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Abstract: Structure-based virtual screening is a truly productive repurposing approach provided
that reliable target structures are available. Recent progresses in the structural resolution of the
G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing
studies. Hence, the present study describes structure-based virtual screening campaigns with a view
to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic
subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise
identification of this binding cavity. First, a docking protocol was developed and optimized based
on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach
by using a purposely collected database including known allosteric modulators. The so-developed
consensus models were then utilized to virtually screen the DrugBank database. Based on the
computational results, six promising molecules were selected and experimentally tested and four
of them revealed interesting affinity data; in particular, dequalinium showed a very impressive
allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic
derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study
enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing
the key role of ligand flexibility as well as of arrangement and delocalization of the positively
charged moieties.

Keywords: drug repurposing; virtual screening; consensus function; binding space; muscarinic receptors;
allosteric modulators

1. Introduction

Drug repositioning represents an efficient strategy to find novel therapeutic applications for old
molecules [1–4]. The relevance of such a strategy is clearly understandable when considering that
unsuitable pharmacokinetic profiles represent a critical issue in drug attrition and the failures due
to toxicological outcomes are even increasing in the last years [5]. While considering the significant
efforts which are now invested in early toxicological screenings, it is no doubt that a discovery project
based on an old drug—whose toxicity and safety have been already extensively investigated in
humans—can resolve ab initio all related problems. Moreover, the polypharmacology paradigm has
afforded a conceptual validation to drug repositioning studies [6] suggesting that the ability of a given
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molecule to bind diverse targets may increase its therapeutic efficacy especially when treating complex
diseases [7,8].

Among the amenable strategies for drug repositioning studies, docking-based virtual screening
(VS) represents a very efficient method provided that reliable 3D structures of the involved protein
targets are available [9]. Thanks to the recent advancements in their resolution, GPCRs are becoming
suitable targets for VS analyses [10] and, among them, human muscarinic receptors (hmAChRs) are of
particular relevance when considering that all the five subtypes have been resolved including both
active and inactive conformations [11–13]. The hM2 subtype is particularly suitable for structure-based
analyses since it has been resolved in its inactive state in complex with an antagonist [14] as well as in
its active state in complex with both an agonist and an allosteric modulator [15].

This last hM2 crystal structure is particularly useful for VS campaigns aimed to identify novel
allosteric ligands since it allows a precise definition of the architecture of the allosteric binding cavity.
The general interest for allosteric modulators has exploded in the recent years since they can enhance
the ligand’s subtype-selectivity especially when it can be reached with difficulty by simple orthosteric
ligands [16]. Notably, this problem is particularly exacerbated for muscarinic receptors where the
highly conservation degree of the key residues lining the orthosteric cavity prevents the design of truly
selective ligands [17].

On these grounds, a VS study on the hM2 subtype was undertaken with a view to finding novel
allosteric modulators by screening an extended dataset of known drugs. The study was organized in
three steps. In the first preliminary part, an efficient VS strategy was developed by considering and
combining two representative resolved hM2 structures and a purposely collected database including
30 known allosteric modulators which were dispersed among 2970 suitably selected decoys. As already
validated in previous analyses [18,19], the VS strategy involved an extensive rescoring of the computed
docking results combined with the development of linear consensus predictive models by applying
the enrichment factor optimization algorithm (EFO) [20]. Then, the so tuned in silico procedures
were utilized to screen a DrugBank-based database [21] including about 6000 known drugs and the
resulting six most promising ligands (see Figure 1) were experimentally tested. Given the remarkable
experimental results afforded by dequalinium, the third step involved the collection of a focused
small set of commercially available bis cationic derivatives, which were similarly analyzed and
experimentally tested to assess their biologic activity on hM2 and to investigate the corresponding
structure–activity relationships.
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Figure 1. Chemical structures of the retrieved hits from virtual screening (VS) campaigns which were 
experimentally investigated by binding assays. The chemical structures of the two reference 
compounds (namely, gallamine and W84) were also included. 
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2.1. Preliminary Virtual Screening Simulations 

Previous comparative studies emphasized the efficacy of the EFO approach to develop 
consensus models by linearly combining diverse scoring functions and/or different docking engines 

Figure 1. Chemical structures of the retrieved hits from virtual screening (VS) campaigns which
were experimentally investigated by binding assays. The chemical structures of the two reference
compounds (namely, gallamine and W84) were also included.

2. Results

2.1. Preliminary Virtual Screening Simulations

Previous comparative studies emphasized the efficacy of the EFO approach to develop consensus
models by linearly combining diverse scoring functions and/or different docking engines [18,19].
The obtained results revealed that EFO-based equations including three docking scores are able to
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provide enhanced predictive powers outperforming most of the available consensus and scoring
strategies. On the other hand, previous docking studies highlighted that the binding space concept [22],
which combines more than one computed pose for each ligand, proves successful in accounting for
the multiple binding modes a ligand assumes within the binding cavity. In detail, previous studies
suggested that average and range values are suitable descriptors to explore such a binding space and
can find fruitful applications for developing predictive models.

Notwithstanding these encouraging results, the application of the binding space descriptors to
optimize the performances of virtual screening campaigns was never investigated because docking
simulations for virtual screening usually generate only one pose per ligand, a choice clearly explainable
for minimizing computational costs. On these grounds, these preliminary simulations were carried out
also to investigate the beneficial role of considering 10 poses per ligand as encoded by the binding space
descriptors when developing EFO-based consensus linear equations. Moreover, the here reported
application allows an extended investigation of the binding space effects by combining 10 poses per
ligand as well as two different hM2 conformations.

