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Abstract: Keratinocyte migration is initiated toward the wound skin barrier as a crucial process in
wound healing. However, the migratory machinery used by keratinocytes is relatively unknown.
Histamine signaling, including an increase in the Ca2+ signal, mediated the enhanced protein
expression and chloride/bicarbonate exchange activity of anion exchanger AE2 in keratinocytes.
In this study, we applied an agarose spot assay to induce a vectorial motion. The vectorial stimulation
of the histamine-containing agarose spot enhanced the HaCaT keratinocyte migration, compared to
non-directional stimulation. AE2 is associated with the vectorial movement of HaCaT keratinocytes.
Enhanced expression of AE2 was mainly associated with an increase in Ca2+ and was abolished by the
treatment with the Ca2+ chelating agent BAPTA-AM. These findings revealed that the directionality of
Ca2+-exerted stimulation can play a prominent role in facilitating migration through the involvement
of AE2 as a migratory machinery in HaCaT keratinocytes.
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1. Introduction

The skin barrier is the first defense barrier that protects the body from exogenous stimuli.
When the skin barrier is disturbed, keratinocyte migration is immediately initiated as a crucial
protection process [1]. The migratory function of keratinocytes is modulated by the stimulation of
inflammatory mediators from immune cells, such as mast cells [2]. Among the inflammatory mediators,
histamine exerts its effects by activating G protein-coupled receptors, H1 to H4 receptors (H1R–H4R),
which induce the release of Ca2+ and subsequent inflammatory reactions, including the release of
several cytokines in keratinocytes [3].

Anion exchangers (AEs) are involved in pH regulation through the exchange of chloride and
bicarbonate [4]. AEs are encoded by the SLC4A family, AE1–4, and are identified in various tissues.
AE2 is broadly expressed in various cell types. The expression of AE2 is involved in the maintenance
of the intracellular pH through the exchange of bicarbonate ions [5,6]. In addition to the classical
role of bicarbonate transporters in the cellular pH maintenance, cell volume regulation is a dominant
function of these transporters for cellular migration [7]. The modulation of the cellular pH is a basal
function for the maintenance of cell fate, as well as for migration. Inflammation occurs when the
surrounding matrix environment is acidic and hypoxic [8]. In addition, an increase in intracellular
Ca2+ mediates cellular migration [9]. The precise role of inflammatory mediators or of the involvement
of their subsequent inflammatory Ca2+ signaling and transporters in migratory machinery still need
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to be determined. Various reports have addressed the bio-mechanistic regulation of keratinocyte
migration [10–15]. Unfortunately, the expression or function of AE in keratinocyte migration has not
been elucidated from a migratory machinery perspective. Cellular migration or invasion is mediated
by migratory machinery through the involvement of ion transporters and exchangers [16]. Therefore,
we hypothesized that involvement of bicarbonate transporters is crucial for regulating the migratory
machinery of keratinocytes.

The aim of the current study was to assess the role of the bicarbonate transporter in keratinocyte
migration. We assessed whether increased Ca2+ signals via histamine stimulation enhanced bicarbonate
transporter AE2 as migratory machinery mainly expressed in HaCaT keratinocytes, and whether
vectorial or directional stimulation provides a migration potential to keratinocytes, in response to
a wound.

2. Results

2.1. AE2 Is Activated by Stimulation of Histamine in Keratinocytes

The bicarbonate transporter in keratinocytes has rarely been examined. Thus, we first investigated
the expression and role of bicarbonate transporters of SLC4 family in keratinocytes. HaCaT keratinocytes
were dominantly expressed in AE2 and AE3, encoded by SLC4A2 and SLC4A3, not AE1 (SLC4A1) and
AE4 (SLC4A9) (Figure 1A). AE2 mRNA and protein were enhanced by the stimulation of histamine
(Figure 1B,C,E). Expression of AE3 was no statistical difference in histamine stimulation (Figure 1B,D,E).
It has been reported that AE3 is found in excitable tissues such as heart, brain, and smooth muscle [17].
Thus, we focused on the AE2. To confirm this, we used Metamorph software to systematically measure
the intensity of AE2 with rhodamine fluorescence. The immunostaining of AE2 was also enhanced in
histamine-stimulated HaCaT cells (Figure 1F,G). Although we expected the membranous expression of
AE2, expression of AE2 was cytosolic in this experimental condition. It has been reported that AE2 is
highly immunodetected in the basal and first suprabasal keratinocyte layer of the human epidermis
(Protein Atlas website data). The chloride bicarbonate exchanger (CBE) activity was driven by the
SLC4A family. Thus, the activity of AE2 was determined based on the CBE activity, as previously
described [18]. CBE activity was enhanced by the stimulation of histamine, whereas it was inhibited by
the treatment of Ca2+ chelating agent BAPTA-AM in HaCaT cells (Figure 1H,I). Enhanced CBE activity
by the treatment of histamine was also confirmed in primary keratinocytes (Figure 1J,K). The primary
keratinocytes were expressed AE2 protein and slightly enhanced expression by the treatment of
histamine; however, AE3 protein was not observed (Figure 1L,M). Thus, role of AE2 was considered in
following experiments. These results suggest that histamine stimulation enhanced AE2 expression and
CBE activity in keratinocytes.

