
 International Journal of 

Molecular Sciences

Review

The Emerging Role of Exosomes in Diagnosis,
Prognosis, and Therapy in Head and Neck Cancer

Linda Hofmann 1 , Sonja Ludwig 2, Julius M. Vahl 1 , Cornelia Brunner 1 ,
Thomas K. Hoffmann 1 and Marie-Nicole Theodoraki 1,*

1 Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center,
89075 Ulm, Germany; linda.hofmann@uni-ulm.de (L.H.); Julius.Vahl@uniklinik-ulm.de (J.M.V.);
cornelia.brunner@uniklinik-ulm.de (C.B.); t.hoffmann@uniklinik-ulm.de (T.K.H.)

2 Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim,
68167 Mannheim, Germany; sonja.ludwig@umm.de

* Correspondence: marie-nicole.theodoraki@uniklinik-ulm.de

Received: 17 May 2020; Accepted: 4 June 2020; Published: 6 June 2020
����������
�������

Abstract: Exosomes, the smallest group of extracellular vesicles, carry proteins, miRNA, mRNA,
DNA, and lipids, which they efficiently deliver to recipient cells, generating a communication network.
Exosomes strongly contribute to the immune suppressive tumor microenvironment of head and neck
squamous cell carcinomas (HNSCC). Isolation of exosomes from HNSCC cell culture or patient’s
plasma allows for analyzing their molecular cargo and functional role in immune suppression
and tumor progression. Immune affinity-based separation of different exosome subsets, such as
tumor-derived or T cell-derived exosomes, from patient’s plasma simultaneously informs about
tumor status and immune dysfunction. In this review, we discuss the recent understanding of
how exosomes behave in the HNSCC tumor microenvironment and why they are promising liquid
biomarkers for diagnosis, prognosis, and therapy in HNSCC.
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1. Introduction

Head and neck squamous cell carcinomas (HNSCC) account for the sixth most common cancer
worldwide and are characterized by profound immune suppression. Dysregulated cytokine profiles,
impaired activity of effector immune cells, and elevated levels of regulatory immune cells contribute
to a highly immune suppressive tumor microenvironment (TME) [1–3]. Advanced and recurrent
HNSCC have limited therapeutic options, and disease outcome remains poor. Immune therapies
aiming to restore patient’s antitumor immune response emerged as promising treatment options for
HNSCC [1,3,4]. Antibodies blocking immune checkpoint molecules PD-1 (e.g., pembrolizumab and
nivolumab) or CTLA-4 (e.g., ipilimumab) aim to reactivate cytotoxic T lymphocytes [5,6] and are focus
of current clinical trials. Yet, only a fraction of patients with recurrent/metastatic and platin-refractory
disease [7,8] or platin naïve disease [9] who were treated with PD-1 antibodies showed prolonged
remission and improved survival [10].

Among the mediators contributing to immune suppression in HNSCC, exosomes have become of
special interest. Exosomes, the smallest (30–150 nm) of the extracellular vesicles (EVs), are released
by all cell types and mediate intercellular communication [11]. Exosomes differ from other EVs by
their origin-unique cargo, as their biogenesis process in the endosomal compartment allows them
to recapitulate the molecular characteristics of the parental cell [12]. Microvesicles are formed by
simple budding of the plasma membrane, whereas exosomes are released upon fusion of the plasma
membrane with multivesicular bodies (MVB), which are formed after inward budding of the endosomal
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membrane (Figure 1) [13]. The molecular cargo of exosomes consists of proteins, miRNA, mRNA,
DNA, and lipids [14] and is effectively delivered to recipient cells, generating a communication
network. Tumors, including HNSCC, are avid exosome producers and plasma of HNSCC patients is
enriched in exosomes [15]. As part of the communication network between tumor cells and immune
cells within the TME, exosomes play a major role in immune suppression and the regulation of
tumor progression [16–18]. Due to their unique biogenesis, their ability to circulate freely in body
fluids and their manifold molecular cargo, exosomes have emerged as promising noninvasive liquid
biomarkers [19,20]. Several studies showed recently that exosomes have great potential as liquid
biomarkers in HNSCC not only for disease activity and tumor stage but also for level of immune
suppression and therapy response and outcome [21–24].
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Figure 1. Schematic representation of exosome biogenesis and molecular cargo. Exosomes are formed 
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bodies (MVB). Upon fusion of MVBs with the plasma membrane, exosomes are released in the 
extracellular space. In contrast, microvesicles are formed by simple budding of the plasma membrane. 
The molecular cargo of exosomes consists of proteins, miRNA, mRNA, DNA, and lipids. On their 
surface, they carry the tetraspanins CD9, CD63, and CD81, commonly referred to as “exosomal 
markers,” adhesion molecules (e.g. intercellular adhesion molecule ICAM) and—in case of TEX—
tumor-associated antigens (TAA), which are specific to the cell of origin. Further, the presence of 
immune suppressive proteins such as CTLA-4, PD-L1, Fas-L, CD39, CD73, and TGFβ in HNSCC-
derived exosomes has been reported. Figure is created with BioRender. 

2. Isolation and Characterization of Exosomes 

Biomarker studies and clinical monitoring with high sample numbers require a fast, high-
throughput applicable method for isolation of pure and abundant exosomes. Commonly used 
methods such as ultracentrifugation, density-gradient centrifugation, or precipitation [25,26] do not 
fully meet these requirements. Mini-size exclusion chromatography (mini-SEC) has been established 
and standardized for this purpose (Figure 2) [27]. It enables reproducible isolation of unaggregated 
exosomes from plasma, which were morphologically and biologically intact as examined in 
functional coincubation assays with immune cells [27]. To estimate the quality and purity of exosome 
preparations and to ensure reliability and comparability of studies performed by different 
investigators, the 2018 minimal information for studies of extracellular vesicles (MISEV) guidelines 
provide criteria for the definition of EVs and recommendations regarding experimental setups and 
data interpretation [28]. Accordingly, exosomes need to be characterized for morphology and shape 

Figure 1. Schematic representation of exosome biogenesis and molecular cargo. Exosomes are formed
through inward budding of the endosomal membrane resulting in the formation of multivesicular bodies
(MVB). Upon fusion of MVBs with the plasma membrane, exosomes are released in the extracellular
space. In contrast, microvesicles are formed by simple budding of the plasma membrane. The molecular
cargo of exosomes consists of proteins, miRNA, mRNA, DNA, and lipids. On their surface, they
carry the tetraspanins CD9, CD63, and CD81, commonly referred to as “exosomal markers,” adhesion
molecules (e.g., intercellular adhesion molecule ICAM) and—in case of TEX—tumor-associated antigens
(TAA), which are specific to the cell of origin. Further, the presence of immune suppressive proteins
such as CTLA-4, PD-L1, Fas-L, CD39, CD73, and TGFβ in HNSCC-derived exosomes has been reported.
Figure is created with BioRender.