Indeed, as mentioned in the Introduction, this study was focused on the hM2 receptor due to the
availability of two relevant resolved structures: the open inactive state in complex with quinuclidinyl
benzilate (QNB, PDB Id: 3UON) and the close active state in complex with both an agonist (iperoxo)
and an allosteric modulator (LY211962, PDB Id: 4MQT). As reported by Kruse et al. [15], the comparison
of the two structures reveals that the orthosteric site of the active state is smaller than the inactive
one and indeed is unable to accommodate QNB. With regard to the allosteric pocket, the vestibule
above the orthosteric site is visible in both structures even though the narrowness characterizing the
active state is also reflected in the allosteric site which appears to be smaller due to the rotation of
TM6. The comparison with the resolved active state in complex with the iperoxo agonist—but without
LY211962 (PDB Id: 4MQS)—reveals that the overall architecture of the allosteric site is conserved
even without the allosteric ligand and only one residue (i.e., Trp422) appears differently arranged in
the ternary complex reasonably to optimize the interactions with the allosteric modulator. For these
reasons, the here performed simulations involved the active state in ternary complex which should
have the allosteric pocket perfectly suited to accommodate its ligands, and the open inactive state
in order to investigate its capacity to harbor larger modulators. In contrast, the resolved active state
in complex with the sole agonist was not considered since this should afford docking results almost
identical to those provided by the ternary active complex.

Table 1 compares the performances, as encoded by the corresponding enrichment factor (EF) 1%
values, reached by the here performed VS simulations when applying the binding space concept or
focusing on the best pose only. For a better comparison, Table 1 reports both the highest EF 1% values
and the EF 1% means as computed by averaging the performances of all the best 10 generated models.
The first consideration involves the different performances between the two hM2 structures since
docking results generated by using 4MQT perform clearly better in all experiments. Regardless of the
conformational differences between the two hM2 states, such a result can be explained by considering
that 4MQT was resolved in complex with an allosteric modulator and so its allosteric cavity should be
well tuned to accommodate allosteric ligands. In contrast, 3UON is in its inactive and open state and
was resolved without allosteric modulators. As discussed above, its allosteric pocket is not fully suited
to harbor these ligands and may be wider than that required for a convenient recognition.

The observed differences between the two hM2 structures are reflected into the effects of binding
space parameters. Indeed, the performances reached by using the poses as computed for the inactive
state (PDB Id: 3UON) remarkably benefit from multiple poses, as evidenced by the notably better
enrichment factors that score averages provide compared to the best score only. In contrast, docking
results generated by using the active state (PDB Id: 4MQT) afford comparable EF 1% results when
considering either the best scores or the average values. The different impact of the score averages
suggests that the optimal conformation of the 4MQT allosteric pocket reduces the mobility of the
docked ligands constraining them to assume an almost unique (and reasonably correct) binding mode
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which is conveniently parameterized even by using the best docking score only. In contrast, the wider
cavity of the 3UON structure permits a greater mobility to the docked ligands which can consequently
assume different binding modes. The best score does not always correspond to the correct pose,
as evidenced by the less satisfactory performances provided by the best scores only, thus score averages
appear to be a convenient way to account for the correct binding modes. This is clearly appreciable by
considering that multiple poses afford a doubled best EF 1% value.

Table 1. Predictive performances of the generated models based on the performed virtual screening
simulations as encoded by the highest and the average Enrichment Factor (EF) 1% values.

Utilized
Protein(s)
(PDB Id)

Scores of Best Pose Only Score Averages of 10 Poses Score Averages and Ranges
of 10 Poses

EF 1% Mean a Best EF 1% EF 1% Mean a Best EF 1% EF 1% Mean a Best EF 1%

3UON 18.1 24.1 42.8 48.2 47.5 51.6

4MQT 59.4 65.4 54.4 65.4 64.2 68.8

3UON + 4MQT b 60.7 65.4 59.0 65.4 66.1 68.8
a Mean values as computed by averaging the EF 1% values of the 10 best consensus equations generated by the EFO
method; (b) 3UON+4MQT indicates the performances of the consensus models generated by combining the scores
as computed for the two simulated hM2 structures.

Interestingly, the inclusion of the range values affords comparable and not negligible improvements
for the docking results produced by both hM2 structures. This result emphasizes that the range values
encode for different information compared to the score averages since they presumably describe
the mobility a given ligand retains during binding and thus encode for ligand flexibility/entropy,
the inclusion of which shows beneficial effects regardless of the reliability of the protein structure.
Unfortunately, the combination of the docking results from the two simulated proteins does not produce
additional enhancements, an unsatisfactory result which can be explained by considering the different
performances exhibited by docking results of the two hM2 structures. Indeed, their combination affords
results always comparable to those obtained by using 4MQT only.

Table 2 compiles the best models generated by the EFO approach for each experiment. As detailed
under Methods, the consensus equations are generated by linearly combining the computed binding
space parameters and including in each equation at most three variables. The equations developed by
combining the docking results of both proteins (3UON + 4MQT, see Table 1) were omitted since they
roughly correspond to those produced by using the results from 4MQT only. A bird’s eye analysis of
the included variables reveals a massive occurrence of the PLANTS scores to confirm their capacity to
suitably describe the simulated binding process. The scores are often included as normalized values
which should minimize the effect of the unavoidable differences in molecular size among the screened
ligands. Notably, both equations including average and range values comprise two score averages and
one range value which may encode for the entropic factors as discussed above.

