID MAPS. Nat. Rev. Mol. Cell Biol. 2008, 9, 92. [CrossRef]

Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C,; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.;
Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46,
D608-D617. [CrossRef]

Searls, D.B. Data integration: Challenges for drug discovery. Nat. Rev. Drug Discov. 2005, 4, 45-58.
[CrossRef] [PubMed]

Huang, S.; Chaudhary, K.; Garmire, L.X. More Is Better: Recent Progress in Multi-Omics Data Integration
Methods. Front. Genet. 2017, 8, 84. [CrossRef] [PubMed]

Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561-563. [CrossRef] [PubMed]

Intlekofer, A.M.; Finley, L.W.S. Metabolic signatures of cancer cells and stem cells. Nat. Metab. 2019, 1,
177-188. [CrossRef] [PubMed]

Ulitsky, I.; Shamir, R. Identification of functional modules using network topology and high-throughput
data. BMC Syst. Biol. 2007, 1, 8. [CrossRef] [PubMed]

Nakano, M.; Ikeda, Y.; Tokuda, Y.; Fuwa, M.; Ueno, M.; Imai, K,; Sato, R.; Omi, N.; Adachi, H.; Kageyama, M.;
etal. Novel common variants and susceptible haplotype for exfoliation glaucoma specific to Asian population.
Sci. Rep. 2014, 4, 5340. [CrossRef]

Eylem, C.C,; Yilmaz, M.; Derkus, B.; Nemutlu, E.; Camci, C.B,; Yilmaz, E.; Turkoglu, M.A.; Aytac, B.; Ozyurt, N.;
Emregul, E. Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of
colorectal cancer in both clinical samples and cell culture. Cancer Lett. 2020, 469, 186-194. [CrossRef]
Markowetz, F. All biology is computational biology. PLoS Biol. 2017, 15, €2002050. [CrossRef] [PubMed]
Brennan, K.; Martin, K.; FitzGerald, S.P.; O’Sullivan, J.; Wu, Y.; Blanco, A.; Richardson, C.; Mc Gee, M.M.
A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid
particles in human serum. Sci. Rep. 2020, 10, 1039. [CrossRef] [PubMed]

Van Deun, J.; Mestdagh, P.; Agostinis, P.; Akay, 0O.; Anand, S.; Anckaert, J.; Martinez, Z.A.; Baetens, T.;
Beghein, E.; Bertier, L.; et al. EV-TRACK: Transparent reporting and centralizing knowledge in extracellular
vesicle research. Nat. Methods 2017, 14, 228-232. [CrossRef] [PubMed]

Kalra, H.; Simpson, R].; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.; Bond, V.C.; Borras, FE.; Breakefield, X.;
Budnik, V.; et al. Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community
Annotation. PLoS Biol. 2012, 10, €1001450. [CrossRef] [PubMed]

Pathan, M.; Fonseka, P; Chitti, S.V,; Kang, T.; Sanwlani, R.; Van Deun, J.; Hendrix, A.; Mathivanan, S.
Vesiclepedia 2019: A compendium of RNA, proteins, lipids and metabolites in extracellular vesicles.
Nucleic Acids Res. 2019, 47, D516-D519. [CrossRef]

Simpson, R.J.; Kalra, H.; Mathivanan, S. ExoCarta as a resource for exosomal research. J. Extracell. Vesicles
2012, 1. [CrossRef]

Kim, D.-K; Kang, B.; Kim, O.Y.; Choi, D.-S,; Lee, ].; Kim, S.R.; Go, G.; Yoon, Y.J.; Kim, ].H.; Jang, S.C.; et al.
EVpedia: An integrated database of high-throughput data for systemic analyses of extracellular vesicles.
J. Extracell. Vesicles 2013, 2. [CrossRef]

Liu, T.; Zhang, Q.; Zhang, J.; Li, C.; Miao, Y.-R.; Lei, Q.; Li, Q.; Guo, A.-Y. EVmiRNA: A database of miRNA
profiling in extracellular vesicles. Nucleic Acids Res. 2019, 47, D89-D93. [CrossRef]

