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Abstract: NMR spectroscopy continues to provide important molecular level details of dynamics
in different polymer materials, ranging from rubbers to highly crosslinked composites. It has been
argued that thermoset polymers containing dynamic and chemical heterogeneities can be fully cured
at temperatures well below the final glass transition temperature (Tg). In this paper, we described the
use of static solid-state 1H NMR spectroscopy to measure the activation of different chain dynamics
as a function of temperature. Near Tg, increasing polymer segmental chain fluctuations lead to
dynamic averaging of the local homonuclear proton-proton (1H-1H) dipolar couplings, as reflected
in the reduction of the NMR line shape second moment (M2) when motions are faster than the
magnitude of the dipolar coupling. In general, for polymer systems, distributions in the dynamic
correlation times are commonly expected. To help identify the limitations and pitfalls of M2 analyses,
the impact of activation energy or, equivalently, correlation time distributions, on the analysis of 1H
NMR M2 temperature variations is explored. It is shown by using normalized reference curves that
the distributions in dynamic activation energies can be measured from the M2 temperature behavior.
An example of the M2 analysis for a series of thermosetting polymers with systematically varied
dynamic heterogeneity is presented and discussed.
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1. Introduction

Solid-state NMR spectroscopy remains an important tool for the characterization of the structure
and dynamics in a wide range of materials [1–5]. Improvements in magic angle spinning (MAS) spinning
speeds; advances in heteronuclear, multiple dimensional, and multiple quantum NMR pulse sequences;
plus the sensitivity gains realized from dynamic nuclear polarization (DNP) methods continue to impact
the use of NMR to probe a variety of different material phenomena. While many of these advances
help resolve additional molecular level details, there is a corresponding increase in the complexity of
implementation. One of the oldest and, perhaps, simplest methods for the analysis of NMR spectra
involves measuring the second moment (M2) of the line shapes as a function of the temperature or
composition [6,7] and has proven to be indispensable in characterizing dynamics and local structures
in amorphous and disordered materials. Static (non-spinning) NMR line shapes are broadened by
homonuclear and heteronuclear dipolar couplings between different nuclei, quadrupolar couplings
(for spin I > 1

2 ), chemical shielding anisotropy, or chemical shift dispersions, thus providing a handle to
probe local structures and dynamics. For example, 7Li, 23Na, 31P, and 133Cs NMR M2 results have been
reported for glasses in analyses of structures and ion dynamics [8–12], as well as 1H NMR M2 studies
of dynamics, miscibility, and chain orientations in polymers [13–20]. While static NMR is hampered by
low spectral resolution, it does benefit from being sensitive to local motions on the order of the line
width and can be employed over very wide temperatures ranges.
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Our group has recently explored the impact of dynamic heterogeneity on polymer thermosets
that can be cured (polymerized) at temperatures well below the final observed glass transition
temperature Tg [20]. Here dynamic heterogeneity refers to the existence of regions within the
thermoset where the polymer chain segment fluctuations have different correlation times or exhibit
differences in the widths of the correlation time distributions. NMR proves to be a powerful
tool to probe these heterogeneities at the molecular level. Thiol–ene polymerizations combine both
chain-growth and step-growth mechanisms, enabling the systematic variation of dynamic heterogeneity
through the stoichiometry of the polymerization mixture [21–28], which can be used to control the
relationship between the cure temperature and the final Tg. We prepared a series of high-Tg materials,
in which the heterogeneity was modulated by the reacting mixtures of the aromatic monomer
1,3,5-benzenetrithiol (BTT) and tricyclodecane dimethanol diacrylate (TCDDA) with differing ratios
of the reactive functional groups. These mixtures are identified by R = (SH)0/(C=C)0, where (SH)0

and (C= C)0 were the initial concentrations of the thiol and acrylate functionality, respectively.
The polymer mixtures were ultraviolet (UV) cured in the presence of the photo-initiator p-xylylene
bis(N,N-diethyldithiocarbamate) (XDT), as shown in Scheme 1. The resulting thermosets incorporate
both the chain-growth homo-polymerization of the acrylate groups and step-growth co-polymerization
of the thiol and acrylate groups, which yield comparatively heterogeneous and homogeneous networks,
respectively. Chain-growth thermosets are described as containing a nonuniform distribution of
crosslinks at the nanoscale [29], which should be reflected in the nonuniform correlation time (or
relaxation rates) distributions for the polymer chain fluctuations. By decreasing R (lower thiol
concentration), the polymerization is biased towards the chain-growth mechanism and is expected
to increase the heterogeneity in the local crosslink density and, correspondingly, an increase in the
distribution of the polymer chain relaxation rates. Additional physical characterizations of these
TCDDA-BTT networks have previously been reported [20]. In that study, we reported the temperature
variation of the second moment (M2) of the 1H NMR spectral line shape, along with qualitative
arguments for increased dynamic heterogeneity in low R value networks. In the current study,
we present an analysis of how dynamic distributions or dynamic heterogeneity are reflected in both
the M2 temperature variation and the estimated polymer chain correlation times (τc).
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temperature and R are shown in Figure 1. At 233 K (−40 °C), a single unresolved broad resonance 
having a full width at a half-maximum line width of~50 kHz is observed for all R ratios. This broad 
resonance originates from the strong homonuclear 1H-1H dipolar couplings present in these rigid, 
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Scheme 1. Chemical structures of the 1,3,5-benzenetrithiol (BTT) and tricyclodecane dimethanol
diacrylate (TCDDA) monomers used in the preparation of high-transition temperature (Tg)
thiol-acrylate networks through a room-temperature (RT) ultraviolet (UV) cure using the p-xylylene
bis(N,N-diethyldithiocarbamate) (XDT) photo-initiator, where variations in the ratio R control the
network heterogeneity.

