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Abstract: Computationally predicting the interaction of proteins and ligands presents three main
directions: the search of new target proteins for ligands, the search of new ligands for targets,
and predicting the interaction of new proteins and new ligands. We proposed an approach providing
the fuzzy classification of protein sequences based on the ligand structural features to analyze the
latter most complicated case. We tested our approach on five protein groups, which represented
promised targets for drug-like ligands and differed in functional peculiarities. The training sets were
built with the original procedure overcoming the data ambiguity. Our study showed the effective
prediction of new targets for ligands with an average accuracy of 0.96. The prediction of new ligands
for targets displayed the average accuracy 0.95; accuracy estimates were close to our previous results,
comparable in accuracy to those of other methods or exceeded them. Using the fuzzy coefficients
reflecting the target-to-ligand specificity, we provided predicting interactions for new proteins and
new ligands; the obtained accuracy values from 0.89 to 0.99 were acceptable for such a sophisticated
task. The protein kinase family case demonstrated the ability to account for subtle features of proteins
and ligands required for the specificity of protein–ligand interaction.

Keywords: protein–ligand interactions; proteochemometrics; local sequence similarity; prediction of
target proteins

1. Introduction

Discovery of the biologically active substances and their target proteins is a crucial stage in drug
development. Computational prediction of the interaction between the proteins and drug-like ligands
significantly decreases the time consumption and costs required for experimental studies.

The approach known as SAR (structure–activity relationship) allows for prediction of the biological
activities of a compound from its structural features [1,2]. The SAR methods enable prediction of a
particular activity for a new compound if there is a training set of compounds tested on the studied
activity. In the case of proteins with unknown ligands, the SAR application for prediction of targets is
impossible. Another way is modeling the 3D structure of the protein–ligand complex. The latter needs
the solved 3D protein structure, which is not always available. Furthermore, it requires significant
computational resources, especially at a screening of large chemical libraries.

Overcoming the mentioned limitations, the researchers investigate the combined space of protein
and ligands. It allows for building large-scale predictive models [3]. Such an approach is known
as “proteochemometrics” [4]. The predictive programs use various classifier techniques based on
support vector machines (SVMs), artificial neural networks (ANNs), regression methods, etc. As the
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protein–ligand interaction is a complex process, the predictive model depends on the peculiarities of
studied proteins and small-molecule ligands. Generally, the efficiency of various predictive methods
depends on the way to describe the proteins and compounds [5]. The recent publications showed the
broad applicability of this approach in predicting the promising drug targets [6–22].

Small-molecule ligands’ description uses the well-known techniques developed for SAR
investigations [23]. Protein representation includes diverse techniques. Usually, they summarize the
features describing the entire amino acid sequence [5]. The normalized scores of Smith–Waterman
pairwise alignment are the typical characteristics [7]. Several approaches derive the sequence descriptors
from the distribution of residues, correlation of physicochemical properties in residue pairs, etc. [10,22].

Generalized estimates do not account for the impact of individual amino acid residues.
However, the experimental studies show examples when the individual amino acid residues crucially
influence the protein affinity to a ligand [24,25]. In some cases, the residues distant from the binding
site can significantly affect protein–ligand interaction [26].

Several approaches provide predictive models for the restricted set of target proteins and
multiple ligands. In extreme cases, mutant variants of the same display various affinities to
the compounds [9,13,17,22]. Such a predictive model requires the correct multiple sequence
alignment [10,27]. The high similarity of studied proteins can provide an accurate matching of
aligned residues. These methods are less suitable for studying the protein family, displaying a weak
correlation between homology and ligand affinity like protein kinases.

We suggest the method that predicts protein–ligand interactions from the amino acid sequences
classified by the protein affinities to ligands. Description of amino acid sequences calculated from a
segment-to-segment comparison of the test and training sequences allows avoiding problems with
the incorrect matching of aligned residues [28]. The earlier version of our method evaluated the
possible interaction of protein–ligand pairs by comparing a test sequence with the training proteins
partitioned into classes of ligand interactors and non-interactors [29]. Each training sequence got two
binary coefficients that defined interaction and non-interaction with each ligand within a training set.
Superimposing sequence segments of the test sequence and a training one, the program calculated the
positional similarity scores. The latter were weighted by the belonging coefficients and integrated on
the entire training sets to obtain the estimate of protein–ligand interaction. Thus, we provided the
prediction of new target proteins for ligands with the known sets of targets (target spectra).