Griffiths-Jones, S.; Saini, HK.; van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics.
Nucleic Acids Res. 2008, 36, D154-D158. [CrossRef]


http://dx.doi.org/10.3390/proteomes7020018
http://dx.doi.org/10.1080/20013078.2020.1722433
http://dx.doi.org/10.1038/nmeth.3959
http://dx.doi.org/10.1038/nrm2342
http://dx.doi.org/10.1093/nar/gkx1089
http://dx.doi.org/10.1038/nrd1608
http://www.ncbi.nlm.nih.gov/pubmed/15688072
http://dx.doi.org/10.3389/fgene.2017.00084
http://www.ncbi.nlm.nih.gov/pubmed/28670325
http://dx.doi.org/10.1038/227561a0
http://www.ncbi.nlm.nih.gov/pubmed/4913914
http://dx.doi.org/10.1038/s42255-019-0032-0
http://www.ncbi.nlm.nih.gov/pubmed/31245788
http://dx.doi.org/10.1186/1752-0509-1-8
http://www.ncbi.nlm.nih.gov/pubmed/17408515
http://dx.doi.org/10.1038/srep05340
http://dx.doi.org/10.1016/j.canlet.2019.10.038
http://dx.doi.org/10.1371/journal.pbio.2002050
http://www.ncbi.nlm.nih.gov/pubmed/28278152
http://dx.doi.org/10.1038/s41598-020-57497-7
http://www.ncbi.nlm.nih.gov/pubmed/31974468
http://dx.doi.org/10.1038/nmeth.4185
http://www.ncbi.nlm.nih.gov/pubmed/28245209
http://dx.doi.org/10.1371/journal.pbio.1001450
http://www.ncbi.nlm.nih.gov/pubmed/23271954
http://dx.doi.org/10.1093/nar/gky1029
http://dx.doi.org/10.3402/jev.v1i0.18374
http://dx.doi.org/10.3402/jev.v2i0.20384
http://dx.doi.org/10.1093/nar/gky985
http://dx.doi.org/10.1093/nar/gkm952

Int. ]. Mol. Sci. 2020, 21, 8550 21 of 21

138. Icay, K.; Chen, P; Cervera, A.; Rantanen, V.; Lehtonen, R.; Hautaniemi, S. SePIA: RNA and small RNA
sequence processing, integration, and analysis. BioData Min. 2016, 9, 20. [CrossRef]

139. Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic
analyses. Nat. Rev. Genet. 2012, 13, 227-232. [CrossRef] [PubMed]

140. Pourhoseingholi, M.A.; Baghestani, A.R.; Vahedi, M. How to control confounding effects by statistical
analysis. Gastroenterol. Hepatol. Bed Bench 2012, 5, 79-83. [PubMed]

141. Barteneva, N.S.; Fasler-Kan, E.; Bernimoulin, M.; Stern, ] N.H.; Ponomarev, E.D.; Duckett, L.; Vorobjev, I.A.
Circulating microparticles: Square the circle. BMC Cell Biol. 2013, 14, 23. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1186/s13040-016-0099-z
http://dx.doi.org/10.1038/nrg3185
http://www.ncbi.nlm.nih.gov/pubmed/22411467
http://www.ncbi.nlm.nih.gov/pubmed/24834204
http://dx.doi.org/10.1186/1471-2121-14-23
http://www.ncbi.nlm.nih.gov/pubmed/23607880
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Biological Diversity of EVs 
	Heterogeneous Methods and Data in EV Biology 
	Genomic Heterogeneity 
	Transcriptomic Heterogeneity 
	Proteomic Heterogeneity 
	Lipidomic Heterogeneity 
	Metabolomic Heterogeneity 

	Strategies of Preprocessing EV Omics Data 
	Computational Methods for EV Data Integration 
	Correlation-Based Methods 
	Network-Based Methods 

	Challenges in EV Multi-Omics Integration 
	Conclusions 
	References

