Supplementary Materials

Molecular Modelling Study of c-KIT/PDGFRα Dual Inhibitors for the Treatment of Gastrointestinal Stromal Tumors

Seketoulie Keretsu¹, Suparna Ghosh¹, Seung Joo Cho^{1,2,*}

¹Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea; keretsu@chosun.kr(S.K); s.ghosh@chosun.kr(S.G); chosj@chosun.ac.kr(S.J.C)

² Department of Cellular Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea

Table S1. The experimental/actual and predicted pIC_{50} values with their residuals for the CoMFA and CoMSIA for c-KIT.

		c-KIT (CoMFA	c-KIT CoMSIA			
Compound	nIC ₅₀	Predicted	Predicted Residual		Residual		
	P	pIC ₅₀	Ittoituuu	pIC ₅₀	Itestudui		
1	8.62	8.27	-0.35	8.27	0.35		
2	8.43	8.61	0.17	9.10	-0.67		
5	8.41	8.58	0.17	8.13	0.28		
6*	4.96	5.80	0.84	5.96	-0.99		
7	5.74	5.91	0.17	6.73	-0.99		
8	5.32	5.26	-0.06	5.86	-0.54		
9	5.62	5.51	-0.11	5.51	0.11		
10^{*}	6.70	7.21	-0.52	7.33	-0.63		
11	7.72	7.62	-0.10	7.57	0.15		
12	5.71	5.87	0.16	5.88	-0.17		
13	8.14	8.16	0.02	8.18	-0.04		
14	8.62	8.68	0.06	8.27	0.35		
15 [*]	5.65	6.55	-0.90	6.60	-0.95		
16	5.34	5.17	-0.17	5.16	0.18		
17	6.40	6.12	-0.28	6.07	0.33		
18	5.19	5.50	0.31	5.35	-0.16		
19	7.92	7.97	0.05	8.26	-0.34		
20 [*]	7.92	7.62	0.30	8.90	-0.98		
21	8.59	8.71	0.13	8.41	0.17		
22	8.03	7.86	-0.17	7.78	0.25		
23 [*]	4.66	5.58	-0.93	5.60	-0.94		
26	4.69	4.73	0.04	5.31	-0.62		
27	8.46	8.37	-0.09	8.51	-0.05		
28*	8.85	8.09	0.77	8.44	0.42		
29	6.49	6.41	-0.08	5.88	0.62		
30	5.85	6.10	0.25	5.82	0.03		
31	6.26	6.18	-0.08	5.93	0.32		
32*	6.50	6.46	0.03	6.30	0.20		

33	6.84	6.94	0.10	7.08	-0.24
35*	7.29	8.10	-0.81	7.92	-0.62
36	7.59	7.48	-0.10	7.45	0.14
37*	7.11	6.11	1.00	6.47	0.64
39	8.43	8.57	0.14	8.37	0.06
40	8.77	9.02	0.25	8.88	-0.11
41	8.21	8.32	0.11	8.71	-0.51
42*	8.06	8.91	-0.85	8.68	-0.62
43	6.92	6.98	0.06	7.15	-0.23
44	7.70	7.75	0.05	7.75	-0.05
45 [*]	7.85	6.92	0.94	7.62	0.23
46	8.72	8.37	-0.35	8.45	0.28
47*	7.70	8.42	-0.72	8.49	-0.79
48	8.44	8.14	-0.30	7.52	0.92

* Test set compounds

Table S2. The experimental/actual and predicted pIC_{50} values with their residuals for the CoMFA and CoMSIA for PDGFR α .

		PDGFRα	CoMFA	PDGFRa CoMSIA			
Compound	pIC ₅₀	Predicted pIC ₅₀	Residual	Predicted pIC ₅₀	Residual		
1	7.06	7.14	-0.08	7.32	-0.26		
2	7.49	7.49	0.01	7.45	0.04		
5	7.66	7.54	0.12	7.23	0.43		
6*	6.52	6.11	0.40	6.78	-0.27		
7	7.19	6.98	0.21	6.99	0.20		
8	6.58	6.55 0.03		6.81	-0.22		
9	6.74	6.87	-0.13	7.05	-0.31		
10 [*]	4.67	3.85	0.82	5.56	-0.89		
11	6.67	6.70	-0.03	6.57	0.09		
12	5.75	5.57	0.18	5.25	0.50		
13	6.90	7.00	-0.11	6.96	-0.06		
14	8.14	7.98	0.16	7.96	0.18		
15*	5.96	6.34	-0.38	6.65	-0.69		
16	6.03	6.25	-0.22	5.50	0.53		
17	4.72	4.66	0.06	5.30	-0.57		
18	5.39	5.35	0.04	5.56	-0.17		
19	6.87	6.89	-0.03	7.05	-0.19		
20*	6.75	6.81 -0.06		7.04	-0.29		
21	7.08	7.04	0.04	6.97	0.11		
22	6.51	6.54	-0.03	6.86	-0.35		
23*	5.34	5.99	-0.66	6.17	-0.83		
26	4.36	4.33	0.03	4.59	-0.23		
27	6.79	6.86	-0.07	6.80	-0.01		
28*	7.57	6.94	0.63	6.90	0.67		
29	5.95	5.96	-0.01	5.78	0.17		
30	5.83	6.09	-0.25	5.90	-0.07		
31	5.95	5.91	0.04	6.00	-0.06		