2. Results and Discussion

Static solid-state 1H NMR spectra for the UV-cured BTT-TCDDA networks as a function of
temperature and R are shown in Figure 1. At 233 K (−40 ◦C), a single unresolved broad resonance
having a full width at a half-maximum line width of~50 kHz is observed for all R ratios. This broad
resonance originates from the strong homonuclear 1H-1H dipolar couplings present in these rigid,
glassy polymers. At these low temperatures, the local polymer chain dynamics are slow compared
to the timescale of the dipolar interaction (i.e., 1/τc << 2π(M2)1/2, where τc is the correlation time of
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the chain fluctuations and (M2)1/2 is related to the spectral line width). Note, for the solid-state 1H
NMR spectra at low temperatures, there are no narrow spectral components overlapping the broad
resonances. This lack of a narrow resonance clearly shows that highly mobile polymer fractions
(1/τc >> 2π(M2)1/2) from comparatively low crosslink density regions are not present. Another way to
describe this is that, if there are low crosslink density regions, they must have similar dynamic responses
to the rest of the network when well below the Tg. With increasing temperatures, additional polymer
dynamics are activated, leading to the motional averaging of the dipolar coupling (1/τc~2π(M2)1/2) and
gradual narrowing of the NMR line resonance. This motional averaging dramatically increases near
the Tg, where the rate and magnitude of the polymer chain fluctuations (α-relaxation) become large
enough to ultimately produce the fully dynamically averaged narrow line shapes observed at high
temperatures (Figure 1). With the decreasing R, the temperature at which the α-relaxation becomes
activated increases and mirrors the change observed in the dynamic mechanical analysis (DMA)
(Supplementary Materials Figure S1). For the BTT-TCDDA networks discussed here, the dynamic
heterogeneities (i.e., a distinct mixture of narrow and broad resonances) observed in the 1H NMR
line shape as a function of R near the Tg are not as pronounced as those previously noted in related
networks [20] and most likely reflect the differences in the UV light source intensity employed and the
actual sample temperature during the cure process.
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While it is common during the analysis of static 1H NMR line shapes to simply deconvolute the 
resonance into mobile and immobile fractions, polymer chain dynamics realistically involve a 
distribution of motional rates, leading to a complex superposition of different motionally averaged 
line shapes. Here, we describe an analysis of M2 calculated using the spectral intensity at frequency 
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Figure 1. Static solid-state 1H NMR spectra as a function of select sample temperature for the ultraviolet
(UV)-cured 1,3,5-benzenetrithiol-tricyclodecane dimethanol diacrylate (BTT-TCDDA) polymer networks
of varying thiol-acrylate stoichiometry (R = (SH)0/(C=C)0). The reduced temperatures (T-Tg)/Tg are
shown in square brackets, with the transition temperature (Tg) occurring at (T-Tg)/Tg = 0. Narrowing
of the NMR line width is observed for temperatures above the polymer glass transition temperature Tg.
The middle three rows are at equivalent reduced temperatures, while the upper and lower rows show
the lowest and highest temperatures probed for that stoichiometry, respectively.
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While it is common during the analysis of static 1H NMR line shapes to simply deconvolute
the resonance into mobile and immobile fractions, polymer chain dynamics realistically involve a
distribution of motional rates, leading to a complex superposition of different motionally averaged line
shapes. Here, we describe an analysis of M2 calculated using the spectral intensity at frequencyω over
the entire line shape for each NMR spectrum using (see Appendix A for details):
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The temperature variation of the 1H NMR M2 for BTT-TCDDA networks as a function of R is
shown in Figure 2a. In the low temperature regime M2 for R = 0.00 and 0.09, the networks are similar
but are significantly larger than the M2 for R = 0.47 and 0.32, while R = 0.19 is intermediate between
these extremes. The larger M2 at a low temperature (increased magnitude of the 1H-1H dipolar
coupling) may result from multiple factors. The first possibility is that the TCDDA component has an
increased intra- or intermolecular dipolar coupling (higher intra- or intermolecular proton density)
than the BTT and that higher TCDDA concentrations (decreasing R) will therefore increase the M2.
The proton density for the pure monomers is estimated to be 0.087 moles H/cm3 and 0.047 moles
H/cm3 for BTT and TCDDA, respectively, supporting the argument that proton density increases with
decreasing R. While the M2 has not been theoretically calculated for the cured TCDDA-BTT polymers,
as the network structures are not known, we argue that the 100-kHz2 differences in the M2 at 233 K
cannot be fully explained by the compositional change. The most reasonable explanation is that, at this
temperature, the TCCDA rich compositions have dynamics that are more representative of the rigid
glassy state, since, at 233 K, the temperature is further from their respective Tg values. To support this,
the M2 is plotted with respect to the scaled temperature (T-Tg)/Tg, as shown in Figure 2b, which reveals
that all compositions trend to the same M2 limit. Due to probe hardware limitations, we were not
able to investigate temperatures below 233K, preventing us from reaching the rigid lattice limit for
all compositions.
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Figure 2. Static solid-state 1H NMR spectral second moment (M2) for BTT-TCDDA networks with
different thiol-acrylate stoichiometry (R = (SH)0/(C=C)0) as a function of (a) the sample temperature,
(b) the reduced temperature, and (c) the reduced temperature expanded near the Tg for each composition.

