Novel comprehensive bioinformatics approaches to
determine the molecular genetic susceptibility profile of
moderate and severe asthma

Hatem Zayed *

Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar
University, Doha, Qatar

*Correspondence to: Hatem Zayed, PhD, email: hatem.zayed@qu.edu.qa; Tel.:
00974-4403-4809

File S1. The programming scripts and software parameters. Data analysis, tables,
and diagrams were created using several programming tools. These tools include
many programming languages and a variety of softwares. Some of these programming
languages have been used to extract and handle genomic data. Programming
languages Python3, R, PERL, C, and Shell programming language.

- Software and online tools were used for construction of the diagrams:

e iToL : http://itol.embl.de/

e Circos : http://circos.ca/

e Venn : http://bioinformatics.psb.ugent.be/webtools/\Venn/

e NCBI Geo2R : https://www.nchi.nlm.nih.gov/geo/geo?2r/

e Cytoscape : https://cytoscape.org/

e Cytoscape PINA4MS: http://apps.cytoscape.org/apps/pinadms

e Ensembl biomart: https://m.ensembl.org/info/data/biomart/index.html

e Ensembl Human : https://www.ensembl.org/Homo sapiens/Info/Index

e BLAST_package:
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.

e DAVID : https://david.ncifcrf.gov/

e GeneGO™ MetaCore™ software : https://portal.genego.com/

e 1000 genome project SNPs (https://www.internationalgenome.org/data).

e Human_genome_annotation:ftp://ftp.ensembl.org/pub/release-
100/gff3/homo_sapiens

http://itol.embl.de/
http://circos.ca/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://cytoscape.org/
http://apps.cytoscape.org/apps/pina4ms
https://m.ensembl.org/info/data/biomart/index.html
https://www.ensembl.org/Homo_sapiens/Info/Index
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://david.ncifcrf.gov/
https://portal.genego.com/
https://www.internationalgenome.org/data
ftp://ftp.ensembl.org/pub/release-100/gff3/homo_sapiens
ftp://ftp.ensembl.org/pub/release-100/gff3/homo_sapiens

- Bioinformatics tools used data retrieval and Figures construction:

Circos, Ensembl biomart, Ensembl Human BLAST _package : Figure 1
The iToL : Figure 3

The Venn tool : Figure 2

The Cytoscape software : Figure 4

Cytoscape PINA4MS : Figure 5

DAVID and GeneGO™ MetaCore™ software: Figures 6, 7 and 8.

- Protocol used for data analysis:

The NCBI tool for analysis of the Gene Expression Omnibus (GEO), GEO2R,
was used to analyze data from the GSE43696 dataset.

The 250 differentially expressed genes (DEGs) were downloaded from the GEO.

The DGEs affymetrix microarray codes and gene names extracted from the table
from step 2 were used for the gene enrichment analysis, using DAVID and
GeneGO™, MetaCore™ software was used to refine the enrichment of these
genes in the context of related pathways (Figures 6, 7, and 8).

Details on DEGs obtained from step 1 included the chromosomal location in
karyotype format was used for Venn analysis for Figure 2.

In order to perform gene clustering, the amino acid (aa) sequences should be
available. The problem would be gene synonymous (where one gene could have
different code names). In order to extract the aa sequence of DEGs, a C script
(Script 1) and PERL script (Script 2) were used. These scripts use a list of gene
names, the human whole genome annotation (GFF format) retrieved from
Ensemble Human database and the Human proteome (FASTA format). The output
will include the amino acid sequences of DEGs.

The amino acid sequences retrieved from Step 5 were used for gene clustering
using Script 3. The output file was filtered manually for sequence alignment
length of 300 aa and sequence similarity of 70%.

Using gene names retrieved from Step 5 (all gene names), Scripts 4 and 5 were
used to retrieve single nucleotide variations (SNPs) linked to this gene and known
diseases from 1000 genome project database.

The DEGs genomic locations were retrieved from Human genome information
using Script 6.