2. Isolation and Characterization of Exosomes

Biomarker studies and clinical monitoring with high sample numbers require a fast,
high-throughput applicable method for isolation of pure and abundant exosomes. Commonly
used methods such as ultracentrifugation, density-gradient centrifugation, or precipitation [25,26]
do not fully meet these requirements. Mini-size exclusion chromatography (mini-SEC) has been
established and standardized for this purpose (Figure 2) [27]. It enables reproducible isolation of
unaggregated exosomes from plasma, which were morphologically and biologically intact as examined
in functional coincubation assays with immune cells [27]. To estimate the quality and purity of
exosome preparations and to ensure reliability and comparability of studies performed by different
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investigators, the 2018 minimal information for studies of extracellular vesicles (MISEV) guidelines
provide criteria for the definition of EVs and recommendations regarding experimental setups and
data interpretation [28]. Accordingly, exosomes need to be characterized for morphology and shape
by transmission electron microscopy, size by nanoparticle tracking, and the presence of endosomal
markers (such as TSG101) and tetraspanins (CD9, CD63, and CD81) by Western blot [28].
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Figure 2. Schematic representation of exosome isolation from plasma using mini-size exclusion
chromatography (mini-SEC). Precleared plasma is applied onto a Sepharose 2B column and eluted by
serially applying 1 mL PBS. Fraction #4 is enriched in morphologically intact, nonaggregated exosomes
as shown in the representative transmission electron microscopy (TEM) picture. Scalebar = 200 nm.
Figure is created with BioRender.

To examine the role of exosomes in HNSCC immune suppression and their potential as liquid
biomarkers, the molecular content of exosomes isolated from both cell culture supernatants and plasma
has been analyzed by different techniques, and results are presented in the following sections.

3. Exosomes Mediate Immune Suppression and Tumor Progression in HNSCC

Although plasma-derived exosomes are a mixture of exosomes derived from different cell types,
exosomes from supernatants of tumor cell lines are exclusively tumor-derived (TEX) with no other
exosomes present. Thus, the TEX molecular cargo represents a small copy of the parental tumor
cell [29]. Much of the current knowledge about the influence of exosomes on the TME was gained by
analyzing TEX derived from supernatants of human tumor cell lines (Table 1). Culture conditions of
several HNSCC cell lines have been optimized for use with mini-SEC to yield best TEX purity and
recovery [30]. Various studies showed that TEX carry immune suppressive proteins and alter the
function of recipient immune cells resulting in immune dysfunction [31–33]. Even more, TEX were
shown to reduce proliferation of CD8+ T cells and induce their apoptosis [31,33]. Simultaneously,
TEX promoted expansion, suppressive activity, and resistance of apoptosis of regulatory T cells
(Treg) [31,34,35]. TEX-mediated changes on T lymphocytes are described both on transcriptional and
functional levels. After incubation with TEX, T cells showed remarkable changes in mRNA expression
of various immune response-related genes. These changes translated into reduced CD69 expression on
activated T cells and increased production of immune-suppressive adenosine by Treg [32].
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Further, TEX were shown to induce tumor innervation [36] and angiogenesis through
reprogramming of endothelial cells within the TME [37]. Migration and invasion were induced
in a poorly metastatic oral cancer cell line when coincubated with TEX derived from a highly metastatic
cell line [38]. Oral squamous cell carcinoma (OSCC)-derived exosomes carrying EGFR transformed
normal epithelial cells into a mesenchymal phenotype, and the anti-EGFR therapeutic antibody
cetuximab inhibited this carcinogenic effect of TEX [39]. In response to TEX, oral keratinocytes
revealed a modulated transcriptome profile that contributed to cancer-associated pathologies such as
angiogenesis, immune evasion, and metastasis [40]. Another involvement of TEX has been found in the
context of hypoxia, a key factor driving cancer progression and metastasis [41]. As such, TEX derived
from hypoxic OSCC cells promoted migration and invasion of normoxic OSCC cells by delivery of
miR-21 [42].

Overall, these observations emphasize that TEX-mediated modulation of the TME contributes to
immune suppression, tumor growth, and metastasis in HNSCC.

So far, in vivo studies on the effect of systemically delivered TEX on HNSCC tumor progression
or immune suppression are rare (Table 2). Early studies with xenograft tumor models showed that
OSCC cell-derived exosomes promoted tumor growth in vivo [43]. Further, TEX derived from hypoxic
tumor cells induced tumor growth and metastasis in a xenograft model of OSCC [42]. More recently,
a 4-nitroquinoline 1-oxide (4NQO) carcinogen-induced orthotopic model of OSCC in C57BL/6 mice was
employed [37,44]. The tumorigenic compound 4NQO causes intracellular oxidative stress followed by
mutations and DNA strand breaks [45]. The oral mucosa finally undergoes a malignant transformation
process that mimics human oral cavity neoplastic transformation in vivo [46,47]. Intravenous TEX
administration to 4NQO-conditioned mice at a premalignant stage facilitated disease progression
from a premalignant epithelial to a malignant mesenchymal phenotype and reduced the number of
tumor-infiltrating lymphocytes [44]. Further, TEX administration resulted in increased vascularization
within the tumor and thus promoted angiogenesis in 4NQO-conditioned mice [37].