Between 233 K and 400 K, there is a gradual decrease in the M2 with the increasing temperature
(Figure 2a), which is attributed to the β-relaxation process involving local, noncooperative dynamics in
the BTT-TCDDA network. The M2 temperature variation for this β-relaxation process is similar for all
compositions. As the temperature is further increased through a given Tg, the respective M2 rapidly
decreases due to dynamic averaging as the polymer chain motions become faster and more dominant
(α-relaxation), until finally reaching the rubbery plateau regions for T > Tg. The expansion of the
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M2 temperature variation for the BTT-TCDDA networks at reduced temperatures near (T-Tg)/Tg~0
(Figure 2c) reveals distinctly different dynamics, which we will attribute to differences in the activation
energy (and corresponding correlation times) for the polymer chain motions in subsequent sections.
Additional NMR relaxation experiments, including spin lattice relaxation (T1) and spin-spin relaxation
(T2), were not pursued for the current study due to the desire to match the NMR heating/cooling rates
to the heating/cooling rates of the DMA analysis as closely as possible.

2.1. Impact of Activation Energy on M2

To extract additional information regarding polymer chain dynamics from the 1H NMR spectra,
it is instructive to model the effect of different variables on the M2 behavior. Figure 3 shows simulations
of the M2 temperature variation for varying activation energies (Ea) of the dynamic process leading to
the motional averaging. The temperature behavior of the M2 is defined using Equation (A5) (additional
discussion provided in the Appendix A), where we have assumed an Arrhenius behavior for the
correlation times τc using:

τc(T) = τ0 exp
[
Ea/RgasT

]
(2)

where τ0 is the pre-exponential correlation time, Ea the activation energy, and Rgas is the gas constant.
The pre-exponential term was fixed at τ0 = 0.5905 ns for all simulations, unless otherwise noted.
This τ0 value is in the middle of the range experimentally determined (see Table 1 and later
discussion). An example of the simulated M2 variations for changing τ0 is shown in Figure S2.
A more complicated non-Arrhenius temperature behavior of τc, such as the Vogel-Fulcher-Tammann
(VFT) relationship [30–32], could also be considered. As expected, the transition from the rigid lattice
M2 limit to the fully motionally averaged M2 occurs at higher temperatures with increasing Ea. The M2

temperature variations for this range of Ea overlap when scaled to the reduced temperature (T-Tg)/Tg,
as shown in Figure 3b, with this scaling behavior being well-known in the analysis of polymer relaxation
processes [33–35].
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Table 1. Activation energies, pre-exponential constant, and distribution parameters for the glass
transition in the 1,3,5-benzenetrithiol-tricyclodecane dimethanol diacrylate (BTT-TCCDA) networks
obtained from the static 1H NMR second moment analysis.

Network Tg (NMR) (K)a Ea (kJ/mol) τ0 (ns) σ(Ea)b εc

R = 0.47 412 29.9 ± 2 0.02 ± 0.03 <1 >0.4
R = 0.32 440 24.7 ± 2 0.11 ± 0.06 <1 >0.4
R = 0.19 482 19.8 ± 1 0.61 ± 0.1 2 0.35
R = 0.09 523 16.7 ± 1 1.9 ± 0.2 3.5 0.30
R = 0.00 560 n.d. d n.d. d 5 0.25
a Glass transition temperature estimated from the NMR second moment (M2) transition. b Gaussian distribution
width in kJ/mol. c Davidson-Cole distribution parameter. d n.d. = not determined due to insufficient high
temperature data. Ea: activation energy. τ0: pre-exponential correlation time.