To summarize these preliminary docking simulations, one may conclude that: (1) the utilized
docking strategies should prove successful in recognizing potential allosteric modulators in the
future VS campaigns; (2) averaging docking scores from multiple binding poses appears particularly
useful when using non-optimal protein structures; (3) the range values induce limited, but constant
enhancements presumably since they encode for the often disregarded entropic factors. Taken together,
the obtained results confirm the remarkable potentials that the binding space concept can also have
when analyzing VS simulations and invite to a more extended validation to assess its beneficial role.

To give a glimpse of the major interactions characterizing the allosteric binding pocket, Figure 2A
shows the putative complex as computed for the known and potent W84 allosteric modulator during
these preliminary docking simulations. The ligand assumes a rather folded pose by which it completely
occupies the allosteric pocket. In detail, the ammonium heads are engaged in key ion pairs with
Glu172 and Glu175 reinforced by charge transfer interactions involving surrounding aromatic residues
(i.e., Tyr80 and Tyr177). The two phthalimido moieties elicit similar interaction patterns comprising
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π–π stacking interactions plus H-bonds. Interestingly, here and in most generated poses, W84 inserts
a phthalimido ring within the orthosteric site without eliciting the required ion-pair with Asp103.
These complexes are in agreement with the binding parameters determined for W84 (see Table 3)
emphasizing that W84, while showing an intermediate pKi value, primarily acts as allosteric modulator
as evidenced by its high log Kocc value.

Table 2. Best enrichment factor optimization algorithm (EFO)-based equations as developed by docking
simulations on the two considered hM2 structures. Equations based on the combination of the two
proteins were omitted because they were identical to those produced by 4MQT only.

Utilized
Protein

(PDB Id)
Score Types Equation EF 1%

3UON Best scores 1.00 ContactsNORM_HEVATMS_Best + 0.031 ChemPLP_Best − 0.014 PLP_Best a 24.09

3UON Mean scores 1.00 ChemPLP_Mean − 0.75 PLP_Mean − 3.42 PLP95NORM_HEVATMS_Mean 48.18

3UON Means + ranges 1.00 MLPINS_Range + 0.08847263 ChemPLP_Mean − 1.51
PLP95NORM_HEVATMS_Mean 51.62

4MQT Best scores 1.00 ChemPLPNORM_HEVATMS_Best + 0.0073 PLP_Best − 4.00
PLP95NORM_HEVATMS_Best 65.39

4MQT Mean scores 1.00 ChemPLPNORM_HEVATMS_Mean − 4.13 PLP95NORM_HEVATMS_Mean + 1.60
XScore_HM_Mean 65.39

4MQT Means + ranges 1.00 ContactsNORM_WEIGHT_Range + 0.37 ChemPLPNORM_WEIGHT_Mean − 0.030
PLP95NORM_HEVATMS_Mean 68.83

a For sake of clarity, the suffixes best, mean and range refer to best score value, score average and score range,
respectively. Similarly, the subscripts NORM_HEVATMS and NORM_WEIGHT stand for normalized score values
per the number of heavy atoms and weight, respectively.
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Figure 2. Putative complexes as computed by docking simulations for (yellow carbon atoms, (A) W84,
(azure carbon atoms, (B) dequalinium, (purple carbon atoms, (C) ketoconazole and (green carbon
atoms, (D) chlorhexidine within the hM2 binding sites in its active state (PDB Id: 4MQT). In all figures,
the loop between residues 411 and 418 was not displayed for sake of clarity.
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Table 3. Top ranked 30 marketed drugs among which 6 promising ligands (in bold) were selected and
tested. LogP values and bioactivities were taken from DrugBank [16].