These findings confirm the pathophysiological role of TEX in HNSCC tumorigenesis and disease
progression in vivo and are summarized in Table 2. In addition, the 4NQO model represents a suitable
tool for further investigation of TEX-driven carcinogenesis in vivo.
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Table 1. Effects of exosomes on the tumor microenvironment: in vitro studies.

Exosome Source Isolation Method Outcome Reference

PCI-13 HNSCC cell line Differential centrifugation and
mini-SEC

TEX induced apoptosis of activated CD8+ T cells and modulated Treg
suppressor functions via cell surface signaling.

[33]

PCI-13 HNSCC cell line SEC and ultracentrifugation TEX inhibited signaling and proliferation of activated CD8+ T cells and
induced expansion of Treg.

[31]

PCI-13 HNSCC cell line SEC and ultracentrifugation TEX induced generation, expansion, biologic activity, and resistance to
apoptosis of Treg.

[35]

C15 and C17 PDX (patient-derived
xenograft) NPC cell line

Differential centrifugation and
sucrose gradient flotation

TEX facilitated Treg recruitment and expansion of CD25high FOXP3high Treg. [34]

PCI-13 HNSCC cell line Differential centrifugation, SEC,
and ultracentrifugation

TEX regulated expression of immune-function related genes in T cell subsets
translating into increased adenosine production and loss of CD69 expression

on activated T cells.

[32]

UM-SCC-1, UM-SCC-19, UM-SCC-47,
and 96-VU-147T-UP-6 HNSCC cell lines

Differential ultracentrifugation and
iodixanol gradient centrifugation

TEX and exosomes from patients (both plasma and tumor) stimulated
neurite outgrowth in PC12 neuronal model cells.

[36]

PCI-13 and UM-SCC47 HNSCC cell lines Differential centrifugation and
mini-SEC

TEX stimulated proliferation, migration, and tube formation of endothelial
cells, thus promoting angiogenesis.

[37]

HOC313 OSCC cell line SEC and ultracentrifugation TEX from highly metastatic cells induced cell growth and promoted cell
motility of poorly metastatic cells through the delivery of miR-1246.

[38]

HSC-3 and RT-7 OSCC cell lines Differential centrifugation and
Total Exosome Isolation Kit

(Invitrogen)

EGFR-positive TEX transformed normal epithelial cells into a mesenchymal
phenotype which was inhibited by cetuximab.

[39]

Ca1, CaLH2, SQCC/Y1, SVpgC2a, and
SVFN8 OSCC cell lines

Differential centrifugation and
ultracentrifugation

TEX changed transcriptome profile in oral keratinocytes regarding pathways
involved in matrix remodeling and immune modulation.

[40]

SCC-9 and CAL-27 OSCC cell lines ExoQuick Exosome Precipitation
Kit (System Biosciences)

TEX derived from hypoxic cells increased migration and invasion of
normoxic cells by delivery of miR-21.

[42]

HPV(+) UM-SCC-2, UM-SCC-47,
UPCI-SCC-90, HPV(−) PCI-13, and

PCI-30 HNSCC cell lines

Differential centrifugation and
mini-SEC

HPV(+) and HPV(−) TEX carried immune modulatory proteins and
inhibited T cell function. Only HPV(−) TEX suppressed dendritic cell

function.

[48]

HPV(+) UM-SCC-2, UM-SCC-47,
UPCI-SCC-90, HPV(−) PCI-13, and

PCI-30 HNSCC cell lines

Differential centrifugation and
mini-SEC

The proteomic cargo differed between HPV(+) and HPV(−) TEX. HPV(+)
TEX were enriched in CD47 and CD276, whereas HPV(−) TEX contained

tumor-protective/growth-promoting antigens, MUC-1 and HLA-DA.

[49]

HPV(+) SCC-90, SCC-47, SCC-104,
HPV(−) SAS, CAL-27, and CAL-33

HNSCC cell lines

Differential centrifugation and
ultracentrifugation

MiR-9-enriched TEX from HPV(+) HNSCC transformed macrophages into
the M1 phenotype and increased the radiosensitivity of HPV(+) HNSCC.

[50]
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Table 1. Cont.

Exosome Source Isolation Method Outcome Reference

HSC-3 and SCC-9 OSCC cell lines Differential centrifugation and
ultracentrifugation

TEX derived from cisplatin-resistant cells induced chemoresistance in
platin-naive cells and decreased DNA damage signaling in response to

cisplatin.

[51]

Primary, HNSCC patient-derived
cancer-associated fibroblasts

Differential centrifugation and
ultracentrifugation

TEX derived from cisplatin-resistant cancer-associated fibroblasts conferred
chemoresistance and an aggressive phenotype in cancer cells by transfer of

functional miR-196a.

[52]

KYSE30, KYSE70, and KYSE180 ESCC
cell lines

Differential centrifugation and
ultracentrifugation

Radioresistant cells showed a differential miRNA expression profile
compared to normal cells and exosomal miR-339-5p mediated regulation of

radiosensitivity.

[53]

UM-SCC-6 HNSCC cell line Differential centrifugation and SEC Proteomic analysis of TEX released from irradiated cells revealed
overexpressed proteins involved in response to radiation, ROS metabolism,

and DNA repair.

[54]

FaDu HNSCC cell line Total Exosome Isolation Kit
(Invitrogen) and ultracentrifugation

Proteomic profile of TEX released from irradiated cells was significantly
altered compared to TEX from nonirradiated cells.

[55]

BHY and FaDu HNSCC cell lines Differential centrifugation and
ultracentrifugation

TEX derived from irradiated cells promoted survival and proliferation and
conferred a migratory phenotype to recipient cancer cells.

[56,57]

Table 2. Effects of exosomes on tumor progression and immune suppression: in vivo studies.

Exosome Source Isolation Method Mouse Model Outcome Reference

OSC-4 OSCC cell line Total Exosome Isolation Kit
(Invitrogen)

OSC-4 xenografts implanted
into nude mice

TEX promoted growth rate of tumor xenografts,
which could be inhibited by continuous

administration of heparin.