Therefore, the binary coefficient 1 and 0 were used to define the protein belonging to one of two
clear classes presenting the targets interacting and not interacting with a given ligand, respectively.
In this study, we also applied the fuzzy classification of proteins. All proteins from a training set were
referred to the class of interacting targets with different belonging coefficients. Belonging to the class
of non-interacting proteins is defined in the same manner. These “fuzzy” coefficients adopted values
in the range from 0.0 to 1.0. They were calculated from ligands’ structural features with the PASS
(prediction of activity spectra for substances) method, successfully used in many SAR studies [30,31].
Our results confirmed the efficacy of a suggested approach for estimating the possible interaction if
both the target and ligand undescribed. We showed the applicability of the suggested method for
protein families differed by the included proteins’ diversity.

2. Results and Discussion

We tested our program on five protein groups: G protein-coupled receptors (GPCRs),
protein kinases, ligand-gated ion channels, voltage-gated ion channels, and nuclear receptors.
The characteristics of training sets collected according to the below-described procedure (see Sections 3.1
and 3.2) are present in Table 1. The entire datasets are available online (http://www.way2drug.com/

proteochem_dataset.php).
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Table 1. Characteristics of the training sets representing the protein–ligand interactions.

Protein Group Parameter Cutoff µmol Number of Target Proteins Number of Ligands

GPCR *

IC50
1 126 546
10 130 839

Kd
1 30 8
10 32 15

Ki
1 110 4754
10 112 6411

Protein kinases

IC50
1 200 3014
10 215 3883

Kd
1 233 111
10 307 120

Ki
1 72 277
10 77 339

Ion channel
(ligand-gated) Ki

1 16 15
10 16 20

Ion channel
(voltage-gated) IC50

1 29 75
10 35 163

Nuclear
receptors

IC50
1 26 121
10 28 340

Kd
1 13 15
10 13 19

Ki
1 22 55
10 23 89

* G protein-coupled receptors.

According to protein groups, interaction parameters (IC50, Kd, and Ki), and cutoff values (1 and
10 µmol), the collected data formed several datasets.

As described below, each protein–ligand pair in a training set got the interaction index equal to
1 (interaction) or 0 (no interaction). Thus, we composed up to six sets for each protein group (Table 1).

Commonly, three predictive tasks are considered in predicting protein–ligand interaction:

(a) A new ligand for a target with a known ligand spectrum based on the chemical structure comparisons;
(b) A new target for a ligand with a known target spectrum based on the protein sequence comparisons;
(c) A new protein–ligand pair if both objects were uncharacterized. It includes a comparison of

ligand structures as well as a comparison of protein sequences.

To simulate all situations and test our approach, we implemented three scenarios (Figure 1).
In all cases, the prediction accuracy was evaluated with ROC (receiver operating characteristic)

analysis based on the leave-one-out cross-validation procedure. This technique provides building
the dependence curve of true positive vs. false positive rates at different cutoffs of accuracy scores.
The area under curve (AUC) is commonly used as accuracy estimate [32].

In the first scenario, each ligand is alternately removed from a training set and handled as a
test one. The PASS-program predicted this compound’s affinity to all training targets, resulting in
probability estimates Pa and Pi (see Section 3.3).

After performing this procedure for each ligand, the probability estimates were used for ROC
analysis [30]. As a result, the AUC values for all training sets varied from 0.80 to 0.99 with 0.96,
on average (Table 2). Interestingly, the ligand estimates on six protein kinase datasets showed the
most AUC variability, comparing the other target groups. It could be explained by the close structural
similarity of ligand-binding pockets in proteins of this superfamily [33]. However, the different ligands
display the paradoxical selectivity to different kinases subclasses and proteins. Thus, such specificity
seems to be related with subtle features responsible for target specificity and sufficiently large number
of compound structures is required to recognize them. Indeed, the lowest numbers of ligands in the
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training sets, 111 (Kd, 1 µmol) and 120 (Kd, 10 µmol), corresponded to the lowest AUC values 0.81 and
0.80 (see Tables 1 and 2), respectively. The high target prediction accuracy allowed us to accept the
obtained probability estimates as belonging coefficients in the third scenario (see Section 3.4).Int. J. Mol. Sci. 2020, 21, 8152 4 of 13 
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Table 2. Predictive accuracy for ligands’ affinities to proteins (first scenario).