2.2. Distributions in Dynamic Rates

In amorphous polymers, it is expected that the dynamics include a distribution of chain relaxation
correlation times, as previously included in NMR line shapes and relaxation time analyses [36–38].
Since a variation in Ea moves the temperature at which the Tg transition is observed (Figure 3),
the presence of a distribution of activation energies will therefore impact the M2 temperature variation.
As an example, Figure 4a shows the simulated M2 variation with the introduction of a Gaussian
distribution of the log mean correlation time τ * or, equivalently, a Gaussian distribution of Ea

(see Equation (A8)) with different standard deviations σ. Examples of these Gaussian distributions are
shown in Figure S3. The results are labeled as a function of σ(Ea) for direct comparison to Figure 3.
With the increasing σ, the rate of change of the M2 with the temperature is reduced, with the width of
the Tg transition broadened, and is reminiscent of the DMA results shown in Figure S1. This broadening
behavior results from the increasing fraction of polymer chains having either slower (higher Ea) or
faster (lower Ea) relaxation rates. For a Gaussian distribution, the M2 intensities at different σ are
equivalent at the same Tg temperature (here, 442 K), because the mean Ea is independent of σ for a
symmetric distribution.
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Another distribution commonly employed to describe polymer relaxation is the Davidson-Cole
(DC) relationship [39] defined by Equation (A9), with an example of the distribution shown in Figure
S3. The temperature variation of the M2 as a function of the increasing distribution breadth (decreasing
ε) is shown in Figure 4b. The behavior is distinct from that observed for a Gaussian distribution. In the
DC distribution model, the M2 transition is broadened with a decreasing ε for temperatures below the
original Tg (transition temperature). This broadening results from a larger fraction of polymer chain
motions being activated at lower temperatures (1/τc~2π(M2)1/2) due to the increased concentration
of regions (e.g., defects, reduced crosslink density, etc.) having reduced Ea values. For temperatures
above the original Tg transition, there is limited impact on the M2 behavior, because the DC distribution
(Equation (A9)) is described by the maximum correlation time

(
τ0

c

)
above which the probability of

the slower dynamic processes vanishes. The asymmetry of the DC probability shifts the observed Tg

(defined here as the midpoint in the M2 transition) to lower temperatures. The variations in the M2 as
a function of the reduced temperatures for systems with either a Gaussian or a DC distribution are
shown in Figure 5a,b, respectively. For small distribution widths, the M2 temperature behavior is very
similar and only begins to deviate for large distributions.
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for the (a) Gaussian Ea distribution described by Equation (A8) and (b) a Davidson-Cole correlation
time distribution described by Equation A9.

The comparison of the M2 temperature variation between different network compositions may be
complicated by differences in both the Ea (different Tg values) and distribution widths. This issue is
explored in Figure 6 for the Gaussian and DC distributions. The M2 temperature behavior (Figure 6a,b)
does not readily allow differences in the distribution to be realized, but, by simply mapping the M2

behavior to a reduced temperature scale, the presence of the distributions is clear, regardless of the
different Ea (Figure 6c,d). The M2 behavior is related to the relative magnitude of σ with respect to
the Ea, but for similar ranges of the Ea, the M2 curves overlap well for a given value of σ. Therefore,
by plotting the M2 with respect to reduced temperatures, it should be possible to experimentally
measure distributions of polymer chain dynamics near Tg from static solid-state 1H NMR experiments.
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2.3. Multiple Dynamic Processes

The impact of multiple dynamic processes on the M2 temperature behavior has previously been
discussed by several authors [40–48]. For two noncorrelated dynamic processes, the M2 behavior is
defined by Equation (A10). An example is shown in Figure 7 involving a slow dynamic process at lower
temperatures (β-relaxation), defined by the activation energy Ea(1), and a second dynamic process
(α-relaxation, glass transition) at higher temperatures defined by the activation energy Ea(2). In these
simulations, it is very easy to distinguish the two separate dynamic averaging transitions (Figure 7a)
by the two-step features that are predicted, consistent with the work of Bilski and coworkers [41].
The addition of Ea(1) distributions to the β-relaxation transition (Figure 7b) begins to obscure the
reduction step in the M2 resulting from this dynamic process. This M2 behavior is reminiscent of the M2

variation seen before the main Tg transition for the BTT-TCDDA networks (Figure 2). We were unable
to reach the low temperature rigid lattice M2 plateau prior to β-relaxation due to the experimental
limitations. The distinct M2 step has only rarely been observed for thermosets (see Figure 4 in
Reference [19]) consistent with the presence of significant distributions for β-relaxation dynamics.
These limitations result in the poorly constrained fitting of the initial β-relaxation process, such that
we will concentrate only on the larger α-relaxation (glass transition) region at higher temperatures.
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2.4. Distributions in BTT-TCDDA Networks