Compound Charge logP Known Bioactivity

adefovir dipivoxil 0 1.5 reverse transcriptase inhibitor

aliskiren 1 3.3 renin inhibitor

almitrine 1 4.1 Na/K-transporting ATPase subunit alpha-1 agonist

ambenonium 2 2.3 cholinesterase inhibitor

bepridil 1 5.2 calcium channel blocker

bimatoprost 0 3.4 structural analogs of prostaglandin

carvedilol 1 3.1 beta adrenoceptor blocker

cetirizine 0 2.8 histamine H1 antagonist

deferoxamine 1 0.9 chelating agent

demecarium 2 0.6 cholinesterase inhibitor

dequalinium 2 0.2 antiseptic and disinfectant agent

dinoprostone −1 2.8 naturally occurring prostaglandin derivative

fexofenadine 1 5.0 histamine H1 antagonist

hexafluronium 2 1.8 neuromuscular blocking agent

iloprost −1 4.2 synthetic analog of prostacyclin

ketoconazole 0 4.4 imidazole antifungal agent

lapatinib 1 5.2 tyrosine kinases inhibitor

latanoprost 0 4.2 prodrug analog of prostaglandin

mupirocin −1 2.2 antibacterial agent

orlistat 0 7.5 pancreatic lipase inhibitor

oxybutynin 1 4.3 antimuscarinic agent

phytonadione 0 9.3 vitamin K1

pimozide 1 6.3 antipsychotic agent

salmeterol 1 3.8 beta2-adrenergic receptor agonist

silodosin 1 3.0 α1-adrenoceptor antagonist

terconazole 0 4.5 imidazole antifungal agent

terfenadine 1 5.9 histamine H1 antagonist

travoprost 0 4.6 synthetic prostaglandin analog

vilazodone 1 4.2 serotoninergic agent

ximelagatran 1 1.4 Anticoagulant agent

2.2. Virtual Screening for Drug Repositioning

As mentioned under Methods and based on the results of preliminary VS analyses, docking
simulations on DrugBank database were focused on the 4MQT structure only. The analysis of the
obtained results was based on a sort of consensus of the consensus models since the computed docking
scores were utilized by including them into all the three highly performing equations based on the
4MQT structure (see Table 2). Hence, each equation was utilized to generate a ranking including
all DrugBank molecules and the final overall consensus was computed by averaging the position of
each ligand in the three corresponding rankings. Attention was paid on the first 100 molecules from
which 30 marketed drugs (Table 3) were extracted, avoiding experimental molecules and compounds
which are under development phases and thus are not easily available. A qualitative analysis of
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the selected compounds reveals two major groups of molecules. The first group is composed by
cationic compounds of different lipophilicity and comprises aminergic ligands (such as salmeterol
or terfenadine), cholinesterase inhibitors (demecariun or ambenonium) and disinfectants (such as
dequalinium). The second group comprises highly lipophilic drugs (e.g., orlistat and ketokonazole)
and compounds related to prostaglandins (such as iloprost).

By considering the obtained top ranked ligands, the tested molecules were selected based on
these criteria: for the first group, priority was given to the lipophilic cationic molecules, avoiding
metabolically labile compounds, while for the second group priority was given to neutral molecules.
As shown in Figure 1, from the first group, terfenadine, salmeterol and aliskiren were chosen as cationic
compounds as well as dequalinium as representative of a bis-cationic derivative, while ketoconazole
and orlistat were chosen as representative of neutral lipophilic drugs. Notably, ketoconazole was also
selected as it can be seen as an in-between molecule, since it is a lipophilic compound, while possessing
an ionizable imidazole ring which is present in known muscarinic ligands (e.g., pilocarpine). For the
6 selected compounds, muscarinic affinity studies were never reported apart from terfenadine which
was investigated with the individual muscarinic subtypes showing a subtype selectivity for hM3 [23].
Though, the compound underwent biologic studies since its allosteric activity was never investigated.

2.3. Equilibrium and Kinetic Binding Studies

The affinity values of the six selected compounds for the five human muscarinic receptors subtypes
(hM1–hM5) were determined by equilibrium binding experiments using [3H]-NMS as the radioligand.
For easy comparison, W84 and gallamine were added as reference compounds endowed with a
well-known allosteric activity on the hM2 subtype. Table 4 compiles the affinity values as expressed
by pKi parameters and reveals that 4 out of 6 tested compounds show an appreciable muscarinic
affinity (pKi greater than 4), a result which provides a truly encouraging validation for the adopted
computational strategy. In detail, Table 4 shows that 3 out of 4 affinitive compounds belong to the
first group of cationic ligands, a rather expected finding which confirms the mandatory nature of
the ammonium head for interacting with the orthosteric binding pocket. The affinity of the fourth
compound (ketoconazole) can be ascribed to the ion-pair stabilized by the charged imidazole ring thus
further confirming the pivotal role of this interaction. In contrast and while being a basic molecule,
aliskiren was found to be devoid of affinity for all muscarinic receptors. This result can be explained
by considering both the size of this molecule and, in particular, the limited accessibility of the amino
group which prevents a suitable interaction with Asp103 within the orthosteric pocket. As expected,
molecules without positively ionizable groups are unable to occupy the orthosteric binding site.

A detailed analysis of the affinity values reveals that dequalinium is the sole ligand showing pKi

values greater than 7.0 with a weak selectivity for the hM1/hM4 receptors. In contrast to what was
previously reported, terfenadine shows a non-negligible selectivity for hM1 with a difference of about
one logarithmic unit with the other four muscarinic subtypes. Finally, ketoconazole and salmeterol
show intermediate affinity values without discriminating between muscarinic subtypes. Collectively,
terfenadine and ketoconazole show affinity values comparable with those of the reference compounds,
while dequalinium reveals better values especially for the hM1 and hM4 subtypes.

In order to investigate possible interactions with the allosteric binding sites, the capacity of the
selected compounds to affect the [3H]-NMS dissociation rate was evaluated using an one-point kinetic
protocol focusing attention on the hM2 subtype only. Table 4 includes the so obtained log Kocc values,
which encode for the reduction of the dissociation rate by the studied ligands. The reported values
highlight the very remarkable log Kocc value for dequalinium, which is markedly higher compared to
both gallamine and even W84, which is one of the most potent hitherto reported allosteric modulator
for the hM2 subtype.



Int. J. Mol. Sci. 2020, 21, 5961 9 of 17

Table 4. Inhibition binding constants, pKi, describing estimated equilibrium binding affinity for human
cloned muscarinic receptors plus the affinity estimates (log Kocc) at the [3H]-NMS-occupied muscarinic
hM2 subtype. Values are reported as means of 3-4 experiments ± SEM.