[43]

SCC-9 and CAL-27 OSCC cell
lines

ExoQuick Exosome
Precipitation Kit (System

Biosciences)

CAL-27 xenografts implanted
into nude mice

Tumor-derived exosomal miR-21 induced tumor
growth and metastasis in a xenograft OSCC model.

[42]

PCI-13 and UM-SCC-47
HNSCC cell lines

Differential centrifugation and
mini-SEC

4-NQO oral carcinogenesis
mouse model

TEX promoted formation of defined vascular
structures within the tumor and thus, promoted

angiogenesis.

[37]

SCCVII, SCC-90, and PCI-13
HNSCC cell lines

Differential centrifugation and
mini-SEC

4-NQO oral carcinogenesis
mouse model

TEX promoted tumor progression and reduced
immune cell migration to the tumor.

[44]
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4. Molecular and Functional Profiles of Exosomes from HPV(+) and HPV(−) Tumors

Infection with human papillomavirus (HPV) belongs to the main etiologic risk factors for
HNSCC, especially in the oropharynx with an HPV prevalence of around 25% [58–60]. Clinical,
histopathological and molecular characteristics are different between HPV(+) and HPV(−) HNSCC [61].
HPV(+) tumors are generally more responsive to therapy and have a better prognosis and outcome with
an approximately 60% reduced risk of death compared to HPV(−) tumors [62–64]. TEX from HPV(+)
and HPV(−) HNSCC cell lines were analyzed regarding their differential capabilities to modulate
the antitumor immune response [48,49]. Both HPV(+) and HPV(−) TEX carried immunomodulatory
molecules. However, only HPV(+) TEX promoted immune activity of dendritic cells by driving their
maturation and the expression of antigen-processing machinery components on their surface [48].
Additionally, comparison of proteome profiles by mass spectrometry revealed differential content of
protein cargos in HPV(+) and HPV(−) TEX [49]. The presence of CD47, a supposed antiphagocytic
molecule, on HPV(+) TEX might support prolonged interactions with immune cells [49]. Recently,
HPV(+) TEX were found to foster M1 polarization of macrophages via miR-9, which may contribute to
radiosensitivity of HNSCC [50].

Overall, HPV(+) and HPV(−) TEX are supposed to differentially modulate antitumor immune
response thereby playing a role in disease progression and outcome. Hence, HPV(+) TEX might
promote antitumor immune response thereby improving outcome of patients with HPV(+) cancers.

5. Exosomes as Biomarkers for Disease Progression and Activity

Studies with exosomes isolated from plasma of HNSCC patients are a prerequisite to establish
their role as liquid biomarkers. HNSCC patients were shown to have significantly higher exosome
levels compared to healthy donors [15,27]. Further, the exosomal protein concentration and molecular
content are correlated with disease activity and tumor stage. Patients with active disease (AD) or
Union for International Cancer Control (UICC) high stage had significantly higher exosome levels
and higher levels of immune-suppressive molecules carried by these exosomes compared to patients
with nonevident disease (NED) or UICC low stage [15,21]. Consistent with the immune modulatory
characteristics of cell line-derived TEX, plasma-derived exosomes were shown to interfere with immune
cells as they suppressed activation and proliferation of T lymphocytes [27]. Even more, exosomes
derived from patients with AD were significantly more effective in inducing apoptosis of CD8+ T cells,
suppression of CD4+ T cell proliferation, and induction of Treg activity than exosomes from patients
with NED, thereby mediating stronger immune suppression [15]. Overall, plasma-derived total
exosomes can distinguish between healthy donors and HNSCC patients as well as between low- and
high-stage HNSCC.

The PD-1/PD-L1 pathway is an important immune suppressive mechanism operating in the TME
and presenting a promising drug target for antibody-based immune therapies in HNSCC [1,3,4]. Yet,
resistance to PD-1 blockade therapy is frequent. Exosomes derived from plasma of HNSCC patients
were found to carry biologically active PD-L1, which suppressed function of activated T cells [21].
Relative levels of PD-L1 on exosomes were associated with disease activity, clinical stage, and the
presence of lymph node metastasis. Patients whose exosomes showed high levels of PD-L1 had
active or advanced disease. Further, exosomes with high levels of PD-L1 strongly suppressed T cell
activity, whereas exosomes with low PD-L1 levels did not [21]. This immune-suppressive effect
was almost completely reversed by adding an anti-PD-1 antibody to the T cell cultures prior to
incubation with exosomes. In contrast to exosomal PD-L1, soluble PD-L1 levels did not correlate
with clinicopathological data [21]. These findings can be explained by increased protein degradation
of the unprotected soluble PD-L1 in contrast to stable PD-L1 integrated in the exosomal membrane.
Thus, PD-L1 on exosomes emerged as a promising biomarker for disease progression of HNSCC.
Similar correlations of exosomal PD-L1 with immune suppression and tumor growth have been later
reported for other tumor entities, such as melanoma or lung cancer [65–67]. In future, the influence of
PD-L1-positive exosomes on immune therapy and resistance needs to be evaluated.
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Exosomal miRNAs are supposed to have significant functions in the regulation of cancer
progression [68]. miR-21 has been identified as a common proto-oncogene and its target genes
are involved in several processes controlling carcinogenesis, such as proliferation, apoptosis, and
invasion [69]. Patients with OSCC were found to have significantly higher levels of serum exosomal
miR-21 compared to healthy volunteers [42]. Further, exosomal miR-21 levels correlated with T stage
and lymph node metastasis as well as with the tumor HIF-1α/2α expression, reflecting the hypoxic
status of the tumor [42]. Similar studies revealed that miR-21 in serum-derived exosomes correlated
with advanced tumor stage and metastasis in laryngeal (LSCC) [70] and esophageal squamous cell
carcinoma (ESCC) [71]. These studies emphasized the clinical impact of exosomal miR-21 as a valuable
biomarker for HNSCC progression.