32*	6.14	5.88	0.26	5.80	0.34
33	6.24	6.20	0.04	5.73	0.51
35*	6.41	6.88	-0.46	6.18	0.23
36	6.80	6.80	0.00	6.47	0.34
37*	6.33	6.86	-0.53	6.27	0.05
39	7.09	7.08	0.01	7.45	-0.36
40	7.62	7.66	-0.04	7.33	0.29
41	6.87	7.05	-0.18	6.90	-0.03
42 [*]	7.08	7.54	-0.46	6.97	0.11
43	6.39	6.29	0.10	6.16	0.23
44	6.40	6.41	-0.01	6.43	-0.03
45 [*]	6.50	6.29	0.22	6.03	0.47
46	7.66	7.57	0.09	7.50	0.16
47*	6.91	6.21	0.70	6.61	0.30
48	7.01	6.99	0.03	6.43	0.58

* Test set compounds

Table S3: The predicted ADMET values and synthetic accessibility values for the 8 designed compounds.

	Absorption	Distribu tion	Metabolism						Excretion	Toxici ty		
spunod	Intestinal absorption (human)	VDss (human)	СҮР								ity	
			2D 6	3A4	1A2	2C19	2C9	2D 6	3A 4	Total Clearance	toxicit	nthetic ssibil
Jon			sub	substrate inhibitor							У	Syl
	Numeric (% Absorbed)	Numeric (log L/kg)	Categorical (Yes/No)						Numeric (log ml/min/kg)	Catego rical (Yes/No)	A	
D18	89	0.2	Yes	Yes	No	Yes	Yes	No	Yes	0.9	No	3.8
D23	98	-0.5	Yes	Yes	Yes	Yes	No	Yes	No	0.8	No	4.4
D25	87	-0.4	Yes	Yes	No	No	No	No	No	0.8	No	4.0
D28	92	-0.7	Yes	Yes	Yes	Yes	Yes	No	Yes	0.8	No	3.9
D32	93	-0.8	Yes	Yes	Yes	Yes	Yes	No	No	0.6	No	3.8
D39	88	-1.2	Yes	Yes	Yes	Yes	No	No	No	0.5	Yes	3.5
D44	87	0.1	Yes	Yes	Yes	Yes	Yes	No	No	0.8	No	3.5
D45	86	0.2	Yes	Yes	Yes	Yes	Yes	No	Yes	0.9	No	3.6

Figure S1. Showing the H-bond interactions of **imatinib** and **compound 14** with c-KIT and PDGFR α from the molecular docking studies. H-bond interactions were represented by yellow dotted lines and residues forming H-bonds were shown in purple color. (a) Binding interactions between imatinib (green) and c-KIT. The overlap between the docked pose (green) and the crystal ligand (salmon) is shown in inset (b) Binding interactions between imatinib (magenta) and PDGFR α . The overlap between the docked pose (magenta) and the crystal ligand (salmon) is shown in inset (c) Binding interactions between compound 14 (yellow) and PDGFR α .

Figure S2. Showing the hydrophobic interactions of the inhibitors with c-KIT and PDGFRα. Hydrophobic interactions were represented in red dotted lines. Residues that showed Hydrophobic and H-bond interactions were given in green and black label respectively. (a) **Compound 14**-c-KIT (b) **Compound 31**-c-KIT (c) **D39**-c-KIT (d) **compound D39**-PDGFRα.

Figure S3. Scatter plot for the CoMFA and CoMSIA models. Scatter plot for (a) c-KIT CoMFA model (b) c-KIT CoMSIA model (c) PDGFR α CoMFA model (d) PDGFR α CoMSIA model. The values on the x-axis and y-axis represent the predicted pIC₅₀ values and the experimental/actual pIC₅₀ values respectively.

Figure S4. The ligand RMSD plots from the MD simulations. (a) Imatinib-c-KIT (b) Compound 14-c-KIT (c) Compound 31-c-KIT (d) D18-c-KIT (e) D23-c-KIT (f) D25-c-KIT (g) D28-c-KIT (h) D32-c-KIT (i) D39-c-KIT (j) D44-c-KIT (k) D45-c-KIT (l) Imatinib-c-KIT/T670I (m) Imatinib-PDGFRa (n) Compound 14- PDGFRa (o) Compound 31- PDGFRa (p) D18-PDGFRa (q) D23-PDGFRa (r) D25-PDGFRa (s) D28-PDGFRa (t) D32-PDGFRa (u) D39-PDGFRa (v) D44-PDGFRa (w) D45-PDGFRa (x) Imatinib-PDGFRa/T674I (y) Compound 14-c-KITa/T670I (z) Compound 14- PDGFRa/T674I

Figure S5. Hydrophobic surface of c-KIT and the binding interactions of compound 31 with the receptors. (a) The hydrophobic surface of the c-KIT binding site residues; Hydrophobic residues from the α C-helix and the catalytic loops are shown in stick representation (b) Binding interactions between **compound 31** and c-KIT. (c) Binding interactions between **compound 31** and PDGFR α .