Compound pKi hM1 pKi hM2 pKi hM3 pKi hM4 pKi hM5 Log Kocc hM2

Reference Ligands

W84 6.05 ± 0.43 5.21 ± 0.15 5.26 ± 0.25 5.30 ± 0.13 5.04 ± 0.16 6.54 ± 0.13

gallamine 6.38 ± 0.16 6.91 ± 0.10 5.69 ± 0.33 6.10 ± 0.12 5.66 ± 0.06 5.19 ± 0.06

First round

dequalinium 7.38 ± 0.32 6.18 ± 0.16 6.77 ± 0.27 7.16 ± 0.14 6.80 ± 0.10 7.72 ± 0.26

terfenadine 6.11 ± 0.14 4.8 ± 0.04 5.12 ± 0.21 4.96 ± 0.15 5.19 ± 0.20 4.74 ± 0.06

ketoconazole 5.43 ± 0.04 5.12 ± 0.17 5.01 ± 0.12 5.34 ± 0.10 5.1 ± 0.23 4.21 ± 0.08

salmeterol 5.49 ± 0.01 4.98 ± 0.13 4.92 ± 0.2 5.01 ± 0.12 4.9 ± 0.14 4.06 ± 0.07

aliskiren <4 <4 <4 <4 <4 3.60 ± 0.10

orlistat <4 <4 <4 <4 <4 <3

Second Round

chlorhexidine 6.30 ± 0.10 5.42 ± 0.27 5.67 ± 0.04 5.79 ± 0.06 5.65 ± 0.05 5.24 ± 0.02

pentamidine 5.60 ± 0.11 6.04 ± 0.08 5.67 ± 0.12 5.88 ± 0.03 5.76 ± 0.05 4.73 ± 0.06

diminazene 5.5 ± 0.18 5.25 ± 0.12 5.32 ± 0.08 5.05 ± 0.05 5.32 ± 0.10 3.81 ± 0.28

paraquat 4.43 ± 0.09 4.63 ± 0.13 4.70 ± 0.07 <4 4.83 ± 0.13 3.12 + 0.31

Even though the determined binding parameters do not allow a precise discrimination between
orthosteric and allosteric interactions, the analysis of the pKi and log Kocc values allows for some
considerations. The truly notable log Kocc value of dequalinium, which in turn shows an intermediate
pKi value (on hM2), seems to be suggestive of a ligand which mostly act on the allosteric binding
site similarly to what was observed for W84. The intermediate values of both pKi and log Kocc of
terfenadine can indicate the capacity to interact with both orthosteric and allosteric sites showing a
possible bivalent profile. Finally, the low log Kocc values for ketoconazole and salmeterol combined
with intermediate pKi values can be indicative of ligands which mostly interact with the orthosteric
binding cavity, even though also these two ligands possess a non-negligible capacity to reduce the
[3H]-NMS dissociation rate. Aliskiren shows a very poor log Kocc value, thus suggesting that the
inaccessibility of the protonated group affects the recognition by both orthosteric and allosteric sites.
Finally, orlistat is completely inactive also on the allosteric site thus indicating that the polar contacts
are also mandatory for a proper interaction within this and cannot be counterbalanced by extended
hydrophobic contacts.

The discussed considerations are corroborated by docking analyses which allow an in-depth
investigation of the binding sites with which the tested compounds preferentially interact. Figure 2
compares the best putative complexes as computed for dequalinium and ketoconazole. Figure 2B
shows the key interactions stabilizing the complex with dequalinium and reveals that this ligand
assumes a binding modes comparable to that of W84 (see Figure 2A). Compared to the W84 pose,
the superior affinity of dequalinium can be ascribed to the charged quinolinium systems, which,
along with the mentioned ionic interactions, can be engaged by mixed charge transfer plus π–π stacking
interactions with a rich set of surrounding aromatic residues (such as Tyr80, Trp99, Tyr104, Tyr177,
Tyr403, Tyr426 and Tyr430). As already seen for W84, a quinolinium ring partly occupies the orthosteric
site without properly contacting Asp103.

Figure 2C shows the best putative complex as computed for ketoconazole and reveals that it is
substantially accommodated within the orthosteric site where its charged imidazole ring contacts
Asp103 and the 2,4-dichlorophenyl ring elicits π–π stacking interactions plus halogen bonds with
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surrounding aromatic residues (such as Tyr104, Tyr403, Tyr426 and Tyr430). The N-acetyl piperazine
system is seen to approach key residues of the allosteric cavity but is unable to elicit clear interactions
with them apart from weak H-bonds and a π–π stacking between the ligand’s amide function and
Tyr177. Similar results are obtained by salmeterol and terfenadine which engage the orthosteric site
stabilizing the key ion-pair with Asp103, while inserting within the allosteric pocket moieties unable
to elicit significant contacts. Taken together, this first round of screening campaigns confirms the
remarkable potential of bis-cationic molecules as allosteric ligands. The comparison of the docking
results for dequalinium and W84 emphasizes the key role of the linker flexibility as well as of the
delocalization of the positive charge on the aromatic systems, which boost the interaction pattern of
dequalinium thus explaining its superior affinity parameters.

2.4. Second Targeted Screening Campaign

Based on the results of the previous campaign, a second targeted screening was carried out by
paying attention on known marketed bis-cationic molecules. The selection was based on the previous
docking simulations as well as on a conceptually similar study on MdfA ligands [24] in order to
collect molecules able to explore the role of the linker length and of the arrangement of the positively
charged moieties. As shown in Figure 1, such a selection identified three promising bis-cationic
ligands (i.e., chlorhexidine, pentamidine and diminazene) to which a fourth very rigid molecule
was added (paraquat) to better investigate the role of linker flexibility. Table 4 reports the affinity
parameters also for the compounds of this second campaign. Chlorhexidine and pentamidine reveal an
affinity profile comparable with that of gallamine showing pKi values around 6 without significantly
discriminating between individual subtypes, apart from a weak selectivity of chlorhexidine for hM1 and
pentamidine for hM2. Diminazene shows intermediate pKi values around 5, while paraquat appears
to be a poor ligand with pKi below 5. Both these last ligands do not discriminate between muscarinic
subtypes. These results emphasize the crucial role of the linker length also for the recognition within
the orthosteric cavity. When focusing on the hM2 subtype, affinity data confirms the key role of the
arrangement of the positively charged moiety since the affinity increases when the ionized group has
a terminal and accessible position (as seen in pentamidine) which facilitates its approach towards
Asp103 (see below).