2.2. Increased Calcium Levels Induced by Histamine Stimulation Enhanced CBE Activity and AE2 Expression
in HaCaT Keratinocytes

Histamine exerts its effects by activating G protein-coupled receptor (GPCR), H1 to H4 receptor
(H1R-H4R), which induces Ca2+ release and, ultimately, initiates inflammatory processes [19].
To determine the histamine-mediated Ca2+ signaling, the mRNA expression of histamine receptor
was examined in HaCaT keratinocytes. HaCaT keratinocytes expressed the mRNAs of H1R, H2R,
and H3R (Supplementary Figure S1). It has been well established that histamine stimulation is
primarily associated with H1R in primary keratinocytes [20]. HaCaT keratinocytes were stimulated
with histamine for 24 and 48 h. The increased Ca2+ signals showed oscillatory spikes in the application
of histamine (Figure 2A,B). The basal Ca2+ level increased in a time-dependent manner (Figure 2C).
To confirm the Ca2+-dependent CBE activity, keratinocytes were stimulated with 3 mM CaCl2 for 48 h
in presence or absence of BAPTA-AM. The CBE activity was enhanced by the treatment with 3 mM
CaCl2, whereas reduced by the cotreatment of BAPTA-AM (Figure 2D,E). AE2 protein expression was
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also increased by using 3 mM CaCl2 (Figure 2F,G). These results indicated that the enhanced Ca2+

concentration increased AE2 expression and its CBE activity.

Figure 1. AE2 is activated by the stimulation of histamine in keratinocytes. (A) mRNA expression of
SLC4 family receptors (SLC4A1, A2, A3, and A9) in HaCaT keratinocytes. (B) The protein expression of
AE2, AE3, and β-actin during histamine treatment at 24 and 48 h in HaCaT keratinocytes. The β-actin
was used as a loading control. Analysis of AE2 expression (C) and AE3 expression (D) with or
without histamine in HaCaT cells. The bars indicate the mean ± SEM of data (* p < 0.05, n = 4).
(E) mRNA expression of AE2 and AE3 with or without histamine stimulation in HaCaT cells (* p < 0.05).
(F) Immunostaining of AE2 (red) and nucleus (DAPI, blue) in the presence of 500 nM histamine
at 48 h. (G) The bars indicate the mean ± SEM of the AE2 membrane intensity determined from
three experimental replicates (*** p < 0.001, n = 3). (H) CBE activity of HaCaT keratinocytes with
(grey open square) and without (control, black open square) 500 nM histamine and with co-stimulation
of 500 nM histamine and 10 µM BAPTA-AM (orange open square) at 48 h. Averaged traces were
represented. (I) Analysis of CBE activity. The bars indicate the means ± SEM of the number of
experiments (*** p < 0.001, n = 4). (J) CBE activity of primary keratinocytes with (grey open square) and
without (control, black open square) 500 nM histamine at 48 h. (K) Analysis of CBE activity of primary
epidermal keratinocytes. The bars indicate the means ± SEM of the number of experiments (** p < 0.01,
n = 3). (L) The protein expression of AE2, AE3, and β-actin during histamine treatment at 24 and
48 h in primary epidermal keratinocytes. The β-actin was used as a loading control. (M) Analysis of
AE2 expression with or without histamine stimulation in primary epidermal keratinocytes. The bars
indicate the mean ± SEM of data (* p < 0.05, n = 4).
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Figure 2. Increased calcium by histamine stimulation enhanced CBE activity and AE2 expression
in HaCaT keratinocytes. Stimulation with 500 nM histamine induced an increase in Ca2+ in HaCaT
keratinocytes for the control (A) and at 48 h (B). (C) Analysis of the resting Ca2+ level. Bars indicate the
mean ± SEM of the number of experiments (** p < 0.05, *** p < 0.001, n = 20). (D) CBE activity of HaCaT
keratinocytes with (gray open square) and without (control, black open square) 3 mM CaCl2 and with
co-stimulation of 3 mM CaCl2 and 10 µM BAPTA-AM (orange open square) at 48 h. (E) Analysis of CBE
activity. Bars indicate the mean ± SEM of the number of experiments. (** p < 0.01, n = 4). (F) Protein
expression of AE2 and β-actin with 3 mM CaCl2 at 48 h. The β-actin was used as a loading control.
(G) Analysis of AE2 expression with or without 3 mM CaCl2 at 48 h. Bars indicate the means ± SEM
(* p < 0.05, n = 4).

