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Abstract: Prion protein amyloid aggregates are associated with infectious neurodegenerative diseases,
known as transmissible spongiform encephalopathies. Self-replication of amyloid structures by
refolding of native protein molecules is the probable mechanism of disease transmission. Amyloid
fibril formation and self-replication can be affected by many different factors, including other
amyloid proteins and peptides. Mouse prion protein fragments 107-143 (PrP(107-143)) and 89-230
(PrP(89-230)) can form amyloid fibrils. β-sheet core in PrP(89-230) amyloid fibrils is limited to
residues ∼160–220 with unstructured N-terminus. We employed chemical kinetics tools, atomic force
microscopy and Fourier-transform infrared spectroscopy, to investigate the effects of mouse prion
protein fragment 107-143 fibrils on the aggregation of PrP(89-230). The data suggest that amyloid
aggregates of a short prion-derived peptide are not able to seed PrP(89-230) aggregation; however,
they accelerate the self-replication of PrP(89-230) amyloid fibrils. We conclude that PrP(107-143) fibrils
could facilitate the self-replication of PrP(89-230) amyloid fibrils in several possible ways, and that
this process deserves more attention as it may play an important role in amyloid propagation.
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1. Introduction

Several neurodegenerative human health disorders, such as Alzheimer’s disease (AD) [1],
Parkinson’s disease (PD) [2], as well as prion diseases [3] are all closely linked to a process,
where particular proteins fail to maintain their native conformational state and form fibrillar amyloid
aggregates possessing a cross-β structure. It is believed that the latter structure arises from arrays
of β-sheets running parallel to the long axis of the fibril, while β-strands in an individual sheet are
arranged perpendicularly to the fibril’s axis [4,5].

Understanding the process of such aggregate formation is of utmost importance,
since amyloid-related disorders are becoming some of the most common medical conditions in
the aging society [6], with more than 50 million people worldwide afflicted by AD and PD [1,2,7].
Currently, there are no cures or disease-modifying drugs available for most of these disorders,
and even compounds that show promising results in vitro experience very high failure rates during
clinical trials [4,8–10]. Analysis of such failures revealed that the main factors preventing successful
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development of effective anti-amyloid drugs are the relatively poor understanding of amyloid
aggregation mechanisms; the lack of knowledge of the specific species and aggregation step(s) that
may be affected by the molecule in question; the lack of methods to monitor the aggregation reaction
in a reliable manner [4,11].

Prion diseases stand out among other amyloid-related disorders due to the possible transmission
between individuals and, in some cases, even between species [11]. The ability of protein amyloid
aggregates to self-replicate by recruiting and refolding native protein molecules is one of the driving
forces for spreading the disease [11]. The recent decade came up with many studies shedding
light on the molecular-level events underlying amyloid formation. Currently, there are two defined
events related with amyloid fibril self-replication: fibril elongation and fibril surface-catalyzed
nucleation (often referred to as secondary nucleation) [4,12–15]. Fibril elongation is the main event that
contributes to the growth of aggregate mass via the addition of individual monomers to nuclei/fibril
ends, whereas secondary nucleation facilitates the proliferation of amyloid aggregates through the
fibril-surface-induced formation of new growth competent nuclei. Elongating fibrils usually replicate
the structure of the initial seed (with only a couple of exceptions of possible conformational switching
reported [16,17]); however, there is increasing evidence suggesting that the structure of amyloid fibrils
replicated via secondary nucleation route is dependent on the environment rather than on the template
of seeds [18–21].