By considering the M2 variation near Tg and utilizing the reduced temperature, reference curves for
the M2 variation with either a Gaussian or a DC distribution were developed, as shown in Figure 8a,b,
respectively. With increasing distribution widths (increasing σ or decreasing ε), the M2 variation
across the glass transition region is broadened. For the Gaussian distribution, only σ changes on the
order of ±1 are distinguishable, while, for the DC distributions, ε variations on the order of ±0.05 can
be distinguished, except between ε = 0.5 and 1.0, where the impact on the M2 variation is minimal.
The overall M2 behavior in the reference curves is similar for the Gaussian and DC distribution models,
but they become slightly more distinct for very large distribution widths. For the current study,
the differences in the distribution widths as a function of the composition R are not large enough for
the M2 analysis to reliably distinguish between the Gaussian and DC distribution models.

The M2 temperature variation for the BTT-TCDDA networks are plotted in Figure 8c,d on the
Gaussian and DC distribution reference curves. There is clearly an increase in the distribution with
the decreasing R, and assuming a Gaussian distribution, we can assign σ accordingly. Starting
from σ < 1 for R = 0.47 and then increasing to σ = 2 for R = 0.19, σ = 3 to 4 for R = 0.09 and σ = 5 for
R = 0.0. The M2 response for the R = 0.47 and R = 0.32 curves were not distinguishable and suggest that
the distribution change between these two R compositions is within one sigma. Similarly, assuming a
DC distribution, ε > 0.4 for the R = 0.47 and R = 0.32 compositions (recall that, between ε = 0.5 and
1.0, the reference curves are indistinguishable), then the distribution width increases with ε = 0.35 for
R = 0.19, ε = 0.3 for R = 0.09, and to ε = 0.25 for the R = 0.0 network. It is also important to note that the
M2 behavior for the R = 0.0 BTT-TCDDA network is not symmetric around Tg, which we have attributed
to the degradation of this material at the very high temperatures (> 600 K or > 325 ◦C) achieved in
the variable temperature experiments for this composition, and produced irreversible changes in the
M2 behaviors. These results are summarized in Table 1 and reveal that, in the BTT-TCDDA networks,
the distribution in Ea (and, correspondingly, τc) increases with the decreasing R. This is consistent with
the picture of increased heterogeneous dynamics due to the chain-growth mechanism being dominant
at high acrylate concentrations.
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Figure 8. Reference curves for spectral second moment (M2) variation as a function of the distribution
widths for (a) a Gaussian distribution in Ea, (b) a Davidson-Cole distribution in correlation times,
and (c,d) examples of estimating distribution widths for the BTT-TCDDA networks. Only selected R
values are shown for clarity (see additional discussion in text). For the experimental data, the M2 was
normalized by M2 = 540 kHz2 to reflect the partial averaging due to the β-relaxation dynamics present
prior to the Tg.

2.5. Dynamic Correlation Times

While the reference curves presented above allowed the distribution in activation energies or
correlation times to be assessed, we also wanted to explore the impact distributions have on the
Arrhenius analysis that had assumed a single correlation time when analyzing the M2 temperature
behavior. An “effective” correlation time, τeff, to describe the polymer chain fluctuations near the Tg was
determined using Equation (A6) (additional discussion is provided in the Appendix A) [6,7,19,20,49].
Activation energies were then estimated assuming the Arrhenius behavior of τeff in the high temperature
limit. The low temperature plateau shows an invariant τeff and is an artifact of the dynamics not being
fast enough at these low temperatures to average the dipolar coupling (i.e., very slow motions are
not probed by the 1H M2). For a Gaussian distribution of activation energies with small σ (Figure 9a),
the linear Arrhenius behavior through the glass transition is easily fit, giving well-defined activation
energies (± 0.5 kJ/mol). With the increasing σ, defining the linear region for analysis becomes more
difficult. For example, assuming a Gaussian distribution with increasing σ (Figure 9b), the variation
of τeff across the Tg shows more curvature. This is intuitively consistent, because there are both
dynamic processes that can average the dipolar coupling active at lower temperatures (lower Ea),
as well as dynamics requiring higher temperatures (higher Ea) to become active. The curvature in
the τeff high-temperature behavior increases the error in measuring the Ea and can become as large
as ± 5 kJ/mol (for the variation in distributions shown in Figure 9b), depending on the temperature
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range for which the linear regression is defined. The average Ea for a Gaussian distribution can be
calculated from the temperature of the midpoint in the M2 transition regardless of σ (Figure 3a), if the
pre-exponential τ0 factor is known and is invariant (see Section 2.6), but the M2 line shape analysis
does not allow these two parameters to be distinguished [38].
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Figure 9. Simulated Arrhenius behavior of the effective correlation time (τeff) obtained from the
M2 using Equation (A6), assuming (a) different activation energies (Ea) for the dynamic process
(τ0 = 0.5905 ns, fixed), (b) assuming a MDist