Recently, a quantitative proteomics approach was applied to identify the protein content of
serum-derived exosomes in OSCC patients with or without evidence of lymph node metastasis and
compared to healthy controls [72]. Thereby, PF4V1, CXCL7, F13A1, and ApoA1, proteins involved
in regulation of metastasis and cancer progression, were found to be differentially expressed and
correlated to tumor differentiation level and metastasis. Receiver operating characteristic (ROC) curve
analysis indicated that a combination of different biomarkers improved diagnostic accuracy compared
to a single biomarker [72].

6. TEX and Non-TEX as Biomarkers for Tumor Status and Immune Dysfunction

Capture techniques based on immune affinity allow for the separation of exosomes according to
their origin or presence of tumor-specific epitopes on their surface. This way, distinct exosome subsets
can be analyzed regarding their potential as biomarkers. Using antibodies against chondroitin sulfate
proteoglycan 4 (CSPG4), a tumor antigen selectively expressed by melanoma and other malignant but
not normal cells [73,74], melanoma-derived TEX were successfully isolated from patients’ plasma [75].
However, the molecular heterogeneity of HNSCC makes it difficult to identify markers for this
tumor entity. A mix of antibodies recognizing antigens commonly overexpressed on HNSCC (EGFR,
MAGEA3, EpCAM, and CSPG4) has been used for the construction of a microarray for TEX capture
from plasma [22]. More recently, CD44v3 was evaluated as a tumor-associated protein to selectively
enrich TEX from plasma of HNSCC [76]. CD44v3 overexpression has been linked to tumor progression
and metastatic potential in HNSCC [77–79]. The molecular profile of CD44v3(+) TEX was strongly
immune suppressive and correlated with higher disease stage and lymph node metastasis. Thus,
CD44v3(+) TEX represented a potential biomarker of HNSCC activity and progression. A similar
immune-capture approach targeting CD45 on plasma-derived exosomes enabled separation of CD45(+)
hematopoietic cell-derived exosomes and CD45(−) TEX-enriched exosomes [76].

Exosomes present in plasma of HNSCC patients resemble a mix of TEX and non-TEX. Although TEX
might serve as biomarkers for tumor status, exosomes produced from immune cells can serve as
biomarkers for immune dysfunction [20,80]. Immune affinity-based capture with CD3 antibodies was
used to separate T cell-derived CD3(+) exosomes from CD3(−) exosomes [23,81]. CD3(−) exosomes
were CD44v3 positive and thus largely tumor derived. Both exosome subsets carried immune
regulatory proteins such as PD-L1, CTLA-4, COX-2, or CD15s and induced apoptosis of activated
T cells [23]. The cargo of both CD3(+) and CD3(−) exosomes correlated with tumor stage and nodal
status albeit the associations were weaker for the CD3(−), tumor-enriched fraction. Patients with
high-stage disease or lymph node metastasis had higher levels of immune-suppressive and lower
levels of immune-stimulatory markers compared to patients with low-stage disease or absence of
lymph node metastasis. CD3(−) exosomes from patients with advanced disease carried the highest
levels of enzymatically active CD39 and CD73 [81]. These exosomes spontaneously produced
immune-suppressive adenosine in the presence of exogenous adenosine triphosphate (ATP) and
induced adenosine production in Treg, as previously reported for total exosomes from plasma of
HNSCC patients [82]. In contrast, CD3(+) exosomes from patients with early disease carried significantly
higher levels of adenosine deaminase (ADA) and CD26, involved in adenosine degradation, compared
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to CD3(+) exosomes from patients with advanced disease, indicating that the latter bear higher immune
suppression [81]. By separating T cell-derived CD3(+) and TEX-enriched CD3(−) exosome subsets,
simultaneous assessment of immune cell competence and tumor status as well as tumor-induced
immune suppression was feasible.

In HNSCC, altered natural killer (NK) cell functions strongly contribute to the immune suppressive,
protumorigenic TME [83–85]. NK cells express the Fc receptor CD16, hence they are able to participate
in antibody-dependent cell-mediated cytotoxicity (ADCC) [86]. Recent data showed that CD16 is
also present on exosomes derived from plasma of HNSCC patients, and CD16 levels were higher on
total exosomes compared to TEX [87]. Further, CD16 levels on total exosomes but not TEX correlated
with tumor stage and tumor aggressiveness. Patients with high and advanced tumor stages had
significantly higher CD16 levels on total exosomes compared to low-stage patients. CD16-positive
exosomes emerged as mediators of immune suppression as they could mimic NK cells in their function
of cross-linking with antibody-coated malignant cells without implementing their cytotoxic function.
Further, CD16-positive exosomes might reduce the efficacy of antibody therapies by serving as
antibody-decoy as described for immune checkpoint inhibition with trastuzumab (anti-HER2 receptor
monoclonal antibody) [88].

A summary of TEX and non-TEX interactions involved in tumor progression and immune
suppression is presented in Figure 3; Figure 4.
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Figure 3. Summary of tumor-derived exosomes (TEX) interactions in head and neck squamous cell
carcinomas (HNSCC). TEX produced by parental tumor cells mediate intercellular communication
and play a key role in tumor progression and immune suppression. TEX induce angiogenesis by
reprogramming of endothelial cells (EC) [37] and growth, migration, and metastasis of parental
tumor cells [38–40,42]. Further, TEX alter the function of recipient immune cells resulting in immune
dysfunction. They reduce lymphocyte proliferation and induce lymphocyte apoptosis [15,23,27,31–33],
alter maturation of dendritic cells (DCs) and the expression of antigen-processing machinery components
on DCs depending on the TEX HPV profile [48,49], and induce suppression of cytotoxicity in natural
killer (NK) cells [15,27]. TEX carry enzymatically active CD39 and CD73 on their surface, thus being
able to produce immune-suppressive adenosine [15,81,82]. Additionally, TEX promote expansion,
suppressive activity, and adenosine production in regulatory T cells (Treg) [31–35]. Figure is created
with BioRender.
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cells [54,55]. Overexpressed proteins were assigned to cell division, DNA repair, and metabolism of 
radical oxygen species, indicating that the proteomic profile of TEX released by irradiated cells 
reflects radiation-induced changes of cellular processes [54,55]. Even more, TEX derived from 
irradiated HNSCC cells promoted proliferation and conferred a migratory phenotype to recipient 
cancer cells [56,57]. Overall, these studies on cell-line derived TEX indicate that exosomes play a 
functional role in the response of tumor cells to chemo- and radiotherapy. 
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Figure 4. Summary of non-TEX interactions in HNSCC. Non-TEX, mainly immune cell-derived
exosomes, contribute to the immune suppression in HNSCC and have a dual role in early versus
advanced disease. Although non-TEX from plasma of patients with early HNSCC have high levels of
CD26 and adenosine deaminase (ADA), which degrade immune-suppressive adenosine, non-TEX from
plasma of patients with advanced HNSCC have low levels of CD26 and ADA resulting in high levels of
immune-suppressive adenosine in those patients [81]. Further, the cargo of non-TEX correlated with
advanced HNSCC regarding the inhibition of effector T cells [23] and the presence of CD16, which
presumably competes with immune cells for antibody-dependent cellular cytotoxicity (ADCC) [87].
Figure is created with BioRender.