The structure of recombinant prion protein (rPrP) amyloid fibrils was extensively studied by
different techniques all giving similar conclusions—parallel in-register β-sheet in the C-terminal region
(starting from residues 160–170, up to residues 220–225) and a disordered N-terminus [22–25]. However,
such amyloid fibrils were not infective in vivo. Studies of H/D exchange on brain-derived pathogenic
prion isoform (PrPSc) showed similar highly packed structure as in case of rPrP amyloid-like fibrils but
in a much longer region (entire 90–230 region) [26]. This suggests that the structure of rPrP amyloid-like
fibrils may be similar to the one of brain-derived PrPSc, however, with a substantially shorter β-sheet
core region. Recently it was demonstrated that amyloid-like fibrils generated from N-terminal PrP
fragment 23-144 can be infectious in vivo [27]. These fibrils contain a parallel in-register β-sheet core in
the region between ∼110–140 [28], suggesting a particular importance of this region for prion infectivity.
Another study showed that synthetic mouse prion protein fragment consisting of 107–143 residues
(PrP(107-143)) can form amyloid fibrils, which were found to catalyze fibrillization of full-length mouse
prion protein (PrP(23-230)) [29]. We decided to study the mechanism of the PrP(107-143)-fibril-induced
aggregation of mouse prion protein C-terminal fragment 89-230 (PrP(89-230)) expecting the reaction to
proceed via one of the three possible ways. First, PrP(107-143) fibrils may elongate by self-replicating
their structure. Second, the PrP(107-143) fibrils could start to elongate, however, upon recruiting
longer proteins the β-sheet core would extend towards C-terminus within residues ∼107–225. Finally,
the PrP(107-143) fibrils may be incapable of elongating; however, they could accelerate PrP(89-230)
fibril formation without self-replication of their structure via heterogeneous fibril-surface-induced
nucleation. Surprisingly, it seems that none of the above happens and PrP(107-143) fibrils are unable to
initiate the de novo aggregation reaction of PrP(89-230); however, in combination with PrP(89-230)
fibrils, a synergistic effect, resulting in enhanced seed-induced PrP(89-230) aggregation reaction,
can be observed.

2. Results

First, we generated PrP(89-230) fibrils (Appendix A; Figure A1a) and PrP(107-143)-fibril-induced
PrP(89-230) fibrils (Appendix A; Figure A1b) by continuous agitation of PrP(89-230) monomer without
and with PrP(107-143) fibrils, respectively, at 37 ◦C in 1 × PBS (pH 7.4) solution containing 3 M
Urea and 1 M GuHCl; as described previously [29], and determined their secondary structure
profiles using FTIR spectroscopy. The FTIR spectra of spontaneously formed PrP(89-230) fibrils
and the PrP(107-143)-fibril-induced PrP(89-230) fibrils were almost identical (Appendix A; Figure A1c).
Moreover, PK-digestion assay revealed that there are no evident variations in the size of the PK-resistant
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core between PrP(89-230) fibrils and PrP(107-143)-fibril-induced PrP(89-230) fibrils (Appendix A;
Figure A1d). The results suggest that PrP(107-143) fibrils can not self-propagate their structure. In the
aforementioned study [29], PrP(107-143)-fibril-induced aggregation reaction was performed under
vigorous agitation conditions. It is known that mechanical agitation induces the fragmentation of
existent fibrils and facilitates the nucleation step of amyloid fibril formation as well as the detachment
of species from the air–water or solid–water interface, where proteins have a strong tendency to
accumulate and where, in many cases, the nucleation step is likely to occur [10,15,30–33]. Therefore,
agitation could favor nucleation, and hence the spontaneous formation of PrP(89-230) fibrils in
our sample. In order to minimize possible events of nucleation and to favor fibril elongation,
the PrP(107-143)-fibril-induced aggregation reaction was performed under quiescent conditions. Since,
the aggregation reaction did not occur within reasonable experimental time (Appendix A Figure A2),
the experimental conditions were modified to obtain rapid fibril elongation kinetics (by increasing
temperature to 60 ◦C and decreasing denaturant concentration to 0.5 M of GuHCl) [34].

2.1. Aggregation Kinetics

Under quiescent conditions, in the absence of any preformed aggregates or in the presence of
10% (hereafter, percentage of aggregates is relative to total protein weight in solution) of PrP(107-143)
fibrils, aggregation of monomeric PrP(89-230) did not occur within the experimental time (Figure 1a,b).
PrP(89-230) aggregation reaction, induced by the addition of PrP(89-230) fibrils, shows a typical
fibril-concentration-dependent change in the lag phase (Figure 1a,c), yielding sigmoidal shaped curves.
If we compare the lag time (tlag) values of seed-induced aggregation reaction performed in the absence
and presence of 10% of PrP(107-143) fibrils, it appears that the lag phase in the presence of PrP(107-143)
aggregates is shorter as if there was a higher concentration of PrP(89-230) seed present (Figure 1c).
This divergence between tlag values becomes more evident as the concentration of PrP(89-230) seeds
increases (Figure 1d). PrP(107-143) fibrils shorten the lag phase of the PrP(89-230) seed-induced
aggregation reaction in a concentration-dependent manner (Figure 1e,f).