2 (Equation (A7)) for a Gaussian Ea distribution with a
mean Ea = 33 kJ/mol (Equation (A8)), and (c) assuming a MDist

2 for a Davidson-Cole distribution
(Equation (A9)).

Similarly, increasing the DC distribution also enhances the curvature of the τeff temperature
behavior (Figure 9c), but is slightly less pronounced compared to the larger Gaussian distributions
and can produce an uncertainty of ± 2 kJ/mol for the range of ε evaluated. Since the DC distribution
is nonsymmetric, the average τc varies with the increasing ε and is responsible for the shifting of
the midpoint in the M2 transition (Figure 4b). An inspection of Figure 9b,c shows that the difference
in the τeff behavior between the Gaussian or DC distribution is subtle and would be difficult to
distinguish experimentally.

In the presence of multiple dynamic processes, the temperature behavior of the τeff increases in
complexity, as explored in Figure 10. Recall that the τeff estimated using Equation (A6) assumes a
single dynamic process. Inversion of the M2 variation in the presence of multiple dynamic processes
(Equation (A10)) to define a single effective τeff is not possible, such that Equation (A6) is strictly valid
only for a single motion. If the M2 transitions are well-separated (the dynamic motions have very
different Ea) and one considers each M2 transition separately, then it is possible to obtain more accurate
Ea estimates. By estimating a single τeff for systems containing multiple dynamic processes, an incorrect
estimate for the Ea describing the initial transition (β-relaxation) is observed for both the Gaussian and
DC distributions results (Figure 9b,c) and should be avoided. If the entire β transition in the M2 could
be experimentally measured, then it would be possible to correctly determine the Ea(1). As noted
previously, experimentally, our NMR probe limits us from reaching very low temperatures and prevents
a complete analysis of the β transition. Figure 10a,c do reveal that using a τeff for the α-relaxation
process allows the correct measurement of the Ea(2) if the first dynamic process (i.e., β-relaxation)
is well-separated (Ea > 40% different). Therefore, the activation energy corresponding to the glass
transition temperature can be measured and will be the focus of the subsequent analysis for the
BTT-TCDDA networks.
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variations in the activation energies Ea(1) of the first motion, (b) an expansion of the M2 transition for
the first motion, (c) behavior assuming a Gaussian distribution of Ea(1), and (d) an expansion of the M2
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regions, respectively.

2.6. Arrhenius Behavior for TCDDA-BTT Networks

Using the insight from the discussion above, the Arrhenius behavior of τeff for the BTT-TCDDA
networks for different compositions is shown in Figure 11 and summarized in Table 1. Only the
high-temperature glass transition (α-relaxation) was evaluated, with the Ea for the R = 0.0 network
not reported because of an insufficient number of high-temperature data points. The Ea values are
~2 times smaller than those we reported for epoxy thermosets [19] and reflect the lower Tg values
in these thiol-acrylate networks. When decreasing R, the activation energy decreases from 29.2 to
16.7 kJ (even though the Tg is increasing), while the pre-exponential term (τ0) increases by a factor of
10 over the same R range (Table 1). Both Ea and τ0 reveal a linear dependence in the composition ratio
(R) (Figure S4). The activation energy (Ea) increases for networks with larger R, while the entropy of
activation (ln(τ0)) decreases for larger R. This behavior may be related to differences in the free volume
fraction of the BTT and TCDDA moieties and the relative contributions of each to the network free
volume with changing R compositions. Similar trends in Ea and τ0 have been observed for the polymer
relaxation in nano-patterned polymer films [50] and polymer thin films [51]. From the Arrhenius
behavior of τeff, a compensation or isokinetic temperature (Tcomp) was determined (Figure 11b) to
be ~333 K (60 ◦C), which is below the Tg for all R compositions but falls near the cure temperature
(25 ◦C). The compensation temperature corresponds to that temperature at which the chain dynamics
are equivalent for all R networks.
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A linear correlation between the pre-exponential factor and the activation energy is observed for
these BTT-TCDDA networks (Figure 12a) and is an example of the compensation effect or enthalpy
entropy compensation (EEC) [52]. The EEC phenomena is commonly reported in glass-forming polymer
liquids [53–55]. The physical significance of compensation in polymers is still under discussion but has
been related to the presence of cooperative dynamics during the glass transition [56,57], along with
local structural heterogeneity and distributions of corresponding dynamic activation energies [58].
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Figure 12. (a) Correlation between the measured correlation time pre-exponential factor (τ0) of the
Arrhenius equation (Equation (2)) and the activation energy (Ea) and (b) the τc distributions from the
experimental results in Table 1 for the different BTT-TCDDA networks. For the R = 0.0 composition,
Ea and τ0 were estimated from the linear dependence of these parameters with R, as shown in Figure S4.
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Using Table 1, the distributions in the correlation times (τc) for the different network compositions
are shown in Figure 12b. These results support the notion that, during the cure of a homogeneous
network, such as R = 0.47, the chain dynamics are very uniform, as the polymer chains are trapped in
the glassy phase during sample vitrification. In contrast, during the cure of heterogeneous networks,
such as R = 0.0, there is a distribution of chain dynamics where a population of mobile chains is
retained as the material enters the glassy phase. This mobile fraction allows for residual functional
groups to become spatially near each other due to chain diffusion, leading to additional crosslinking at
a given cure temperature and, subsequently, higher Tg values. Continued crosslinking (and increasing
Tg) will shift the distribution of polymer chain dynamics to slower τc values, until there are no
longer any mobile chain fragments available that would permit further crosslinking. The remaining R
compositions are intermediate between these limiting networks.