2.3. CaCl2 and Histamine Stimulation Enhanced HaCaT Cell Migration

To examine the migration of HaCaT cells in presence of histamine and CaCl2 stimulation, agarose
spots assay was launched. Some migration occurred in the control group and was due to the
motile characteristics of keratinocytes. HaCaT keratinocyte migration was enhanced in histamine
treatment, whereas attenuated by the treatment of BAPTA-AM in media (Figure 3A,B). HaCaT
keratinocyte migration toward agarose was also enhanced by the treatment of CaCl2 in media
(Figure 3C,D). The CaCl2-mediated migration was attenuated by the application of BAPTA-AM in
media (Figure 3A–D).
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Figure 3. CaCl2 and histamine stimulation enhanced HaCaT cell migration. (A) Time dependent
representative images of HaCaT keratinocytes migrating (4, 48, and 72 h) towards agarose spots in the
absence or presence of 500 nM histamine in media with or without 10 µM BAPTA-AM. The direction
of migration across the boundary of the agarose spot is shown as a dashed curve (blue dotted lines).
The red dotted lines indicate the lineage of keratinocytes that moved into the spots. (B) Analysis of
migration range per hour in agarose spots in the absence or presence of 500 nM His in the medium.
Bars indicate the means ± SEM of the number of experiments (*** p < 0.001, n = 3). (C) Time dependent
representative images of HaCaT keratinocytes migrating (4, 48, and 72 h) towards agarose spots in the
absence or presence of 3 mM CaCl2 in media in media with or without 10 µM BAPTA-AM. (D) Analysis
of migration range per hour in agarose spots in the absence or presence of 3 mM CaCl2 in the media
with or without 10 µM BAPTA-AM. Bars indicate the means ± SEM of the number of experiments
(*** p < 0.001, n = 3).

2.4. AE2 Expression Was Dependent on Histamine and CaCl2 Stimulation

Histamine signaling and enhanced Ca2+ concentration induced cellular migration. Cellular
migration is mediated by various transporters. To assess this, we evaluated the role of highly expressed
AE2 on HaCaT migration. HaCaT cells were stained with AE2 antibody. The AE2 expression was
enhanced by the treatment of histamine and CaCl2 and the co-treatment of BAPTA-AM attenuated the
AE2 expression in HaCaT cells (Figure 4A,B). These results addressed that AE2 expression was related
to enhanced migratory ability.
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Figure 4. AE2 expression was dependent on histamine and CaCl2 stimulation. (A) Immunostaining
of AE2 (red) and nucleus (DAPI, blue) in the presence of 500 nM histamine or 3 mM CaCl2 with or
without 10 µM BAPTA-AM at 48 h. (B) The bars indicate the mean ± SEM of the AE2 membrane
intensity determined from three experimental replicates (* p < 0.05, ** p < 0.01, *** p < 0.001, n = 4).

2.5. Motility of HaCaT Cells Was Driven More by Vectorial Chemotaxis

Despite the motile features of keratinocytes by stimulation of GPCR and Ca2+ signaling, migration
can be directed toward a chemotactic gradient, as that used by neutrophils [7]. This prompted
us to investigate the relationship between migration and gradient of stimulation, in particular.
To evaluate the ability of motion of directional stimulation, called vectorial chemotaxis, in HaCaT
keratinocytes, histamine stimulation was compared between non-vectorial (stimulation in media)
and vectorial stimulation (histamine-containing agarose) (Figure 5A–D). Chemotactic gradient by
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histamine-including agarose spots enhanced the motility of HaCaT keratinocytes, compared to a
non-vectorial stimulation (Figure 5D). The concept of vectorial stimulation is illustrated in Figure 5E,F.
Direct stimulation of histamine provided the ability to migrate, whereas potent and facilitated migration
of HaCaT keratinocytes occurred during vectorial stimulation toward histamine-containing agarose.