Additionally, we performed experiments where we introduced PrP(107-143) fibrils at different
time-points of PrP(89-230) self-replication reaction (Appendix A; Figure A3). The introduction of
PrP(107-143) fibrils at any time-point resulted in the shortening of tlag; however, the strongest effect
on tlag was most prominent when the PrP(107-143) fibrils were introduced at the very beginning
of the reaction (Figure A3). Similarly, the introduction of the PrP(89-230) seed at any time-point of
the aggregation reaction of monomeric PrP(89-230) performed in the presence of PrP(107-143) fibrils
resulted in the shortening of tlag of PrP(89-230) aggregation reaction, with the strongest effect evident
upon introduction of PrP(89-230) fibrils at the early stages of the aggregation reaction (Figure A4).
Similarly, as described previously, PrP(107-143) fibrils alone had no evident effect on the aggregation
reaction of monomeric PrP(89-230) within the experimental time.

2.2. Morphology

Sample analysis via atomic force microscopy (AFM) revealed that, while the PrP(107-143) does
spontaneously form fibrils itself (Figure 2a), it seems that the PrP(107-143) fibrils do not induce
the aggregation of monomeric PrP(89-230), as the fibrils observed after 1000 min of incubation
(Figure 2e) are of similar length (∼200–600 nm) as the seed (Figure 2c). In the case when the PrP(89-230)
fibrils (Figure 2d) were used as a seed, both in the presence or absence of PrP(107-143) aggregates,
the resulting fibrils (Figure 2f,g) appear to be of similar length (several hundred of nm to few µm) to
the spontaneously formed PrP(89-230) fibrils (Figure 2b). Please, also see Appendix A; Figure A5.
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Figure 1. Representative curves of PrP-seed-induced aggregation reaction kinetics performed in the
absence (a) or presence (b) of PrP(107-143) fibrils. Logarithmic plot of tlag values of seed-induced
aggregation reaction performed in the absence and presence of 10% of PrP(107-143) fibrils (c). Relative
tlag values (ratio between tlag in the absence and presence of 10% peptide fibrils) (d). Dependence of
PrP(89-230)-seed-induced aggregation reaction kinetics on the initial concentration of PrP(107-143)
fibrils (e,f). Error bars are standard deviations (n = 9).

Figure 2. AFM images of PrP(107-143) and PrP(89-230) aggregates. Images of the spontaneously
formed PrP(107-143) (a) and PrP(89-230) (b) aggregates. Images of sonicated PrP(107-143) (c) and
PrP(89-230) (d) aggregates. Images of aggregates formed during PrP(107-143)-fibril-induced (e) or
PrP(89-230)-seed-induced (f) aggregation reaction. Images of aggregates formed in the presence of
both PrP(107-143)-fibrils and PrP(89-230)-seed (g).

2.3. Secondary Structure

The Fourier-transform infrared (FTIR) spectroscopy spectra of all examined PrP(89-230) fibril
samples possess similar structural profiles in the amide I/I’ region. PrP(89-230) fibril spectra exhibit
maxima at ∼1627 cm−1 (with the main minima of the second derivative at ∼1622 cm−1 and a weaker
one at ∼1628 cm−1) and a shoulder which is reflected by the minimum of the second derivative at
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∼1662 cm−1 (Figure 3). The spectral profile of spontaneously formed PrP(107-143) fibrils is slightly
different from the rest. The FTIR spectrum of latter fibrils exhibits a maximum at ∼1626 cm−1 (with
the single minimum of the second derivative at ∼1626 cm−1). The results suggest that PrP(107-143)
fibrils are unable to self-propagate by imprinting their structural template on PrP(89-230) monomers.