Protein Group Parameter Cutoff µmol AUC *

GPCR

IC50
1 0.986

10 0.981

Kd
1 0.979

10 0.981

Ki
1 0.987

10 0.984

Protein kinases

IC50
1 0.963

10 0.954

Kd
1 0.808

10 0.803

Ki
1 0.980

10 0.981

Ion channel
(ligand-gated) Ki

1 0.986
10 0.991

Ion channel
(voltage-gated) IC50

1 0.986
10 0.968

Nuclear receptors

IC50
1 0.984

10 0.981

Kd
1 0.969

10 0.972

Ki
1 0.993

10 0.996

* Area Under ROC Curve.
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In the second scenario, we applied our earlier developed method SPrOS [29], which predicts
new targets for ligands with known target spectra. In each step, the next protein was considered as
unknown to interact with any target.

The training sets’ proteins were partitioned into ligand-class specificity with the binary coefficient,
as described in Section 3.4. The prediction of protein affinity to all compounds was performed (Table 3).
We evaluated the relation of protein–ligand affinity and protein sequence ordering by using two frames
(length of compared sequence fragments, see Section 3.5) values of 7 and 30 residues. These frame
values were selected in our preliminary studies as representing the close and distant inter-residue
interactions [29]. The obtained estimates were used for further ROC analysis.

Table 3. Predictive accuracy (AUC) for target affinities to ligands (second scenario) and both
uncharacterized interactors (third scenario).

Protein Group Parameter Cutoff µmol
Second Scenario Third Scenario

Frame = 7 Frame = 30 Frame = 7 Frame = 30

GPCR

IC50
1 0.959 0.968 0.885 0.904
10 0.944 0.953 0.890 0.910

Kd
1 0.918 0.875 0.806 0.805
10 0.967 0.962 0.874 0.882

Ki
1 0.963 0.976 0.881 0.901
10 0.966 0.977 0.899 0.918

Protein kinases

IC50
1 0.896 0.924 0.824 0.857
10 0.866 0.902 0.769 0.838

Kd
1 0.686 0.790 0.642 0.655
10 0.710 0.797 0.647 0.650

Ki
1 0.930 0.956 0.869 0.893
10 0.907 0.937 0.866 0.856

Ion channel
(ligand-gated) Ki

1 0.979 0.979 0.948 0.957
10 0.970 0.973 0.958 0.963

Ion channel
(voltage-gated) IC50

1 0.985 0.985 0.913 0.932
10 0.886 0.898 0.787 0.839

Nuclear
receptors

IC50
1 0.966 0.973 0.817 0.852
10 0.984 0.988 0.924 0.943

Kd
1 0.995 0.995 0.973 0.961
10 0.995 0.995 0.982 0.972

Ki
1 0.994 0.988 0.986 0.976
10 0.993 0.987 0.992 0.989

Testing the GPCRs at all parameters (parameter type, cutoff, and frame) showed the high ligand
prediction accuracy with the average AUC value of 0.95 with small variation. Thus, our approach
revealed the stable sequence features required for the ligand specificity.

Predicting the ligand-specificity of protein kinases resulted in the less accurate estimates, displaying
the average AUC value of 0.84 with significant variation from 0.69 to 0.94. Using the frame of 30 residues
somewhat increased the predictive power compared with the seven-residue frame. It seems to relate to
the more distant residue interacting. The stricter cutoff of 1 µmol conditioned the significantly more
accurate prediction, which is consistent with results obtained for the kinases’ ligand prediction.

The three remaining protein groups presented a relatively small number of sequences and ligands.
However, predicting the ligands for these groups displayed high efficiency (Table 3). The average AUC
values for nuclear receptors, ligand-gated ion channels, and voltage-gated ion channels were 0.99, 0.98,
and 0.94, with small differences associated with dataset parameters.

In general, the results obtained in the second scenario are close to the results published in our
previous study, which used the same methods and provided prediction accuracy comparable or
exceeding those of other methods with the “Gold Standard” set [7].
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The third scenario differed from the second one by using fuzzy interaction coefficients besides
binary coefficients. The fuzzy coefficient presented the probabilities of interaction (Pa) and
non-interaction (Pi), as calculated in the first scenario. This technique (see Section 3.4) should
allow the prediction of unavailable data for both the protein and ligand. The ROC analysis of prediction
results uses the binary coefficients.