Figure 5. Motility of HaCaT cells was driven more by vectorial chemotaxis. Time dependent
representative images of HaCaT keratinocytes migrating (4, 24, 48, and 72 h) towards agarose spots (A)
in PBS (pH7.4)-containing agarose spots, (B) in the presence of 500 nM His-containing media and in PBS
(pH7.4)-containing agarose spots, and (C) in the 500 nM His-containing agarose spots. The direction
of migration across the boundary of the agarose spot is shown as a dashed curve (blue dotted lines).
The red dotted lines indicate the lineage of keratinocytes that moved into the spots. (D) Analysis of
migration range per hour in agarose spots in the absence or presence of 500 nM His. Bars indicate
the means ± SEM of the number of experiments (*** p < 0.001, n = 4). (E) Schematic illustration of
the vectorial stimulation toward the histamine-containing agarose spot. (F) Schematic illustration of
non-vectorial stimulation of histamine-containing media toward the agarose spot.

2.6. Inhibition of Transporters by DIDS Attenuated HaCaT Cell Migration

We next explored how cellular migration might occur via motile machinery. To confirm the role of
transporters in migration, an anion exchanger blocker DIDS was used. The vectorial migration of HaCaT
cells toward the histamine-containing agarose spot was abolished in the presence of DIDS (Figure 6A).
CBE activity was also reduced in the presence of DIDS compared to the control (Figure 6B,C).
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Figure 6. Inhibition of transporters by DIDS attenuated HaCaT migration. (A) Time-dependent
representative images of HaCaT keratinocytes migrating (4 and 48 h) towards agarose spots containing
PBS (pH 7.4) with and without 500 nM His and in the absence or presence of 500 µM DIDS-containing
media. The direction of migration across the boundary of the agarose spot is shown as a dashed curve
(blue dotted lines). The red dotted lines indicate the lineage of keratinocytes that moved into the
spots. (B) CBE activity of HaCaT keratinocytes with 500 µM DIDS (orange open square) and without
(control, black open square) at 48 h. Averaged traces were represented. (C) Analysis of CBE activity.
Bars indicate the means ± SEM of the number of experiments (* p < 0.05, n = 3).

2.7. AE2 Inhibition Attenuated the Vectorial Movement of HaCaT Cells

We evaluated the role of AE2 on vectorial HaCaT migration. The effective inhibitor of AE2 was
not available. Accordingly, we proposed and previously reported that potential anticancer agent
disulfiram (DSF) attenuated the AE2 expression in lung and breast cancer cells [21]. The treatment of
DSF reduced AE2 expression in HaCaT cells (Figure 7A,B). The cell viability was not affected by the
treatment of DSF (Figure 7C). The HaCaT migration was also attenuated in presence of DSF toward
histamine-containing agarose spot (Figure 7D,E). These findings addressed that the vectorial movement
of HaCaT toward histamine-containing agarose spots is modulated by the involvement of AE2.
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Figure 7. AE2 inhibition attenuated the vectorial movement of HaCaT cells. (A) The protein expression
of AE2 and β-actin during 2 µM disulfiram (DSF) treatment at 48 h in HaCaT keratinocytes. The β-actin
was used as a loading control. (B) Analysis of AE2 intensity in the presence of DSF at 48 h. (C) The cell
viability in presence of 2 µM DSF at 24, 48, and 72 h. (D) Time-dependent representative images of
migrated HaCaT cells at 4, 24, 48, and 72 h, towards agarose spots containing PBS (pH 7.4) with 500 nM
His, with or without 2 µM DSF in the media. The direction of migration across the boundary of the
agarose spot is shown as a dashed curve (blue dotted lines). The red dotted lines indicate the lineage of
keratinocytes that moved into the spots. (E) Analysis of migration range compared to the control in the
presence of 2 µM DSF in the media. Bars indicate the means ± SEM (*** p < 0.001, n = 5).

2.8. Overexpressed AE2 Enhanced Vectorial HaCaT Migration

To confirm the role of AE2 on vectorial migration, HaCaT cells were transfected AE2. The overexpressed
AE2 enhanced cellular migration toward histamine-containing agarose (Figure 8A,B). Protein and
mRNA expression of AE2 in AE2-overexpressed HaCaT cells were confirmed (Figure 8C,D). These
data addressed enhanced AE2 provided the facilitated vectorial movement in HaCaT cells.
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Figure 8. Overexpressed AE2 enhanced vectorial HaCaT migration. (A) Time-dependent representative
images of HaCaT keratinocytes migrating towards agarose spots containing PBS (pH 7.4) with 500 nM
His in control or AE2-overexpressed HaCaT cells. The direction of migration across the boundary of the
agarose spot is shown as a dashed curve (blue dotted lines). The red dotted lines indicate the lineage
of keratinocytes that moved into the spots. (B) Analysis of migration range of AE2-overexpressed
HaCaT cells compared to the control. Bars indicate the means ± SEM (*** p < 0.001, n = 4). (C) Protein
expression of AE2 in AE2-overexpressed HaCaT cells. The β-actin was used as a loading control.
(D) mRNA expression of AE2 in AE2-overexpressed HaCaT cells (** p < 0.01, n = 3).