Figure 3. Absorbance and second derivative (inset) FTIR spectra of PrP(89-230) and PrP(107-143) fibrils.
1.—Spontaneously formed PrP(89-230) fibrils. 2.—Fibrils formed in the presence of 1% of PrP(89-230)
fibrils. 3.—Fibrils formed in the presence of 10% of PrP(107-143) fibrils and 1% of PrP(89-230) fibrils.
4.—Spontaneously formed PrP(107-143) fibrils.

3. Discussion

Surprisingly, the addition of high amounts (10%) of PrP(107-143) fibrils into PrP(89-230) monomer
solution had no effect on aggregation kinetics within the experimental time, whereas addition of even
very low amounts (0.1%) of PrP(89-230) fibrils resulted in a substantial acceleration of aggregation
reaction (Figure 1a,b). This suggests that heterogeneous seeding is extremely inefficient in this case.
Interestingly, when both types of aggregates were co-added into PrP(89-230) monomer solution,
the aggregation promoting effect was stronger than in case of the PrP(89-230)-seed alone. This raises
the question: What is the origin of such an effect? From the tlag plot, it is evident that in the presence
of 10% of PrP(107-143) fibrils tlag values of PrP(89-230) seed-induced aggregation reaction are lower as
if the initial concentration of preformed PrP(89-230) aggregates was higher (Figure 1c and Appendix A
Figure A6). For instance, in the presence of 10% of PrP(107-143) fibrils and 2% of PrP(89-230) seed,
the tlag value is ∼2.3 times lower, when compared to control, as if the initial concentration of PrP(89-230)
seed was ∼3.9% (dashed lines in Appendix A Figure A6). This suggests that 10% of PrP(107-143)
fibrils should act as ∼1.9% of PrP(89-230) seed, which would point towards a cumulative aggregation
promoting effect. If this was true, the aggregation promoting effect of PrP(107-143) fibrils alone
should be evident; however, it is not, suggesting that the presence of PrP(89-230) seed is essential for
PrP(107-143) fibrils to have an effect on the PrP(89-230) aggregation reaction. This implies that the
aggregation promoting effect is synergistic in origin.

As suggested by AFM images (Figure 2e), it seems that the PrP(107-143) fibrils are incapable
of elongatingthrough recruitment of PrP(89-230) monomers (or the elongation rate is extremely
slow). Moreover, FTIR results suggest that the presence of PrP(107-143) fibrils has no effect on the
structural profiles of the resulting PrP(89-230) fibrils. Thus, suggesting that the presence of PrP(107-143)
fibrils affect only the lag phase of the PrP(89-230)-seed-induced aggregation reaction. The presence
of monomeric PrP(107-143) has no effect on the aggregation kinetics of PrP(89-230)-seed-induced
aggregation reaction (Appendix A; Figure A7), meaning that the synergistic effect most likely results
from the interplay between fibrils formed by PrP(107-143) and PrP(89-230).

Primary nuclei capable of seeding aggregation reaction of monomeric proteins form relatively
early during the lag phase of aggregation reaction [35], and the agitation facilitates this process.
Therefore, it is likely that the aggregation-promoting effect of PrP(107-143) fibrils observed under
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agitated conditions [29] results in fact due to the interplay between PrP(107-143)-fibrils and the
agitation-induced spontaneously formed aggregation prone PrP species.