The obtained AUC values were expectedly lower than those calculated in the second scenario
(Table 3). However, the values calculated for GPCRs were high enough, reaching the maximal value of
0.92 (Ki, cutoff = 10 µmol, frame = 30). The kinase-ligand interaction was predicted with the more
variable accuracy from rather small 0.64 (Kd, cutoff = 1.0 µmol, frame = 7) to quite acceptable 0.89
(Ki, cutoff = 1 µmol, frame = 30). In two mentioned larger protein groups, the prediction estimates
tended to be higher at the 30-residue frame. The kinases’ group demonstrated a higher accuracy at the
1.0 µmol cutoff. This evidence looks interesting, but its significance is not quite clear now. The accuracy
estimates for nuclear receptors and ion channel groups obtained in the second and third scenarios
were very close and high at all used parameters.

Resuming the results, we could have presented the dataset on each protein–ligand group.
It allowed obtaining enough high accuracy in all three scenarios, including the case of both the new
interactors (Figure 2). All three curves are similar in their behavior, especially in the datasets of protein
kinase. This protein family demonstrated a lower accuracy in all scenarios. It corresponds to the weak
relation of phylogeny and ligand specificity found for this protein family. However, the two kinase sets
allowed predicting with quite the acceptable accuracy even in the third scenario. The similar shapes of
curves obtained in the first and second scenarios demonstrated the correspondence between protein
and ligand features responsible for their interaction. It spoke in favor of applying the third scenario
technique if the protein and target are new.Int. J. Mol. Sci. 2020, 21, 8152 7 of 13 
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Figure 2. The accuracy prediction obtained for datasets related to five protein–ligand groups. Each point
corresponds to the AUC value from Tables 2 and 3. The blue, orange, and gray curves are related to the
first, second, and third scenario, respectively. Each AUC value equals to maximum of ones calculated
at frames of 7 and 30.
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Our previous study showed the high efficiency of the proposed approach in predicting
protein–ligand interaction [29]. The binary interaction coefficients based on experimental data
were applied in that work, allowing prediction of new ligands for targets with known ligand spectra.
We investigated the various situations observed in proteochemometrics, including the cases of both
new target and ligand. In the latter task, the probability coefficients calculated from ligand structure
similarity defined the fuzzy classes of ligand specificity for target proteins. It required more careful
preparation of the training data. For comparing our and other methods’ predictive power, we used in
that study the well-known dataset “Gold Standard” as benchmark data [7]. To account for the detailed
characteristics of experimental source data, we collected the own datasets, defined by interaction index
type and affinity cutoff, and directly extracted from the ChEMBL database with a robust filtration
procedure. It allows us to test our method for various proteochemometrics tasks rigorously.

3. Material and Methods

3.1. Data Preparing

The training set should contain enough reliable data confirmed at the molecular level, requiring careful
processing of the information from available resources. The selected data should present the ligands’
chemical structures, target proteins’ sequences, and the affinity values for each protein–ligand pairs.

We used the local version of the ChEMBL 25 database, which contains detailed experimentally
obtained characteristics of interacting the small molecules and target proteins, including the ligands’
chemical structures, proteins’ peculiarities, and study condition [34].

To select reliable and suitable data, we formed the MySQL queries with the following limitations:

• Direct testing of the protein–ligand binding;
• The accurate definition of a protein (neither a homolog nor a protein family);
• Testing the isolated protein (it is not in a complex or cellular fraction, etc.);
• IC50, Ki, Kd as interaction parameters;
• Excluding the mutant proteins.

The ligands’ structures were normalized with the RDkit package (https://www.rdkit.org) at default
parameters. According to the limitations of the PASS program [30], the compounds with charged
atoms were excluded as well as molecules whose mass was greater than 1250 Da. The compounds
with the same MNA descriptor set and molecular weight were considered as the same compound [31].

By extracting the most recent data from the ChEMBL database with strong filters, we obtained
reliable and representative data sets for protein groups known as drug targets: protein kinases,
nuclear receptors, G protein-coupled receptors (GPCR), voltage- and ligand-gated ion channels.