3. Discussion

The ubiquitously expressed AE2 has a fundamental role in maintaining intracellular pH levels.
In this study, the increase of Ca2+ by inflammatory mediators, such as histamine, enhanced AE2
expression, and activity in keratinocytes. Although both AE2 and AE3 were expressed in HaCaT cells,
AE2 was statistically enhanced by the histamine stimulation. We have shown that, for the first vectorial
stimulation of histamine-containing agarose spot, the keratinocyte migration through the involvement
of AE2 is enhanced. The enhanced expression of AE2 is mainly associated with an increase in Ca2+.
The directionality of Ca2+-induced stimulation can play a prominent role in facilitated migration
through the involvement of AE2 and its enhanced CBE activity. Our experimental observation was
represented to the schematic illustration (Figure 9).
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Figure 9. Schematic illustration of vectorial HaCaT migration through the involvement of AE2.

More recently, there have been many efforts to verify the molecular pathway of keratinocyte
migration. Although few studies were addressed, Keratin 6 regulates the collective keratinocyte
migration [10], nitric oxide-mediated cGMP-PKG signaling [15], JMJD3/NF-KB-activated Notch
pathway [14], BNIP3 modulation in hypoxia-induced keratinocyte migration [13], and the negative
regulation of transmembrane protein CD9 in keratinocyte migration [11]. The regulation of
these molecular pathways induces cellular migration driven by the modulation of migratory
machinery. The association of AE2 in migratory machinery provides a more diverse approach
to regulation of migration. Of course, not only the contribution of AE2, but also the involvement
of other collaborations—including sodium/hydrogen exchanger NHE, sodium/potassium/chloride
cotransporter NKCC, and sodium/bicarbonate cotransporter NBC—are related to cellular migration [7].
Information on the molecular mechanism of keratinocytes within the scope of transporters is relatively
rare. In this study, we demonstrated that the involvement of AE2 plays a crucial role in migratory
dynamics. Besides its migratory role, AE2 can be a candidate for a challengeable transporter in
keratinocytes, as an acid loader. NHE1 has been reported to be enhanced in wounded stratum corneum
and to regulate the stratum corneum pH gradient [22,23]. The fundamental role of NHE1 is to maintain
a steady-state intracellular pH, and this regulation can be mediated by the additional involvement of
other transporters, such as NBCn1 [24]. It is necessary to evaluate the effect of supportive transporters
including AE2 on pH regulation in keratinocytes in future studies.

In summary, an enhanced expression and activity of AE2 in a histamine or Ca2+-stimulated in vitro
study of HaCaT keratinocytes may provide various insights into the pathophysiological regulation of
transporters. Keratinocytes at wound edge tends to migrate and increase of speed of migration [10].
Our data addressed in this study provide the strategy for enhancement of migration. The vectorial
stimulation of histamine may provide a preferred directionality of movement, and keratinocytes may
utilize Ca2+-dependent AE2 machinery. The enhancement of AE2 may provide the efficient cellular
migration and subsequent wound closure.

4. Materials and Methods

4.1. Reagents and Plasmids

β-actin antibody (A5441) and 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS, 462268),
histamine (H7125) and Disulfiram (DSF, European Pharmacopoeia (EP) Reference Standard, D2950000)
were purchased from Sigma Aldrich (Saint-Louis, MO, USA). AE2 antibody (ab42687) and AE3
antibody (ab187102) were purchased from Abcam (Cambridge, MA, USA). Calcium chloride
(CaCl2) dihydrate was purchased from Amresco (West Chester, PA, USA). The pH indicator
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2′,7′-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-AM and the Ca2+ indicator Fura2-AM
were purchased from TEFlabs (Austin, TX, USA). Pluronic acid (F-127, 20% in dimethyl sulfoxide,
P-3000MP) and 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis, acetoxymethyl
ester (BAPTA-AM) were purchased from Invitrogen (Carlsbad, CA, USA). All other used chemicals
that were not mentioned here were purchased from Sigma Aldrich. Rat AE2 (HA-pcDNA3.1(+)) clone
was provided by the Dr. Shmuel Muallem at National Institutes of Health (Bethesda, MD, USA) and
possess 94% homologous sequence compared to human AE2.