The linker length assumes an even more crucial role when considering the allosteric interactions
since the two ligands endowed with longer linkers retain good log Kocc values (around 5) which
are suggestive of a good capacity to affect the [3H]-NMS dissociation rate, while the two more
rigid derivatives are substantially inactive (with log Kocc < 4). Collectively, the affinity parameters
indicate that chlorhexidine can bind both orthosteric and allosteric binding sites with an overall profile
superimposable to that of gallamine, pentamidine seems to prefer the orthosteric site, while diminazene
and paraquat are modest orthosteric ligands.

On these grounds, the capacity to reduce the [3H]-NMS dissociation rate of the three most
interesting compounds (dequalinium, chlorhexidine and pentamidine) was also investigated on hM1

and hM5 subtypes. Table 5 and Figure 3A–C report the measured log Kocc and shows that all tested
compounds possess a similar profile, which is also comparable with that of W84. In detail, the tested
molecules show: (1) an overall selectivity towards hM2; (2) intermediate log Kocc values for hM1 and
(3) very poor log Kocc values for hM5. This general trend confirms the greater structural diversity of
hM5 compared to other muscarinic subtypes. While sharing the described general profile, dequalinium
shows a very interesting allosteric activity also on hM1 subtype and retains a non-negligible allosteric
effect even on hM5. The interesting allosteric activity of dequalinium on hM1 combined with its
remarkable pKi value (see Table 4) suggests that dequalinium can act as a bivalent ligand on the
hM1 subtype.
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Table 5. Affinity estimates (log Kocc) at the [3H]-NMS-occupied muscarinic hM1, hM2 and hM5

subtypes plus the corresponding selectivity ratios. Values reported as means of 3–4 experiments ± SEM.

Compound hM2 hM1 hM5 hM2/hM1 hM2/hM5

W84 6.46 ± 0.09 5.79 ± 0.09 4.74 ± 0.27 4.6 52.5

Dequalinium 7.72 ± 0.26 6.69 ± 0.10 5.48 ± 0.16 10.7 174

Chlorhexidine 5.24 ± 0.02 4.09 ± 0.11 3.73 ± 0.17 14 32.4

Pentamidine 4.73 ± 0.06 4.18 ± 0.15 3.74 ± 0.19 3.5 9.8Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 17 
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Figure 3. Effects on the [3H]-NMS dissociation rate of three most interesting retrieved compounds
(dequalinium: red squares, chlorhexidine: blue tringles and pentamidine: pink tringles) plus the
reference W84 compound (green circles) as derived by single time-off rate experiments on (A) hM1,
(B) hM2 and (C) hM5. The data point at log [drug] = −1 represents the [3H]-NMS bound in the absence
of added atropine and allosteric ligand; (D) shows a representative graph of the reduction of the
dissociation rate (Koff) and the corresponding t1/2 values of dissociation as obtained from full time
course experiments for dequalinium on the hM2 subtype.

Finally, and with a view to better investigating the notable allosteric effect of dequalinium on hM2

full time course experiments were performed at three different concentrations and during a monitored
time of 160 min. As explained under Methods, these experiments allow the determination of the
reduction of the dissociation rate (koff) and the corresponding t1/2 of dissociation. Figure 3D and Table 6
summarizes the full time course results and clearly confirms the dequalinium capacity to reduce the
dissociation rate in a dose-dependent manner as evidenced by the t1/2 reduction of 4.8- and 17.3-fold at
the concentration of 0.1 and 0.3 µM, respectively.
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Table 6. Reduction of the dissociation rate (Koff) and the corresponding t1/2 values of dissociation as
obtained from full time course experiments at three different concentrations and during a monitored
time of 160 min.

Koff (min−1)
(±SEM)

t1/2 (min)
(95% C.I.)

Control (NMS) 0.16 ± 0.02 4.41 (3.53–5.88)

Dequalinium 1 nM 0.15 ± 0.02 4.51 (3.62–5.99)

Dequalinium 0.1 µM 0.033 ± 0.003 21.02 (17.95–25.37)

Dequalinium 0.3 µM 0.009 ± 0.001 76.54 (64.83–93.42)

In order to better investigate the apparently bivalent profile of chlorhexidine which shows
relevant and comparable pKi and log Kocc values, Figure 2D depicts the corresponding computed
complex and confirms that the ligand is conveniently inserted into both the orthosteric and allosteric
cavities. In detail, the first biguanide function contacts Asp103 within the orthosteric cavity, where the
4-chloro phenyl ring stabilizes π–π stacking interactions plus a halogen bond with Asn404. Again,
the second charged biguanide group is accommodated within the allosteric site where it stabilizes
ion-pairs with Glu172 or Glu175 plus charge transfer interactions with Tyr177 and Tyr83. By contrast,
pentamidine (complex not shown) is able to properly occupy the orthosteric cavity where the charged
carboximidamide group contact Asp103, while being unable to stabilize ion-pairs within the allosteric
cavity where the second charged phenyl carboximidamide moiety at most elicits π–π stacking with
Tyr177 and Trp422.