The surface of preformed aggregates can catalyze formation of new growth-competent
nuclei in three main ways. First, the protein monomers can condense on the surface of existing
fibrils, which results in the increased local concentration of the protein. If the diffusion of the
surface-bound protein is restricted to two, rather than three dimensions, the likelihood of possible
encounters increases [31,33,36,37]. Indeed, the PrP(107-143) fibrils bind a small fraction of PrP(89-230)
monomers (Appendix A; Figure A8). Therefore, it is possible that PrP(89-230) monomers can
condense on the surface of the PrP(107-143) fibrils. However, PrP(107-143)-fibrils alone do not
efficiently facilitate aggregation of monomeric PrP(89-230), suggesting that the local concentration of
PrP(107-143) fibril-surface-bound PrP(89-230) monomers is very small and hence the low probability
of new growth-competent nuclei formation. This could result due to a weak interaction between
PrP(89-230) monomers PrP(107-143) fibrils [37]. If the monomer-fibril interaction strength is weak,
protein monomers cover only a small fraction of the fibril surface, and the monomer adsorption
and oligomer/nuclei formation on the fibril surface become the rate-limiting steps of the fibril
self-replication reaction [37]. Almost identical secondary structure profiles of PrP(89-230) fibrils and
the fibrils formed in the presence of PrP(107-143) fibrils (Figure 3 and Appendix A Figure A1c) suggest
that the rate of PrP(107-143) fibril self-replication reaction could be slow enough for spontaneous
PrP(89-230) aggregation reaction to overcome it.

Second, existing aggregates can reduce the interfacial energy and lead to the formation of new
nuclei. If protein monomers condense on the surface of fibrils, their contact with the solution is lower
than when they are present in the bulk of the solution [33]. This way, if the interfacial energy is lower
at the PrP(89-230) monomers-PrP(107-143) fibril contact area, then the free energy barrier of nuclei
formation would be reduced [31,33].

Third, the interaction of the protein with the fibril surface may alter the nucleation process.
For instance, the fibril-surface-bound monomented favorablrs can be oriey for the nucleation event
to occur [33]. Moreover, protein adsorption on the surface of the fibril may induce structural
rearrangements that would result in the appearance of accessible protein conformations that would
be too high in energy in bulk solutions [33]. This could also lower the effective energy barrier of the
nucleation reaction. In our case, we could assume that PrP(107-143) fibril-surface-bound monomers
may acquire a conformation(s), which is not suitable for the formation of aggregation-prone nuclei
on the PrP(107-143) fibril surface, or which can not be recruited by the PrP(107-143) fibril ends.
Such monomers, however, could detach from the fibril surface into the bulk of the solution, where they
could be subsequently recruited by the PrP(89-230) fibrils. This would facilitate the PrP(89-230) fibril
self-replication reaction due to a lower effective energy barrier of nucleation/elongation. Moreover,
it is likely that PrP(89-230) affinity for the fibrils formed by PrP(89-230) is substantially higher that that
for fibrils formed by PrP(107-143), which means that if the PrP(89-230) fibrils would come into a close
proximity with the PrP(107-143) fibrils, they could recruit PrP(89-230) monomers adsorbed onto the
PrP(107-143) fibril surface. This would again facilitate self-replication reaction due to a lower effective
energy barrier of the nucleation/elongation and due to increased local concentration of PrP(89-230)
monomers. Additional experiments, during which we introduced PrP(107-143) fibrils at different
time-points of PrP(89-230) self-replication reaction (Figure A3), revealed that the PrP(107-143) fibrils
affect mainly the nucleation process. When the PrP(107-143) fibrils were added at the beginning of
the self-replication reaction, the tlag was ∼80 min shorter when compared to the tlag of the sample
where the addition of PrP(107-143) fibrils was delayed by 90 min. However, the tlag difference
between samples where PrP(107-143) fibrils were introduced after 90 min and 435 min delay is small.
This suggests that the nucleation enhancing effect of PrP(107-143) fibrils is much stronger at later
stages (i.e., at 435 min) of the aggregation reaction and this could be explained by the fact that the
concentration of nuclei/fibril ends is much higher at this stage of the reaction. These results are in
agreement with the data presented in Figure 1, where the synergistic effect of different PrP fibrils
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was most evident at the highest concentrations of PrP(89-230) fibrils. The opposite experiments,
during which we introduced PrP(89-230) fibrils at different time-points of PrP(89-230) aggregation
reaction (Figure A4) in the presence of PrP(107-143) fibrils were also performed. The experimentally
determined tlag values for the samples where PrP(89-230) fibrils were introduced at 180 and 360 min
are equal (within the error margin) to the sum of the tlag value determined for the sample where
fibrils were introduced at the beginning of the reaction and the times of PrP(89-230) fibril introduction.
This suggests that the presence of both PrP(107-143) and PrP(89-230) fibrils at the same time is important
for the maximum acceleration of monomer nucleation.