3.2. Activity Definition

The data retrieved for the same interacting pair often presented the results obtained by different
research groups at different experimental conditions. Therefore, we developed an algorithm that
provided the integration of such data. According to protein–ligand interaction parameters, we divided
the dataset composed for each protein group into three subsets: IC50, Ki иKd, if enough data were
available. These parameters adopted precise (such as 0.1 µmol) or interval values (such as >0.1,
<50.0 µmol, etc.). In all three cases, we established two cutoffs, 1.0 and 10.0 µmol, and considered
the protein and ligand as interacting if the parameter did not exceed the cutoff. As a result,
each protein–ligand pair got the binary index designating the interaction (1) or non-interaction
(0). As the calculation of this interaction index affected the dataset size, three mentioned subsets were
divided into two parts, resulting in up to six subsets for each protein group if data were available.

We calculated the interaction index values according to the following rules:

https://www.rdkit.org
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• In the presence of both fixed and interval values, only fixed parameters were accounted for if even
interval values contradicted fixed ones. The interaction index adopted a value of 1 if the data
median did not exceed the cutoff and 0 otherwise;

• In the absence of fixed values, the protein–ligand pair was not considered if interval values put in
non-intersected areas (e.g., <100 and >5000) or the parameter values were at the interval limited
at two ends (e.g., >100 and <5000);

• In the case of a few intervals limited below (e.g., >100, >1000, >5000), the index adopted 0 if
the maximal edge value was higher than a given cutoff; otherwise, the protein–ligand pair
was excluded;

• In the case of a few intervals limited above (e.g., <100, <1000, <5000), the index adopted a value
of 1 if the minimal extreme value was less than the cutoff; otherwise, the protein–ligand pair
was excluded.

The datasets are available online at http://www.way2drug.com/proteochem_dataset.php.
Each target protein in the training set should have at least three established ligands, providing an

adequate PASS program prediction. Each ligand should have at least three established targets,
providing the correct ROC analysis.

3.3. Prediction of the Target Proteins from Ligand Structural Features

The PASS method was developed for predicting the biological activities of drug-like organic
compounds [30]. This method uses the original descriptors of the multilevel neighborhoods of atoms
(MNAs), which reflect the local features of ligand–target interaction. It is based on a naive Bayesian
classifier [30]. For each target–ligand pair, the PASS program outputs Pa and Pi scores, which are
probabilities of interaction and non-interaction between target protein and ligand, respectively.

3.4. Retrieving the Fuzzy Coefficients for Target–Ligand Pairs

In this study, we simulated the situation with uncharacterized ligands and sequences using the
belonging fuzzy coefficients calculated by the PASS program. Comparing the results obtained with
fuzzy and binary coefficients showed the usefulness of the suggested approach.

Using the PASS program, we obtain the fuzzy classes, including all training set ligands, introducing
Pa and Pi as coefficients belonging to the class of ligands of a particular target protein. It allows
predicting affinity for the protein–ligand pairs with non-defined interaction spectra for both the protein
and compound. Most training data have no assignment because of the absence of experimental results,
and they are usually considered conditionally negative examples. However, some of them can present
positive but non-detected examples. Using the weight coefficient based on structural similarity enables
accounting for hidden positive examples.

3.5. Prediction of Protein–Ligand Interactions

Our approach uses the positional scores calculated by segment comparison between the test
sequence and all training sequences [29]. The segment-to-segment comparison of the test and training
sequence (K) results in the segment scores R calculated as follows:

Rih =

j+F−1∑
j=i

sim
(
q j,k j+h

)
(1)

where F is the segment length, i is the position of a sequence Q, h is a shift between sequences,
sim (qn, km) is a similarity of matched residues from Q and K sequences accordingly to a chosen metrics
(residue identity in this study).

http://www.way2drug.com/proteochem_dataset.php
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Finally, the score for each position p equals the maximum of R values obtained for all segments
containing p at all shifts.

Spk = max
h,i

Rih, p− F < i ≤ p (2)

The positional scores obtained with all training sequences are integrated to estimate the possible
protein–ligand interaction.