3. Materials and Methods

3.1. Preliminary Virtual Screening Simulations

As mentioned in the Introduction, all performed docking simulations involved two resolved
human hM2 structures: the inactive state bound to an antagonist (PDB Id: 3UON) [14] and the active
state bound to the agonist iperoxo and the allosteric modulator LY2119620 (PDB Id: 4MQT) [15].
The downloaded structures were prepared as recently described [25]. Briefly, the structures were
completed by adding hydrogens and the missed side-chains: to remain compatible to physiological
pH, the residues Asp, Glu, Lys and Arg were considered ionized while Cys and His as neutral by
default. The so completed protein structures were minimized by keeping the backbone atoms fixed to
preserve the experimental folding. A set of 30 known allosteric ligands for hM2 was then collected from
literature (see some reference compounds in Figure 1) [26,27]. Next, a purposely collected dataset of
2970 presumably inactive decoys was extracted from the ZINC database [28]. By considering that almost
all chosen active ligands are characterized by a positive charge, the extracted decoys were selected so
that their formal charge average was substantially superimposable to that of allosteric ligands (+1.71 vs.
+1.67). Other physicochemical parameters considered in order to obtain an homogeneous dataset
included molecular weight, lipophilicity and flexibility as encoded by the number of rotors. For all
descriptors, the ranges covered by active and inactive compounds were roughly superimposable.
The so obtained ligand database, in which the active compounds represent the 1%, was prepared for the
following docking simulations by using automatic scripts implemented in the VEGA suite of programs
as previously detailed [29]. Docking simulations were performed using PLANTS [30] and focusing the
search within a 15 Å radius around the bound (and deleted) ligands to encompass both orthosteric
and allosteric binding cavities in both hM2 structures. In detail and for each ligand, 10 poses were
generated and ranked using the ChemPLP scoring function with speed equal to 1. Each computed pose
was then optimized and rescored by ReScore+ [31] which computes the following scores: (1) ChemPLP,
PLP and PLP95 as computed by PLANTS plus the corresponding normalized values; (2) XScore with its
components; (3) APBS binding energies; (4) number of contacts and corresponding normalized values;
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(5) interaction energies as computed by VEGA including the hydrophobic interactions encoded for by
the MLP Interaction score (MLPIns). By applying the binding space concept [22], each scoring function
for a given molecule is defined by the following parameters (a) the best score value (as routinely
done), (b) the score average and (c) the score range as derived considering all the ten generated poses.
The calculated binding space parameters were finally used to develop consensus models by using the
EFO approach [20]. In detail and for each analysis, 10 equations were developed including at most
three variables by systematically combining all computed scores plus the corresponding binding space
descriptors. After discarding interrelated and ineffective variables, the EFO approach exhaustively
combines the input descriptors by means of a search algorithm which optimize a quality function
based on both the early recognition (as encoded by EF 1%) and the distribution of active molecules
within the entire ranking (as encoded by the skewness). The predictive power of these models was
assessed by randomly subdividing the dataset into training (70%) and test (30%) sets and repeating
this task 5 times.

3.2. Virtual Screening Simulations for Drug Repositioning

For drug repositioning, the DrugBank database was used [21]. This was filtered by removing
molecules with less than 8 atoms or bigger than 1000 Da as well as molecules with counter-ions,
metals or rare elements. In this way, a database including 5800 known molecules was collected and
prepared as above described and underwent docking simulations on the best performing mAChR2
structures (as assessed by previous simulations, see below) by applying the same computational
protocols previously described. Similarly, the computed poses were optimized and rescored by
ReScore+ and the obtained scoring functions were used to rank the screened compounds based on
the best predictive models as generated above. Based on these results, 6 promising compounds were
selected also considering chemical diversity and availability.

3.3. Biologic Studies

All tested compounds were purchased from Merck KGaA (Darmstadt, Germany). The radioligand
binding experiments were performed with membranes from Chinese Hamster Ovary (CHO) cells stably
transfected with the five cloned human muscarinic receptor subtypes (hM1-5). Membrane fractions
were prepared according to the protocol, which have been previously described [32]; membranes were
stored at −80 ◦C until use. Nonspecific binding was defined by the radioactivity bound in the presence
of 10 µM atropine.

3.3.1. Equilibrium Binding Assays

The inhibition binding experiments were carried out at room temperature in polypropylene
96-well plates (Sarstedt, Verona, Italy) in a final volume of 250 µL of 25 mM Na/K phosphate buffer
containing 5 mM MgCl2 at pH 7.4 (assay buffer), in the presence of 0.2 nM [3H]-N-methylscopolamine
chloride ([3H]-NMS) (PerkinElmer Life and Analytical Science) and different concentrations of the
tested compounds (0.001–100 µM). Aliquots of membranes (25–70 µg/mL) were added and incubated
for 2 h at room temperature, filtered through UniFilter GF/B plates (PerkinElmer Life and Analytical
Science, Monza, Italy) using a FilterMate cell harvester (PerkinElmer Life and Analytical Science,
Monza, Italy). The filters were washed several times with ice-cold MilliQ water. Then, the plates
were counted in a β-counter (TopCount NXT microplate scintillation counter, PerkinElmer Life and
Analytical Science, Monza, Italy).

3.3.2. Dissociation Kinetic Assay

Full time course

Dissociation binding assays were conducted in assay buffer at room temperature as above
described [33]. Membranes were preincubated with 2 nM [3H]-NMS for 60 min at room temperature
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(mix membrane). Net dissociation of [3H]-NMS was initiated by the addition of 100 µL aliquots of this
mixture to tubes which contained 1 µM atropine, with or without the indicated concentrations of test
compound (final volume 1 mL): in this case atropine is used to prevent the reassociation of [3H]-NMS
to the receptors. Nonspecific binding was measured in separately prepared tubes containing 100 µL of
mix membrane plus atropine 10 µM.