3. Materials and Methods

3.1. NMR Spectroscopy

Wide-line solid-state 1H NMR spectra were acquired on a Bruker Avance III instrument operating
at an observe frequency of 400.14 MHz using a 7-mm high-temperature DOTY MAS probe (DOTY
Scientific Inc, Columbia, SC, USA) under static (non-spinning) conditions. All 1D static 1H NMR
spectra used a Hahn echo (HE) pulse sequence with an inter-pulse delay of 10 µs, 16 scan averages,
and a 5-s recycle delay. Variable temperature experiments were conducted between 233 K (−40 ◦C) and
673 K (+400 ◦C) using a 5-min temperature equilibration prior to acquisition. The second moment (M2)
of the 1H NMR spectra was evaluated using Equation (1) using MATLAB (MathWorks, Inc., Natick,
MA, USA). The NMR observed glass transition temperature Tg(NMR) was obtained by fitting the M2

temperature variation using:

M2(T) = M′′

2 +
M′2

1 + exp
[
−

(
T−Tg(NMR)

b

)] (3)

where M′2 is the motionally averaged moment at temperatures just prior to the Tg transition, M′′

2 is the
residual second moment above the Tg transition, and 1/b is the rate of the temperature-induced change
occurring at Tg. The limits were chosen near Tg to separate the transition from the other motional
(i.e., β-relaxation) M2 variations. The distribution analysis used reduced temperatures ((T-Tg)/Tg)
incorporating Tg(NMR) [19]. In general, Tg(NMR) was found to be higher than the Tg determined
from DMA analysis and reflects the NMR time probed through the averaging of the dipolar coupling.

3.2. Materials

The preparation of these polymer materials has recently been detailed [20]. Briefly, tricyclodecane
dimethanol diacrylate (TCDDA) and the aromatic comonomer 1,3,5-benzenetrithiol (BTT) were mixed
with different ratios of the reactive functional groups defined by the ratio R = (SH)0/(C=C)0, where (SH)0

and (C=C)0 were the initial concentrations of the thiol and acrylate functional groups, respectively.
The photo initiator p-xylylene bis(N,N-diethyldithiocarbamate) (XDT) was added to the mixture at
a 1 wt% concentration. The samples were photocured at room temperature (RT) using a Henkel
(Düsseldorf, Germany) Loctite Zeta 7400 UV lamp. The light intensity was 100 mW/cm2 at 365 nm
(300 mW/cm2 at 254 nm) measured using a Thorlabs (Newton, NJ, USA) PM100D power meter with a
S120VC photodiode sensor. The sample temperature was observed to increase to ~80 ◦C during the UV
cure. After photocuring, the samples were further thermally post-cured (in the absence of UV light) by
heating to 250 ◦C at 3 ◦C/min.
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4. Conclusions