In general, we can conclude that aggregates formed by PrP(107-147) are not able to seed
aggregation reactions of monomeric PrP(89-230); however, they can facilitate the self-replication
reaction of PrP(89-230) amyloid fibrils via several possible ways. A synergistic seeding effect
of two different amyloid fibrils deserves more attention, as it may play an important role in
amyloid propagation.

4. Materials and Methods

4.1. Measurements of Aggregation Kinetics

Mouse recombinant prion protein C-terminal fragment 89-230 (PrP(89-230)) was expressed in
E. coli and purified according to the previously described protocol [34]. After purification, the protein
was dialyzed against MilliQ water, and lyophilized. In addition to the PrP(89-230) sequence, the protein
contains a 4-residue N-terminal extension (GSDP).

Synthetic mouse prion protein fragment 107-143 (PrP(107-143)) was produced as described
previously [29].

To prepare PrP(89-230) fibrils, 5 mg of lyophilized PrP(89-230) was dissolved in 1 mL of 50 mM
phosphate buffer (pH 6) containing 0.5 M GuHCl and filtered through 0.45 µm pore size syringe
filter. The concentration of monomeric PrP(89-230) (M.W. = 16,555 Da, ε280 = 27,515 M−1 cm−1) was
determined by measuring UV-absorption at 280 nm using NanoDrop 2000 (Thermo Fisher Scientific,
Wolsom, MA, USA). Subsequently, the PrP(89-230) solution was diluted to a final concentration of
0.5 mg/mL using 50 mM phosphate buffer (pH 6) containing 0.5 M GuHCl and incubated for 1 day at
60 ◦C with 600 RPM shaking in a thermomixer MHR 23 (Ditabis, Pforzheim, Germany). For seeding
experiments, PrP(89-230) fibrils were sonicated for 10 min on ice using Sonopuls 3100 (Bandelin, Berlin,
Germany) ultrasonic homogenizer equipped with MS72 tip (using 20% power, cycles of 30 s/30 s
sonication/rest, total energy applied to the sample per cycle ∼0.36 kJ). Right after the treatment,
PrP(89-230) fibrils were mixed with 0.5 mg/mL PrP(89-230) solution in 0.5 M GuHCl in 50 mM
phosphate buffer, pH 6, containing 50 µM ThT.

To prepare PrP(107-143) fibrils, 1 mg of synthetic PrP(107-143) was dissolved in 1 mL of MilliQ
water and filtered through 0.45 µm pore size syringe filter. The concentration of the PrP(107-143)
(M.W. = 3699 Da, ε280 = 1490 M−1 cm−1) was determined by measuring UV-absorption at 280 nm
using NanoDrop 2000 (Thermo Fisher Scientific, Wolsom, MA, USA). Subsequently, the peptide
solution was diluted to a final concentration of 0.5 mg/mL using MilliQ water. Then 0.5 mg/mL
PrP(107-143) solution was mixed with 40 mM sodium acetate, pH 3.7, supplemented with 280 mM
NaCl in a 1:1 ratio, and incubated for 2 days at 25 ◦C under quiescent conditions. Then, fibrils were
centrifuged at 10,000× g for 30 min and re-suspended in 50 mM phosphate buffer (pH 6) containing
0.5 M GuHCl. The concentration of monomer remaining in the supernatant was determined by
measuring UV absorption. For seeding experiments, fibrils were sonicated for 30 s on ice using
Sonopuls 3100 (Bandelin, Berlin, Germany) ultrasonic homogenizer equipped with MS72 tip (using
20% of the power, total energy applied to the sample ∼0.36 kJ). Right after the treatment, fibrils
were mixed with 0.5 mg/mL PrP(89-230) solution in 0.5 M GuHCl in 50 mM phosphate buffer, pH 6,
containing 50 µM ThT.
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For co-seeded aggregation experiments, sonicated PrP(89-230) and PrP(107-143) fibrils were
co-added into 0.5 mg/mL PrP(89-230) solution in 0.5 M GuHCl in 50 mM phosphate buffer, pH 6,
containing 50 µM ThT.