7. Exosomes as Biomarkers and Players in Response to Therapy and Outcome

Evidence from studies on cell-line-derived TEX (Table 1) suggests the involvement of exosomes
in the effective treatment of HNSCC, including resistance to chemo- and radiotherapy. In particular,
TEX derived from cisplatin-resistant OSCC cell lines were found to induce chemoresistance in
platin-naive OSCC cells and decrease DNA damage signaling in response to cisplatin [51]. Similarly,
TEX derived from cisplatin-resistant cancer-associated fibroblasts conferred chemoresistance and
an aggressive phenotype in HNSCC cells by transfer of functional miR-196a [52]. Radioresistant
ESCC cells were found to show differential miRNA expression profile and exosomal miR-339-5p
was supposed to mediate regulation of radiosensitivity [53]. Further, the proteomic profile of TEX
released from irradiated HNSCC cells was significantly altered compared to TEX from nonirradiated
cells [54,55]. Overexpressed proteins were assigned to cell division, DNA repair, and metabolism
of radical oxygen species, indicating that the proteomic profile of TEX released by irradiated cells
reflects radiation-induced changes of cellular processes [54,55]. Even more, TEX derived from
irradiated HNSCC cells promoted proliferation and conferred a migratory phenotype to recipient
cancer cells [56,57]. Overall, these studies on cell-line derived TEX indicate that exosomes play a
functional role in the response of tumor cells to chemo- and radiotherapy.

Rodrigues-Junior et al. analyzed the ability of exosomes to predict therapy outcome by
analyzing pooled plasma samples from locally advanced HNSCC patients who had complete or
incomplete response to chemoradiation therapy [89]. They identified a different proteomic profile
between exosomes derived from responders and nonresponders. In chemoradiosensitive responders,
proteins clustered in pathways related to FAS, p53, and apoptosis signaling. In chemoradioresistant
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nonresponders, proteins clustered in pathways related to tumorigenesis and angiogenesis pathways.
These findings suggest that the content of circulating plasma-derived exosomes has a relevant function
in the treatment response of HNSCC patients.

The role of exosomes and their molecular cargo for monitoring patient’s response to therapy
has been studied in a small cohort of patients with recurrent, therapy-refractive HNSCC undergoing
photodynamic therapy (PDT) [24]. PDT is a palliative treatment option in which, after accumulation of
a photosensitizer in the tumor, light activation induces a photochemical reaction with the production
of cytotoxic reactive oxygen species. This results in tumor cell damage, local inflammation, and
activation of innate and adaptive immune responses with the long-term development of an antitumor
immunity [90,91]. Exosomes isolated from plasma of patients treated with PDT at different time points
before and after therapy were analyzed regarding their potential to regulate epithelial-mesenchymal
transition (EMT), a process conversing tumors from an epithelial to a highly aggressive and invasive
mesenchymal phenotype [92]. Before therapy, exosomes from all patients showed a strong mesenchymal
profile. However, after therapy, levels of the mesenchymal marker N-cadherin decreased, whereas
levels of the epithelial marker E-cadherin showed a significant increase. Furthermore, the known EMT
inducer TGF-β was significantly reduced in exosomes after PDT. These exosomes were also able to
either promote or suppress EMT in recipient tumor cells dependent on the time point of exosome
harvesting before or after PDT. This dual potential of exosomes to modulate EMT in a TGF-β related
manner suggested that exosomes contributed to the mesenchymal to epithelial transition of the tumor
responding to PDT.

A recent study evaluated the predictive value of TEX and T cell-derived exosomes (separated
using CD3 capture) on therapy response in HNSCC patients treated with cetuximab, ipilimumab,
and radiation in a Phase I trial [22]. Exosomes were used to discriminate between patients whose
disease recurred within 2 years and patients who remained disease-free. The TEX/total exosome
ratio was assessed using the abovementioned microarray containing an antitumor antibody cocktail.
Only patients with recurrence showed a significant increase of TEX levels after therapy compared to
baseline, whereas disease-free patients had reduced TEX levels. Further, levels of CD3(+) exosomes
remained unchanged throughout therapy in disease-free patients, whereas they were elevated during
therapy in patients with recurrence. CD3(+)15s(+) Treg-derived exosomes seemed to contribute to this
increase of CD3(+) exosomes. Overall, these data suggest that exosomes can serve as biomarkers for
monitoring patients’ response to oncological therapy.

Until now, therapy-induced changes in exosomes have largely been studied using in vitro cell lines,
and only a few studies were performed with exosomes isolated from plasma of patients. Despite the
small patient cohorts, these results are promising and larger patient cohorts need to be investigated to
validate exosomes as biomarkers for therapy response and outcome.

Table 3 provides an overview of the presented studies on plasma or serum-derived exosomes
of HNSCC patients and highlights the analyzed exosome subsets and biomolecules as well as the
outcome of the study.
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Table 3. Exosome studies involving patients.