4.2. HaCaT and Primary Keratinocytes Culture

The human keratinocyte cell line HaCaT was maintained in Dulbecco’s modified Eagle’s medium
(DMEM, 11995073, Thermo Fisher Scientific, Waltham, MA, USA), containing 10% FBS (1600-044,
Invitrogen, Waltham, MA, USA) and 100 U/mL penicillin-streptomycin (15140122, Invitrogen), and was
incubated at 37 ◦C in a humidified incubator with 5% CO2 and 95% air. When the keratinocytes
reached an 80% confluence, the culture medium was removed, and the keratinocytes were washed with
Dulbecco’s phosphate-buffered saline (DPBS, LB001-02, Welgene, Gyeongsan-Si, Korea), followed by
treatment with trypsin/ethylenediaminetetraacetic acid (EDTA) for 5 min. The dispersed keratinocytes
were transferred to new culture dishes for Western blotting, agarose spot assay, and fluorescent imaging.

The human primary epidermal keratinocyte cell line-adult, HEKa (PCS-200-011, ATCC,
Manassas, VA, USA) was maintained in dermal cell basal medium (PCS-200-030, ATCC, Manassas,
VA, USA), containing keratinocyte growth kit (PCS-200-040, ATCC, Manassas, VA, USA) and
penicillin-streptomycin-amphotericin B solution (PCS-999-002, ATCC, Manassas, VA, USA), and was
incubated at 37 ◦C in a humidified incubator with 5% CO2 and 95% air. When the primary keratinocytes
reached an 80% confluence, the culture medium was removed, and the keratinocytes were washed
with Dulbecco’s phosphate-buffered saline (DPBS, LB001-02, Welgene, Gyeongsan-Si, Korea), followed
by treatment with trypsin/ethylenediaminetetraacetic acid (EDTA) for primary cells (PCS-999-003) for
6 min. When cells appear to have detached, add the trypsin neutralizing solution (ATCC PCS-999-004)
to flask. The dispersed primary keratinocytes were transferred to new culture dishes for qRT-PCR.

4.3. Agarose Spot Assay for Cell Migration

Cell migration was examined by performing an agarose spot assay, as described previously, by
modifying the protocol of the chemotactic invasion assay. Briefly, 10 mg of agarose (UltraKem LE,
Young Sciences, Korea) were placed into a 50 mL conical tube and diluted in 2 mL of physiological salt
solution (PSS; 140 mM sodium chloride [NaCl], 10 mM glucose, 5 mM potassium chloride KCl, 1 mM
magnesium chloride MgCl2, 1 mM calcium chloride CaCl2, 10 mM HEPES, pH 7.4, 310 mOsm) to
prepare a 0.5% agarose solution, which was spotted (four spots per plate) onto six-well plates (Thermo
Fisher Scientific, Waltham, MA, USA) and allowed to cool down for 8 min at 4 ◦C. Keratinocytes
(4 × 105) were then plated and allowed to adhere for 4 h before adding DMEM containing 0.1% FBS
(Invitrogen, Waltham, MA, USA) and 100 U/mL penicillin (Invitrogen, Waltham, MA, USA). After 4,
24, 48, and 72 h at 37 ◦C, images were collected using the Meta Morph software (Molecular Devices)
with a 10 × objective (Olympus, Tokyo, Japan). Keratinocytes that appeared underneath the agarose
spot were counted as keratinocytes that had migrated.

4.4. Measurement of the CBE Activity of AE2

Keratinocytes were attached onto coverslips and loaded onto the chamber with 6 µM BCECF-AM
(TEFlabs, Austin, TX, USA) in the presence of 0.05% pluronic acid (Invitrogen, Waltham, MA, USA) for
15 min at room temperature. After stabilization of the fluorescence, the keratinocytes were subjected to
perfusion using solution A for, at least, 5 min prior to intracellular pH (pHi) measurements. pHi was
measured based on the BCECF fluorescence, using dual excitation wavelengths (495 and 440 nm) and an
emission wavelength (530 nm). Chloride bicarbonate exchanger (CBE) activity of AE2 was determined
using a Cl--free HCO3

--buffered solution containing 126 mM Na+. The keratinocytes were incubated
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with a CO2-saturated HCO3
--buffered solution for the acidification of the cytosol, and then perfused

with a Cl--free HCO3
--buffered solution. The pH measurement-based CBE activity was calculated from

the slope of the pHi increase during the first 30–45 s in Cl−-free HCO3
−-buffered solution, and was

expressed as the percent fold change relative to that of the CBE activity of the control, as described
previously [18]. Images were obtained at an interval of 1 s using a high resolution-CCD camera (Retiga
6000, Q-Imaging, Surrey, BC, Canada) linked to an inverted microscope (Olympus, Tokyo, Japan) and
analyzed using a MetaFluor system (Molecular Devices, Downingtown, PA, USA). Each image was
normalized by subtracting the background fluorescence from the raw background signals.