Aggregation kinetics at 60 ◦C temperature were monitored by ThT fluorescence assay (excitation
at 470 nm, emission at 510 nm) using Rotor-Gene Q (Qiagen, Hilden, Germany) real-time analyzer.

The ThT fluorescence intensity was normalized by dividing each data point by the maximum
intensity of the curve. In the case of data where no change in ThT fluorescence intensity was evident,
each data point was divided by the maximum intensity of the curve obtained in the presence of 5%
of PrP seed. The aggregation lag time (tlag) values were calculated by applying a linear fit to the
data points ranging from 40% to 60% of normalized intensity values and finding x value at y = 0.
We employed AmyloFit software [13] to analyze the kinetic data of the PrP(89-230) self-replication
reaction in the absence and the presence of PrP(107-143) fibrils, but none of the available models gave
an acceptable fit. The best fit was obtained using the Saturating Elongation and Secondary Nucleation
model (Appendix A; Figure A9).

4.2. Atomic Force Microscopy (AFM)

AFM measurements were performed as described previously [38]. During the AFM imaging,
to avoid large imaging force and keep consistency within independent samples, the constant regime of
phase change not exceeding ∆20◦ was maintained [39]. AFM images were flattened using Gwyddion
software (Czech metrology institute, Jihlava, Czechia) as described previously [39].

4.3. Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR measurements were performed as described previously [10].
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Appendix A

Figure A1. AFM images (a,b), FTIR spectra (c) and PK digestion SDS-PAGE (d) of PrP fibrils. (a) AFM
image of PrP(89-230) fibrils. (b) AFM image of PrP(89-230) fibrils formed in the presence of 5% of
PrP(107-143) aggregates. (c) FTIR spectra of PrP(89-230) fibrils formed in the absence or presence of
PrP(107-143) fibrils, and PrP(107-143) fibrils alone. (d) MM—molecular weight marker; 1—PrP(89-230)
fibrils; 2—PrP(89-230) fibrils formed in the presence of 5% of PrP(107-143) aggregates; time denotes
PK digestion time. For PK digestion experiments, fibril samples (0.5 mg/mL) were centrifuged at
10,000× g for 30 min. Subsequently, fibrils were resuspended in 50 mM Tris buffer solution (pH 8) and
centrifuged again. Then fibrils were resuspended in 200 µL of 50 mM Tris buffer solution (pH 8) and
sonicated for 30 s using Bandelin Sonopuls ultrasonic homogenizer equipped with a MS 72 tip (using
20% of the power, total energy applied to the sample ∼0.36 kJ). After sonication, the fibril solution
was supplemented with 2.5 µL of 2 mg/mL Proteinase K and incubated for 0 min, 5 min and 30 min
at 37 ◦C with 600 RPM agitation in a Ditabis thermomixer MHR 23. Then, 17 µL of each sample was
collected, supplemented with 3 µL of 10 mM PMSF, 96% EtOH and 20 µL of 2 × SDS-Page sample
buffer containing 6 M Urea. Samples were heated for 15 min at 98 ◦C and subsequently analyzed via
Tricine–SDS-PAGE [40].
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Figure A2. Representative curves of PrP(107-143)-fibril-induced aggregation reaction kinetics
monitored at 37 ◦C under quiescent conditions. For aggregation experiments, solutions of 0.5 mg/mL
of monomeric PrP(89-230) protein in 1 M GuHCl, 3 M Urea, 1 × PBS (pH 7.4), containing 50 µM ThT
were supplemented with none, 0.025, 0.050, or 0.075 mg/mL of PrP(107-143) fibrils and incubated under
quiescent conditions at 37 ◦C temperature. Aggregation kinetics were monitored by ThT fluorescence
assay (excitation at 470 nm, emission at 510 nm) using Qiagen Rotor-Gene Q real-time analyzer.