Exosome
Source

Isolation Method Exosome
Subset

Methods Molecules Outcome Prediction Reference

Plasma of
HNSCC
patients

Differential
centrifugation and

mini-SEC

Total exosomes Nanoparticle
tracking, western
blot, functional

coincubation
assays

- (Establishment
of mini-SEC)

Mini-SEC allows for simple and
reproducible isolation from human plasma
of exosomes retaining structural integrity

and functional activity.

– [27]

Plasma of
HNSCC

patients, n = 38

Differential
centrifugation and

mini-SEC

Total exosomes Western blot,
functional

coincubation
assays

- (Exosome-
mediated
immune

suppression)

Patients with active disease (AD) had
significantly higher exosome levels

compared to patients with nonevident
disease (NED). Exosomes from patients with
AD mediated stronger immune suppression

than exosomes from patients with NED.

Tumor
progression/

disease activity
and immune

status

[15]

Plasma of
HNSCC

patients, n = 40

Differential
centrifugation and

mini-SEC

Total exosomes On-bead flow
cytometry, and

functional
coincubation

assays

PD-L1 Levels of PD-L1 on exosomes correlated
with disease activity, UICC stage, and the

presence of lymph node metastasis. In
contrast, plasma levels of soluble PD-L1 did
not correlate with any clinicopathological

data. High PD-L1 levels, but not low PD-L1
level, exosomes suppressed T cell activity,

which could be attenuated with an
anti-PD-1 antibody.

Tumor
progression/

disease activity

[21]

Plasma of OSCC
patients, n = 108

ExoQuick Exosome
Precipitation Kit

(System
Biosciences)

Total exosomes miRNA
sequencing

miR-21 Exosomal miR-21 levels correlated with
advanced T classification, the presence of

lymph node metastasis, and tumor
HIF-1α/2α expression.

Tumor
progression/

disease activity

[42]

Serum of LSCC
patients, n = 52

ExoQuick Exosome
Precipitation Kit

(System
Biosciences)

Total exosomes miRNA analysis
(RT-PCR)

miR-21 Exosomal miR-21 and HOTAIR levels
correlated with advanced T classification

and UICC high stage.

Tumor
progression/

disease activity

[70]

Serum of ESCC
patients, n = 51

ExoQuick Exosome
Precipitation Kit

(System
Biosciences)

Total exosomes miRNA analysis
(RT-PCR)

miR-21 Exosomal miR-21 levels correlated with
advanced T classification, positive lymph

node status, and the presence of metastasis.

Tumor
progression/

disease activity

[71]
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Table 3. Cont.

Exosome
Source

Isolation Method Exosome
Subset

Methods Molecules Outcome Prediction Reference

Serum of OSCC
patients, n = 30

ExoQuick Exosome
Precipitation Kit

(System
Biosciences)

Total exosomes Quantitative
proteomics

approach and
bioinformatics

PF4V1, CXCL7,
F13A1, and

ApoA1

PF4V1, CXCL7, F13A1, and ApoA1 were
correlated to tumor differentiation level, the
presence of lymph node metastasis, and the
abusus of alcohol and tobacco. Combining

these biomarkers improved diagnostic
accuracy compared to a single biomarker.

Tumor
progression/

disease activity

[72]

Plasma of
HNSCC

patients, n = 44

Differential
centrifugation and

mini-SEC

Total exosomes,
T cell exosomes

(CD3
separation), and

TEX (CD44v3
capture)

On-bead flow
cytometry

CD44v3 CD44v3 levels on CD3(−) exosomes were
higher in patients than in healthy donors

and correlated with UICC stage and lymph
node metastasis. The molecular profile of

CD44v3(+) exosomes was strongly
immune-suppressive and correlated with
disease stage and lymph node metastasis.

Tumor
progression/

disease activity

[76]

Plasma of
HNSCC

patients, n = 22

Differential
centrifugation and

mini-SEC

T cell exosomes
and TEX (CD3

separation)

On-bead flow
cytometry and

functional
coincubation

assays

PD-L1, CTLA-4,
COX-2, and

CD15s

CD3(+) and CD3(−) exosomes carried
immune regulatory proteins and induced

apoptosis of activated T cells. The cargo of
both subsets correlated with tumor stage

and nodal status albeit the associations were
weaker for the CD3(−) fraction.

Tumor
progression/

disease activity

[23]

Plasma of
HNSCC

patients, n = 14

Differential
centrifugation and

mini-SEC

T cell exosomes
and TEX (CD3

separation)

On-bead flow
cytometry,
functional

coincubation
assays, and mass

spectrometry

CD39, CD73,
ADA, CD26,

and adenosine

High CD39/CD73 levels and adenosine
production were found in patients with
UICC high stage. ADA/CD26 levels on

CD3(+) exosomes correlated with UICC low
stage.

Tumor
progression/

disease activity
and immune

status

[81]

Plasma of
HNSCC

patients, n = 14

Differential
centrifugation, SEC,

and
ultracentrifugation

Total exosomes Mass
spectrometry and

functional
coincubation

assays

CD39 and CD73 Exosomes carried enzymatically active
CD39 and CD73 and, when supplied with

exogenous ATP, hydrolyzed it to adenosine.

Immune status [82]

Plasma of
HNSCC

patients, n = 53

Differential
centrifugation and

mini-SEC

Total exosomes
and TEX
(CD44v3
capture)

On-bead flow
cytometry

CD16 CD16 on total exosomes but not TEX,
correlated with advanced T classification

and UICC high stage.

Tumor
progression/

disease activity

[87]
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Table 3. Cont.

Exosome
Source

Isolation Method Exosome
Subset

Methods Molecules Outcome Prediction Reference

Plasma of
HNSCC
patients

undergoing
chemoradiation
therapy (CRT),

n = 12

Beads coated with
cholera toxin chain

B (CTB) and
annexin V (AV)

CTB- and
AV-exosomes

Antibody array List of potential
markers

analyzed by the
array

Exosomes from responders and
nonresponders to CRT showed a different
proteomic profile. Differentially present

proteins in exosomes from responders and
nonresponders were associated to FAS, p53,
and apoptosis pathways or tumorigenesis

and angiogenesis, respectively.