4.5. Measurement of Intracellular Calcium Increase

HaCaT cells (4 × 105) were seeded onto coverslips and treated with 4 µM Fura-2/AM in the
presence of 0.05% Pluronic F-127 for 15 min in PSS at room temperature, in the dark. Changes in
[Ca2+]i were determined by measuring the fluorescence intensities using dual excitation wavelengths
(340 and 380 nm) and an emission wavelength (510 nm). The results are presented as fluorescence
(F) ratios (ratio = 340/380). The emitted fluorescence was monitored using a CCD camera (Retiga
6000, Q-Imaging, Surrey, BC, Canada) attached to an inverted microscope (Olympus, Tokyo, Japan)
and analyzed using a MetaFluor system (Molecular Devices, Downingtown, PA, USA). Fluorescence
images were obtained at 1 s intervals, and the background fluorescence at each excitation wavelength
was subtracted from the raw signals. Evoked [Ca2+]i (∆Ca2+) responses were calculated by dividing
the maximum Ca2+ peak of the agonist in the presence of histamine by the maximum Ca2+ peak of
agonist stimulation.

4.6. Western Blotting

The keratinocytes, which were treated with histamine, DSF, or DIDS (Sigma Aldrich, Saint-Louis,
MO, USA), were incubated with 1 × lysis buffer (Cell signaling) containing 20 mM Tris, 150 mM
NaCl, 2 mM EDTA, 1% Triton X-100, and a protease inhibitor mixture for 5 min at room temperature.
The keratinocytes were sonicated and centrifuged at 11,000× g for 15 min at 4 ◦C, and protein
concentration was determined by using the Bradford assay (Bio-Rad, Hercules, CA, USA). The lysed
samples were incubated with protein sample buffer at 37 ◦C for 15 min. The warmed protein samples
(30 µg) were subjected to separation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and then transferred onto polyvinylidene difluoride (PVDF, 1620177, Bio-Rad) membranes
soaked in methanol. The membrane was blocked with a 5% nonfat milk solution in Tris-buffered saline
(TBS) and 0.5% Tween-20 (TBS-T) for 1 h. Then, the membrane was incubated withβ-actin, AE2, and AE3
antibodies overnight at 4 ◦C and washed thrice with TBS-T. Following the washes, the membranes
were incubated with horseradish peroxidase (HRP)-conjugated anti-mouse and anti-rabbit secondary
antibodies and the protein bands were visualized using the enhanced luminescence solution (32209,
Thermo Fisher Scientific, Waltham, MA, USA).

4.7. Confocal Imaging

Transfected HaCaT cells were transferred onto cover glasses and fixed using chilled (−20 ◦C)
methanol. Fixed keratinocytes were treated with 5% goat serum for 1 h at room temperature to block
the nonspecific sites. The keratinocytes were incubated overnight with primary antibodies (1:100
dilution factor) at 4 ◦C, followed by three washes with PBS. To detect the AE2 antibody, keratinocytes
were treated with goat immunoglobulin G (IgG)-tagged with rhodamine (1:50 dilution factor, Jackson
ImmunoResearch, anti-rabbit: 111-025-144) for 1 h at room temperature. Following incubation,
keratinocytes were washed thrice with PBS, and the cover glasses were mounted onto glass slides
using Fluoromount-G™ with 4,6-diamidino-2-phenylindole (DAPI, 17984-24, Electron Microscopy
Sciences, Hatfield, PA, USA) and incubated overnight at 4 ◦C. The slides were analyzed using an LSM
700 Zeiss confocal microscope (Carl Zeiss, Oberkochen, Germany) and the ZEN software (Carl Zeiss,
Oberkochen, Germany).
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4.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Reverse Transcription-Polymerase
Chain Reaction (RT-PCR)