Step 1 to 8 outputs were used as an input for Circos tool (Figure 1) using Script7.

Tables of information retrieved from all analysis steps of 1-8 were used as a
supplementary data. Script 8 was used to combine these analyses.

- List of the used scripts in the manuscript:

Script 1: This script was included in clustering of asthma-associated DEGs using
sequence similarity. Programming language: C. Input: list of genes names and
human genome annotation of GRCh38 version (GFF format). Output: list of gene
names and codes (different names for the same gene) and official gene accession
number.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef enum { false, true } bool;
int main(int argc, char *argv[])
{
FILE *fp;
size_t len=0;
ssize_t read;
char *line=NULL;
fp=fopen(argv([2],"r");
if(fp == NULL)
exit(EXIT_FAILURE);
while((read=getline(&line,&len,fp))!=-1) {
if(strstr(line, " gene ") !=NULL){
line[strlen(line)]="\0";
char gene_form_1[50]="gene=";
char gene_form_2[50]=",";
char gene_form_3[50]="=";
char gene_form_4[50]=",";
char gene_form_5[50]="gene=";
n
strcat(gene_form_1,argv([1]);
strcat(gene_form_1,";");
gene_form_1[strlen(gene_form_1)]="\0";
/2
strcat(gene_form_2,argv[1]);
strcat(gene_form_2,",");
gene_form_2[strlen(gene_form_2)]="\0";
13
strcat(gene_form_3,argv[1]);
strcat(gene_form_3,",");
gene_form_3[strlen(gene_form_3)]="\0';
//4 this needs to the same length
strcat(gene_form_4,argv[1]);

gene_form_4|[strlen(gene_form_4)]="\0';

//5 this needs to the same length
strcat(gene_form_5,argv([1]);

gene_form_5[strlen(gene_form_5)]="\0";

//matching
char * pch_1;
char * pch_2;
char * pch_3;
char * pch_4;
char * pch_5;
pch_1 = strstr(line,gene_form_1);
pch_2 = strstr(line,gene_form_2);
pch_3 = strstr(line,gene_form_3);
pch_4 = strstr(line,gene_form_4);
pch_5 = strstr(line,gene_form_5);
bool f_4 =((pch_4!=NULL)&&((strlen(pch_4)-2)==strlen(argv[1])));
bool f_5= ((pch_5!=NULL)&&(strstr(pch_5+strlen(pch_5)," ")==NULL));
1
if(pch_1 = NULL| |pch_2 != NULL| |pch_3 != NULL| |f_4|f_5) {
printf("%s\t%s", argv[1],line);
fclose(fp);
if (line)
free(line);
exit(EXIT_SUCCESS);
return 0;

}

Script 2: This script was included in clustering of asthma-associated DEGs using
sequence similarity. Programming language : Python3. Input: list gene accession
number and human proteome (all human genome amino acid sequences). Output:
Gene amino acid sequences in FASTA format. If the amino acid accession is not
available it will be labelled “Not here”.

#!/usr/bin/python3

def read_fasta(file):

seq = {}

header =""
sequence =""
with open(file) as fp:
for line in fp:
line = line.strip()
if len(line) > 0:
if line[0] ==">":
if len(sequence) != 0 and len(header) > 0:
seq[header] =""
seq[header] = sequence
sequence=""
header = line.split(" ")[0][1:]
sequence += line + "\n"
seq[header] = sequence

return seq

seencount={}
seq=read_fasta(sys.argv[1])
nothfp=open("NOTHERE.txt","a+")
with open(sys.argv[2]) as myids:
for myid in myids:
try:
print (seq[myid.strip()])
except:
nothfp.write("this is not here %%%"+myid.strip()+"\n")

nothfp.close()

Script 3: This script was included in clustering of asthma-associated DEGs using
sequence similarity. Programming language : Shell (Linux) scripting. Note: The
NCBI-Blastp local package has been used
(https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.10.0+-
src.tar.gz). Input : Amino acid sequences in FASTA format. Output: Table of
sequences that have a high similarity and sequence alignment information such as
alignment length, similarity score and E-value.