Therapy
response/
outcome

[89]

Plasma of
HNSCC
patients

undergoing
photodynamic
therapy (PDT),

n = 9

Differential
centrifugation and

mini-SEC

Total exosomes On-bead flow
cytometry and

functional
coincubation

assays

EMT-associated
markers (TGFβ,
E-cadherin, and

N-cadherin)

Exosomes harvested before PDT had a
mesenchymal profile and enhanced tumor
proliferation, migration, and invasion. In

contrast, exosomes harvested after PDT had
an epithelial profile, restored the epithelial
morphology of tumor cells, and inhibited

their proliferation, migration, and invasion.

Therapy
response/
outcome

[24]

Plasma of
HNSCC
patients

enrolled in a
phase I clinical

trial and
receiving

cetuximab,
ipilimumab,

and radiation,
n = 18

Differential
centrifugation and

mini-SEC

T cell exosomes
and TEX (CD3

separation)

On-bead flow
cytometry and

antibody
microarray

PD-L1, CTLA-4,
and CD15s

In recurrent patients, TEX levels, total
CD3(+), CD3(−) PD-L1+, and CD3(+)

CD15s+ (Treg-derived) exosomes increased
from baseline levels. In disease-free patients,
TEX levels decreased, CD3(+) and CD3(+)
CD15s+ exosomes stabilized and CD3(+)

CTLA4+ exosomes declined after
ipilimumab therapy.

Therapy
response/

outcome and
disease

recurrence

[22]
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8. Exosomes as Therapeutic Vesicles

Patients with metastatic or recurrent HNSCC often do not respond to conventional therapies or
develop drug resistance. Targeted delivery of chemotherapeutics might increase the effectiveness of
such treatments, prevent chemoresistance, and decrease cytotoxic side effects. Exosomes, as endogenous
nanocarriers for various molecules, are emerging as drug delivery vehicles both for chemotherapeutics
as well as therapeutic short interfering RNAs (siRNA) due to their low immunogenicity, strong ability to
cross physiological barriers, good biodistribution, and bioavailability [93–95]. Their potential for drug
delivery has been examined in several tumor entities such as pancreas carcinoma [96,97] and breast
cancer [98,99], whereas studies on HNSCC are rare. Exosomes loaded with the chemotherapeutics
doxorubicin or paclitaxel were shown to accumulate efficiently in target tumor tissues and inhibit
tumor growth in a breast cancer mouse model without overt side effects [98,99]. In another study,
incorporation of paclitaxel in exosomes increased its cytotoxicity against multidrug-resistant cancer
cells [100], indicating the possibility to overcome drug resistance by the use of exosome-encapsulated
chemotherapeutics. Exosomes carrying siRNAs specific to oncogenic Kras have been shown to suppress
cancer in multiple mouse models of pancreatic cancer, significantly increasing overall survival [97].
The same study revealed enhanced retention of these exosomes, compared to liposomes, in the
circulation of mice due to reduced clearance by the mononuclear phagocyte system. In fact, exosomes
have already undergone clinical trials in melanoma [101], colorectal [102], and lung cancer [103,104].
Recent data showing that exosome-delivered miRNA-138 efficiently conferred its OSCC antitumor
functions in vitro and in vivo support the presumption that exosomes have potential as delivery
agents also in HNSCC [105]. Further, engineered exosomes have been considered as therapeutic
anticancer vaccines for HPV-associated tumors [106]. This approach is based on the mutant HIV-1
negative regulatory factor (Nefmut) protein, which remarkably incorporates into exosomes and acts as
an exosome-anchoring protein upon fusion with heterologous proteins [107,108]. Upon inoculation
in mice, Nefmut/HPV-E7 exosomes induced an E7-sepcific cytotoxic T lymphocyte (CTL) immune
response [109]. Even more, intramuscular immunization of mice with a DNA vector encoding Nefmut

fused to HPV-E7 provided the animals with a source of endogenously engineered EVs, induced an
E7-specific CTL activity, and blocked growth of syngeneic tumor cells in immunized mice bearing
subcutaneous HPV-positive tumors [110].

Given these intriguing findings, extensive investigations such as evaluation of exosome
pharmacokinetics and quantitative analysis in biological fluids [111] are required and ongoing
to implement exosome-based drug delivery for HNSCC.

9. Conclusion and Outlook

The unique molecular cargo of exosomes, either tumor or immune cell-derived, allows to alter the
function of recipient cells. The diverse exosome-mediated changes in the TME contribute to tumor
progression and immune suppression. Due to the importance of exosomes in HNSCC carcinogenesis
and antitumor immune response, exosomes may serve as potential biomarkers of diagnosis, prognosis,
and therapy response in HNSCC. Although first studies on exosomes isolated from patient’s plasma
show promising results, there is a need to validate the diagnostic and prognostic profile of exosomes
in large patient cohorts and clinical trials. Further, studies need to explore the clinical application as
therapeutic vesicles in HNSCC.
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Abbreviations

AD Active disease
ADA Adenosine deaminase
ADCC Antibody-dependent cell-mediated cytotoxicity
ATP Adenosine triphosphate
CSPG4 Chondroitin sulfate proteoglycan 4
CTL Cytotoxic T lymphocyte
DC Dendritic cell
EC Endothelial cell
EMT Epithelial-mesenchymal transition
ESCC Esophageal squamous cell carcinoma
EV Extracellular vesicle
HNSCC Head and neck squamous cell carcinoma
HPV Human papilloma virus
LSCC Laryngeal squamous cell carcinoma
MISEV Minimal information for studies of extracellular vesicles
MVB Multivesicular body
NED Nonevident disease
Nef Negative regulatory factor
NK Natural killer
OSCC Oral squamous cell carcinoma
PDT Photodynamic therapy
ROC Receiver operating characteristic
SEC Size exclusion chromatography
siRNA Short interfering RNA
TEM Transmission electron microscopy
TEX Tumor-derived exosomes
TME Tumor microenvironment
Treg Regulatory T cells
UICC Union for International Cancer Control
4NQO 4-nitroquinoline 1-oxide
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