Figure A3. Average kinetic curves (a) and tlag values (b) of PrP(89-230) self-replication reaction
performed with introduction of PrP(107-143) seed at different time-points of the reaction. Then,
10 µL of 0.5 mg/mL PrP(107-143) fibrils were added to 100 µL of PrP(89-230) solution (0.5 mg/mL of
monomeric PrP(89-230) and 0.001 mg/mL PrP(89-230) fibrils) at a different time-points. The reaction
kinetics were monitored by measuring ThT fluorescence intensity (ex. 440 nm; em. 480 nm) at 60 ◦C
through a bottom of non-biding 96-well plate (Corning No. 3881, New York, United States) using
ClarioStar Plus (BMG Labtech, Ortenberg, Germany) microplate reader. The measurements were
performed every three minutes. The error bars are standard deviations estimated from 3 repeats.
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Figure A4. Average kinetic curves (a) and tlag values (b) of PrP(89-230) self-replication reaction
performed with introduction of PrP(89-230) seed at different time-points of the reaction. Then, 10 µL
of 0.01 mg/mL PrP(107-143) fibrils were added to 100 µL of PrP(89-230) solution (0.5 mg/mL of
monomeric PrP(89-230) and 0.05 mg/mL PrP(107-143) fibrils) at a different time-points. The reaction
kinetics were monitored by measuring ThT fluorescence intensity (ex. 440 nm; em. 480 nm) at 60 ◦C
through a bottom of non-biding 96-well plate (Corning No. 3881, New York, United States) using
ClarioStar Plus (BMG Labtech, Ortenberg, Germany) microplate reader. The measurements were
performed every ten minutes (the measurement frequency was reduced to avoid agitation-induced
formation of PrP(89-230) aggregates, which in the presence of PrP(107-143) fibrils alone could lead to
the false-positive results). The error bars are standard deviations estimated from 4 repeats.
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Figure A5. AFM images of PrP(107-143) and PrP(89-230) aggregates. Images of the spontaneously
formed PrP(107-143) (a) and PrP(89-230) (b) aggregates. Images of sonicated PrP(107-143) (c) and
PrP(89-230) (d) aggregates. Images of aggregates formed during PrP(107-143)-fibril-induced (e) or
PrP(89-230)-seed-induced (f) aggregation reaction. Image of aggregates formed in the presence of both
PrP(107-143)-fibrils and PrP(89-230)-seed (g).
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Figure A6. Comparison of tlag values of seed-induced aggregation reaction performed in the absence
and presence of 10% of PrP(107-143) fibrils.

Figure A7. Representative curves of PrP(89-230) aggregation kinetics in the presence of monomeric
PrP(107-143). For aggregation experiments, solutions of 0.5 mg/mL of monomeric PrP(89-230) in
0.5 M GuHCl, 50 mM phosphate buffer (pH 6), containing 50 µM ThT were supplemented with either
0.001 mg/mL of PrP(89-230) seed, 0.05 mg/mL of PrP(107-143) monomers, or both 0.001 mg/mL of
PrP(89-230) seed and 0.05 mg/mL of PrP(107-143) monomers. Aggregation reaction was performed
under quiescent conditions at a 60 ◦C temperature. Aggregation kinetics were monitored by
ThT fluorescence assay (excitation at 470 nm, emission at 510 nm) using Qiagen Rotor-Gene Q
real-time analyzer.
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Figure A8. Measurements of PrP(89-230) concentration bound to the fibrils formed by PrP(107-143).
For the measurements of monomeric PrP(89-230) binding to PrP(107-143) fibrils, 1 mL solutions of
0.5 mg/mL of monomeric PrP(89-230) in 0.5 M GuHCl, 50 mM phosphate buffer (pH 6) supplemented
with none or 0.05 mg/mL of PrP(107-143) fibrils were centrifuged at 12,000× g for 30 min. Subsequently,
concentration of monomeric PrP(89-230) remaining in the supernatant was determined by measuring
UV-absorption at 280 nm using NanoDrop 2000 (Thermo Fisher Scientific). Error bars are standard
deviations estimated from three repeats.
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Figure A9. Kinetics of PrP(89-230)-seed-induced aggregation reaction performed in the absence
(a) or presence (b) of PrP(107-143) fibrils. Continuous lines denote the fit obtained by fitting
“Saturated Elongation and Secondary Nucleation” model to the experimental data using the AmyloFit
software [13].
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