Total RNA was extracted from cardiac tissues using the Hybrid-RiboEx extraction system (Gentaur,
Kampenhout, Belgium), according to the manufacturer’s instructions. RNA was quantified using
the Spectrophotometer ND-1000 (Thermo Fisher Scientific) and was amplified according to the
manufacturer’s protocol, using the TOPscript™ RT-PCR kit from Enzynomics (Daejeon, Korea).
The human primers used are listed in Table 1. Quantitative RT-PCR was performed by CFX384
Touch Real-Time PCR Detection System (BioRad, Hercules, CA, USA) with Thunderbird™ SYBR
qPCR Mix (QPK-201, TOYOBO, Osaka, Japan), according to manufacturer’s protocol. The CT values
were determined with the default threshold setting. Relative expressions for the target RNAs were
determined by the comparative CT (2−∆∆Ct) method applied for data analysis. The qRT-PCR cycling
protocol used was as follows: denaturation at 95 ◦C for 1 min, followed by 45 cycles at 95 ◦C for 15 s,
an annealing step for 45 s, an extension step at 95 ◦C for 15 s and 60 ◦C for 15 s. A final extension was
carried out at 95 ◦C for 15 s. The RT-PCR cycling protocol used was as follows: denaturation at 95 ◦C
for 5 min, followed by 45 cycles at 95 ◦C for 30 s, an annealing step for 1 min (Tables 1 and 2), and an
extension step at 72 ◦C for 1 min. A final extension was carried out at 72 ◦C for 10 min. PCR products
were electrophoresed on 1% agarose gels. Bands were visualized and acquired using a CCD camera
and were scanned using the GelDocXR imaging system (Bio-Rad, Hercules, CA, USA).

Table 1. Human quantitative real-time polymerase chain reaction (qRT-PCR) primer sequences

Genes. Tm (◦C) Sequences (5′ → 3′)

SLC4A1 60
(F) CAC ACA ACT TCA GGC CCC TC
(R) AGA GCC TGC TGT CTC CTA CC

SLC4A2 59
(F) AGT TGG GAG AAG TTG GGA GC
(R) CAT AAC CCG CTC GCT CTG G

SLC4A3 58
(F) GTT TGG GGA CCT CAT CAG CA
(R) ATG TGT GCC GGT GAA ACT CA

SLC4A9 58
(F) GAC CCC AGG AAA CAG CAT GA
(R) CAC CCT CAG GTC AGG AGG TA

GAPDH 59
(F) CCG CAT CTT CTT TTG CGT CG
(R) TTC CCG TTC TCA GCC TTG AC

Table 2. Human reverse transcription-polymerase chain reaction (RT-PCR) primer sequences

Genes Tm (◦C) Sequences (5′ → 3′)

Histamine 1 receptor (R) 58
(F) GAC TGT GTA GCC GTC AAC CGG A
(R) TGA AGG CTG CCA TGA TAA AAC C

Histamine 2R 56
(F) TCG TGT CCT TGG CTA TCA C
(R) CTT TGC TGG TCT CGT TCC T

Histamine 3R 70
(F) TCA GCT ACG ACC GCT TCC TGT CGG TCA C
(R) TTG AGT GAG CGC GGC CTC TCA GTG CCC C

Histamine 4R 63
(F) GAA TTG TCT GGC TGG ATT AAT TTG CTA ATT TG
(R) AAG AAT GAT GTG GTG ATG GCA AGG ATG TAC C

GAPDH 62
(F) CAT GGC ACC GTC AAG GCT GAG
(R) CTT GGC CAG GGG TGC TAA GC
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4.9. DNA Transfection

Plasmid DNA transfection was performed by jetPRIME as per manufacturer’s protocol
(Polyplus-transfection, Alsace, France). Plasmid DNA was diluted in 200 µL of jetPRIME buffer
and 4 µL of jetPRIME reagent, and was incubated for 10 min at RT. Add transfection mix to the cells in
serum containing medium and was incubated at 37 ◦C in a humidified incubator with 5% CO2 and
95% air. After further 4 h incubation, the medium was replaced with fresh DMEM containing FBS.
The cells were cultured and used for experiment after 48 h of transfection.

4.10. Statistical Analyses

All data from the indicated number of experiments were expressed as the mean ± standard error
of the mean (SEM). The statistical differences between mean values obtained from the two or more
sample groups were analyzed using paired Student’s t-test. Two independent sample datasets come
from distributions with different of two different groups. Statistical significance was determined by
analysis of variance for each experiment (* p < 0.05, ** p < 0.01, *** p < 0.001).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/22/
8429/s1. Figure S1: The HaCaT keratinocytes were expressed Histamine family receptors (HR) H1R~H4R.
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Abbreviations

His Histamine
AE2 Anion exchanger 2
AE3 Anion exchanger 3
CBE Chloride bicarbonate exchanger
H1R Histamine receptor 1
H2R Histamine receptor 2
H3R Histamine receptor 3
H4R Histamine receptor 4
GPCR G protein-coupled receptor
DIDS 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid
DSF Disulfiram
PBS Phosphate-buffered saline
DAPI 4,6-diamidino-2-phenylindole
BAPTA-AM 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis, acetoxymethyl ester
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