Commonly, proteochemometrics studies aim at the solution of two tasks. One of them is an
estimation of belonging the protein to the class of ligand targets. Another one is an estimation
of belonging the compound to the class of protein ligands. The incompleteness of experimental
data significantly decreases the number of bound protein–ligand pairs included in the training set.
We suggest overcoming this limitation by introducing weight coefficients based on compounds’
structural peculiarities (see Section 3.3). Each kth training sequence gets two coefficients ak and bk,
which, respectively, weight the protein ability and inability to interact with a given compound C.
In other words, these values define a priori belonging a protein to the classes of ligand interactors
and non-interactors.

Estimating the potential protein–ligand affinity uses the naïve Bayes according to the technique
described earlier for chemometrics methods [30].

During the prediction procedure, the test sequence Q should be compared with N training
sequences. The integrated score for each position of Q is calculated as follows:

tp =

N∑
k=1

Spk × [ak(C) − bk(C)]

N∑
k=1

S pk × [ak(C) + bk(C)]
(3)

where Spk is a score for the position p obtained by comparison with the kth sequence.
The tp values are average on all m positions of the test sequence

t = sin

 1
m

m∑
p=1

arcsin(tp)

 (4)

The a priori value t0 presents weights of ability and inability to interact with a ligand without
accounting for sequences similarity:

t0 =

N∑
k=1

[ak(C) − bk(C)]

N∑
k=1

[ak(C) + bk(C)]
(5)

Finally, the possible interaction of a test protein with ligand C is estimated as follows:

B(C) =
t− t0

1− tt0
(6)

The estimate B(C) varies from −1 (no interaction) to +1 (interaction). The null value shows the
undetermined result.

Our previous study used binary coefficients of protein–ligand interaction and non-interaction
to predict new target proteins for ligands with known target spectra [29]. This study applies the
PASS program to obtain the fuzzy coefficients based on ligands’ structure similarity. Thus, the ligand
with experimentally non-established targets can be accounted for in the prognosis of protein–ligand
interactions. In other words, we can estimate the possible interaction of a new target protein and
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new ligand. Briefly, to predict a pair of the new target and new ligand, the PASS program should
evaluate test ligand’s potential interaction with training proteins based on their ligand structures.
Probabilities Pa and Pi, reflecting the kth protein’s affinity to a test ligand, substitute values ak and bk
into Equations (3) and (5).

4. Conclusions

Our study’s principal aim was to develop the method for predicting the protein–ligand interaction
based on the protein sequences and ligand structures. Defining targets with enough narrow sets of
experimentally detected or predicted ligands as well as ligands with narrow set of targets is promised
approach to obtain selective drug candidates.

To correctly test our approach, we collected the datasets with various parameters of interaction.
The applied procedure overcame difficulties caused by the ambiguity of initial information.
The collected data are available online (http://www.way2drug.com/proteochem_dataset.php).

We implemented fuzzy coefficients weighting the interactions of target proteins and small molecule
compounds to solve this task. The PASS software provided the reliable probabilistic estimates of
ligand affinity to targets. Applying these values as weight coefficients, we modified the earlier
prediction method using the binary prediction coefficients. Comparing the results obtained with the
previous and new program versions showed the expected accuracy decrease with fuzzy coefficients.
However, the estimates calculated in the second case were quite acceptable with the most dataset.
Generally, we defined the more suitable conditions of each protein group’s predictive procedure by
testing our method with various parameters and the best results for GPCR, protein kinases, ligand-gated
ion channels, voltage-gated ion channels and nuclear receptors were 0.92, 0.89, 0.96, 0.93, and 0.99,
respectively (Table 3). Indeed, the more precise definition of ligand specificity with binary coefficients
should condition the more prediction accuracy. Testing with fuzzy weights showed the suggested
approach’s applicability to predict the pairs of both new interactors.

Protein kinases displayed the lowest estimates. These results seemed to relate with smaller
structural differences in these target proteins and ligands, causing the less effective recognition of
interaction specificity. High accuracy was detected with binary and fuzzy coefficients for a few datasets
(Figure 2).

The correspondence between the protein and ligand features shown in our study spoke in favor
of cooperative using protein and ligand description, as simulated in the third scenario.

Our approach is suitable for the broad applicability domain in proteochemometrics with different
degree of correlation between the phylogenic relations and ligand specificity. In case of protein kinases
demonstrating the weak dependence of that kind, our method provided prediction of ligand specificity
with acceptable accuracy. It suggests that our method is suitable for not yet considered protein targets
and their ligands, given the enough representative data sets.
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