The impact of distributions in activation energies and correlation times describing dynamic
motions on the temperature behavior of the NMR spectral second moment, M2, were evaluated and
allowed methods to be developed for the experimental measurement of distributions and activation
energies. It was demonstrated that, with the use of a Tg-reduced temperature scale, it is possible
to directly compare the M2 behavior during the glass transition of polymers over a wide range of
conditions. A set of reference curves were developed to address the impact of distribution widths,
assuming a Gaussian distribution of activation energies or a Davidson-Cole distribution of dynamic
correlation times. These reference curves were used to estimate changes in the distributions from the
1H NMR M2 temperature variations for a series of BTT-TCDDA networks. These NMR M2 analyses
demonstrated that there is an increase in the distribution of dynamic relaxation rates for the polymer
chain motion near Tg for networks dominated by chain-growth polymerization chemistry and that this
leads to increasing Tg values at a given cure temperature.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/5176/
s1: Figure S1: DMA analysis from the BTT-TCDDA networks. Figure S2: Simulated M2 behavior with variation in
pre-exponential correlation time. Figure S3. Simulated probability distributions. Figure S4. Correlations between
R and Ea or τ0.
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Appendix A

A.1. NMR Second Moment

The second moment (M2) of the NMR spectral line shape f (ω) as a function of frequency ω, around a
maximum at frequency ω0, is defined by [6,7]
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For static NMR spectra whose line width is dominated by dipolar couplings, M2 was first derived by Van
Vleck [59], with the impact of molecular reorientation further described by Powles and Gutowsky [49,60]:
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For N identical nuclei, M2 is the average over the summation of the N(N-1) dipolar interactions [45]:
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In the presence of dynamics, the pair-wise moments are related to the spectral density describing the
correlation function of the reorientation, where the line width ±δν defines the frequencies impacting the
M2 [41,42,45,60]:
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For a single dynamic process, the second moment is a function of the motional correlation time and can be
defined by [49,60,61]
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where ln cτ is the log mean correlation time and σ  is the log of the standard deviation. An 
equivalent Gaussian expression involving a distribution in the Ea can also be used. The Davidson-
Cole (DC) distribution [39] is another function commonly used to interpret dynamics in polymers 
and glasses and is defined by [39,62] 
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where Mi
2 is the second moment at a given temperature i, M0

2 is the rigid lattice limit of the second moment,
〈M2〉 is the completely motionally averaged second moment for that dynamic process, and δω = 2ωδν =

√
M2.

The correlation time at a given temperature is directly obtained from Equation (A5).
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Here, we have denoted it as an effective correlation time to reflect the possibility of distributions and multiple
dynamic processes, as discussed in the Results section. Equation (A6) is equivalent to the correlation time we used
previously based on the square of the line widths [19].

A.2. Correlation Time Distributions

It was also important to consider the presence of correlation time distributions to realistically describe the
polymer dynamics [62]. One can define the probability distribution of the correlation times as P(τc), allowing the
calculation of the average second moment using

MDist
2 = 〈M2〉+

(
M0

2 − 〈M2〉
)

2
π

∫
∞

0 P(τc) tan−1
(√

M2τc
)
dτc

where
∫
∞

0 P(τc) dτc = 1
(A7)

Many different distribution functions have been developed to describe dynamics in solids [37,62].
The distributions are commonly formulated using the dimensionless reduced parameter z = ln(τc = /τ∗c),
where τ∗c is a characteristic correlation time, such as the limit or center correlation time of the distribution.
For example, a Gaussian distribution of the activation energies (Ea) gives rise to the log-Gaussian distribution of τc
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where ln cτ is the log mean correlation time and σ  is the log of the standard deviation. An 
equivalent Gaussian expression involving a distribution in the Ea can also be used. The Davidson-
Cole (DC) distribution [39] is another function commonly used to interpret dynamics in polymers 
and glasses and is defined by [39,62] 
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where ln τc is the log mean correlation time and σ is the log of the standard deviation. An equivalent Gaussian
expression involving a distribution in the Ea can also be used. The Davidson-Cole (DC) distribution [39] is another
function commonly used to interpret dynamics in polymers and glasses and is defined by [39,62]
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equivalent Gaussian expression involving a distribution in the Ea can also be used. The Davidson-
Cole (DC) distribution [39] is another function commonly used to interpret dynamics in polymers 
and glasses and is defined by [39,62] 
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with z = ln
(
τc = /τ0

c

)
, τ0

c is the maximum correlation time in the distribution, with an Arrhenius temperature
dependence, and ε is dimensionless parameter that specifies the breadth of the DC distribution. The DC model
incorporates the idea of defect regions within the network that have lower Ea with correlation times that are smaller
than τ0

c , the characteristic correlation time of chain dynamics, while slower motions (larger Ea) are completely
missing or quenched.

A.3. Internal Dynamic Impact on the Second Moment

The variations of the NMR line shape M2 due to averaging from multiple, complex internal dynamics have
been described by a variety of different groups [40–48] and have included combinations of methyl tunneling and
jump dynamics, 2-site and 3-site motions, and 3-site jumps plus and molecular reorientation, as well as diffusion
across lattice sites. The temperature variation of the second moment M2 in the presence of two uncorrelated
dynamics, leading to the dipolar averaging, is described by [41]
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