After the appropriate time interval (0, 1, 10, 20, 40, 80 and 160 min), the dissociation was
terminated by filtration through glass fiber filters grade MGB (Sartorius Italy S.r.l., Bagno a Ripoli,
Firenze, Italy) that was soaked for 60 min in 0.05% polyethyleneimine, using a Brandell cell harvester
(Biomedical Research and Development Laboratory, Inc. Atlas Drive, Gaithersburg, MD, USA);
the filtration was immediately followed by three rinses with ice-cold MilliQ water. The filter-bound
radioactivity was quantitated by liquid scintillation counting (Tricarb 1200TR, PerkinElmer Life and
Analytical Science, Monza, Italy).

One point kinetic assays

Off-rate assays [34] were performed as described elsewhere [33] to estimate the affinity of the
ligands for the [3H]-NMS-occupied receptor (log Kocc). Briefly, a high concentration of membranes
(about 0.1 mg/mL) was incubated with a high concentration of [3H]-NMS (2 nM) for 60 min at room
temperature (mix membrane). Next, 100 µL aliquots were distributed into polypropylene tubes that
were empty or in a final volume of 1 mL binding buffer with 1 µM atropine alone and in the presence
of a range of concentrations of tested compound (1 nM–0.1 mM).

The effect on the radioligand dissociation of each tested ligand was determined at 0 min and at one
time point, which was chosen to be ca 2.5 dissociation half-lives of [3H]-NMS alone from each subtype
receptors. Later (80 min for hM1, 20 min for hM2 and 70 min for hM5), the samples were filtered and
counted as previously reported. Non specific binding was measured as previously reported [33].

3.3.3. Data Analysis

Data generated from binding assays were analyzed using Prism 5.02 (GraphPad Software, Inc.,
San Diego, CA, USA). Data points from radioligand inhibition binding curve were fitted to models
using nonlinear regression equation to determine inhibitor potency (IC50) estimates, which were then
converted to Ki values [35] as appropriate.

Data from one-point kinetic experiments were analyzed in order to obtain estimates of the affinity
of an allosteric ligand for the [3H]-NMS occupied receptor (log Kocc) in a single step, using an equation
introduced in GraphPad Prism 5.02 [33,34].

Radioligand dissociation rates in absence or in presence of the allosteric modulator were analyzed
by non linear regression according to the equation for mono-exponential decay using GraphPad
Prism 5.02.

All the results are expressed as means ± SEM obtained from 3-4 independent experiments each
one performed in duplicate.

4. Conclusions

As repeatedly reviewed, allosteric ligands can play key role in enhancing the subtype-selectivity
of the orthosteric ligands and their relevance clearly parallels the difficulty in designing selective
orthosteric ligands for a given biologic target [36]. The muscarinic receptors represent a clear example
since they are implicated in several truly debilitating diseases (such as Alzheimer disease, schizophrenia
and asthma), but the use of drugs variously acting on muscarinic receptors is woefully limited by the
fact that even those molecules which reached the market are associated with several significant central
and peripheral side effects. The unsuitable profile of these ligands is due to their poor selectivity by
which they similarly bind all muscarinic receptors subtypes, a problem that can be ascribed to the
very high degree of conservation among the key residues lying in the orthosteric cavity of the five
muscarinic subtypes.
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On these grounds, the great interest gained by muscarinic allosteric ligands in the last decades
comes as no surprise when considering that the lower degree of conservation of residues lying in
the allosteric cavity should permit the design of selective allosteric modulators [37]. The interest for
the allosteric cavity is further increased by the possibility of developing selective bivalent ligands
that are molecules able to occupy at the same time both orthosteric and allosteric pockets [38]. In the
context of allosteric modulation, the hM2 receptor was extensively investigated and diverse allosteric
ligands were proposed starting from ’80 when antidotes against organophosphate intoxication (such as
W84 and its derivatives) were found to be able to exert allosteric activity on muscarinic receptors [39].
Since them, a significant number of novel allosteric modulators was reported in literature, even though
their rational design was somewhat hampered by the lack of resolved structures for the muscarinic
receptors [27].

Fortunately, the structures of the muscarinic receptors were resolved and now can be conveniently
utilized in structure-based computational studies showing that even in “fields as well-ploughed as
the muscarinic receptors” (cited by ref. [40]), they can add significant contributions by allowing the
identification of new chemotypes or the repositioning of known molecules as reported here.

From a computational standpoint, the study emphasizes the potential of utilizing the binding
space concept also in virtual screening contexts by simultaneously considering different reliable poses
per ligand. Such a strategy appears to be particularly effective when simulating target structures,
the binding cavity of which has a non-optimized architecture (as seen for studies based on 3UON
structure) but can enhance the performances also of optimized target structures by accounting for the
often neglected entropic factors.

In summary, the present study describes a targeted computational protocol which allowed the
identification of ligands acting on muscarinic receptors with different mechanisms. In particular, the
reported VS campaign led to the identification of a very potent allosteric modulator which can represent
the starting point to design new ligands with both pure allosteric and bivalent profiles. In addition, the
study revealed the promising profiles of terfenadine, chlorhexidine and pentamidine on the muscarinic
receptors and suggested that ketoconazole can be considered as an interesting scaffold to design novel
imidazole-based muscarinic ligands.
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EF Enrichment factor
EFO Enrichment factor optimization
GPCR G protein-coupled receptor
hM Human muscarinic acetylcholine receptor
hmAChR Human muscarinic acetylcholine receptor
NMS N-methyl scopolamine
QNB Quinuclidinyl benzilate
VS Virtual screening
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