#make blast database
makeblastdb -i segfilename -parse_seqids -dbtype prot

#format the sequence database

https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.10.0+-src.tar.gz
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.10.0+-src.tar.gz

formatdb -i seqgfilename -p T -V
#start basting

blastall -p blastp -i asthmagenes.fasta -d asthmagenes.fasta -o result.out -m 8 -evalue 0.0001

Script 4: This script was included in extracting the information of pathogenic and
diseases related to DEGs of asthma. Programming language: PERL. Note : The
PERL script uses the 1000 genome project SNPs
(https://www.internationalgenome.org/data) and the gene annotation file of human
genome downloaded from Ensemble (ftp://ftp.ensembl.org/pub/release-
100/gff3/homo_sapiens). Input: list of genes names. Output: pathogenic SNPs and
associated diseases.

use strict;
my %items;
my %data_file = read_file(SARGV([0]);
print "genename\tpathogenic-snps\tdiseasetypes\n";
foreach my Sgene(keys(%{Sdata_file{"genes"}}))
{
print Sgene."\t".Sdata_file{"genes"H{Sgene}{"path"}."\t".Sdata_file{"genes"}{Sgene}{"distypes"}."\n";
}
foreach my Sdis(keys(%{Sdata_file{"disease"}}))
{
#print Sdis."\t".Sdata_file{"disease"}{Sdis}."\n";
}
mkdir "DISEASESNPS";
foreach my Sdis(keys(%{Sdata_file{"diseasers"}}))
{
open(FILE,">DISEASESNPS/$dis.txt");
foreach my Srs(@{$Sdata_file{"diseasers"}{$dis}})

{

#print FILE $rs."\n";
}
close FILE;
}
#GENEINFO
sub read_file
{
my ($file)=@_;
my %data;
my $Sgene;
my Scind;

open(FILE, Sfile);

https://www.internationalgenome.org/data
ftp://ftp.ensembl.org/pub/release-100/gff3/homo_sapiens
ftp://ftp.ensembl.org/pub/release-100/gff3/homo_sapiens

while(<FILE>)

{

chomp();

my @line=split(/\;/,$_);

#print$_;

if((/GENEINFO/)&&(/CLNDN/)&&(/Pathogenic/))
{
my $rs;
foreach my $i (@line)
{
if($i=~m/(\S+)\=(\S+)/g)
{
my $id=$1;my $val=52;
if($id eq "GENEINFO")
{
Sgene=Sval;
Sgene="s/\:\S+//g;
}
if($id eq "RS")
{
$rs=$val;
Srs="s/(\S+)/rs\1/g;
print $rs."\n";
}
if($id eq "CLNDN")
{
Scind=$val;

}

}

Sdata{"genes"HSgene}{"path"}++;

my @dis=split(/\|/,$cInd);

foreach my $d (@dis)

{
Sdataf"disease"HSd}++;
push(@{$data{"diseasers"}{$d}},$rs);

Sdata{"genes"}{Sgene}"distypes"}++;

close FILE;

return %data;

}

if(SARGV([0] eq "")
{

return ;

}

Script 5: This script was included in extracting the information of pathogenic and
diseases related to DEGs of asthma. Programming language: R. Note: was used to
confirm results of script 4. This script uses the Ensemble BioMart database. Input:
list of genes names. Output: pathogenic SNPs and other information.

library(biomaRt)

variation = useEnsembl(biomart="snp", dataset="hsapiens_snp")

while(!file.exists(paste(GENE,"-SNPs.csv")))

{

tryCatch(
expr={
RESULT = getBM(attributes=c(
‘refsnp_id',
'chrom_start’,
‘allele’,
'mapweight’,
'minor_allele_freq',
'minor_allele_count',
‘clinical_significance',
'phenotype_name',
'p_value',
'pmid’,
'polyphen_score',
'sift_prediction',
'sift_score',
'motif_name',
'motif_start',
'motif_score_delta’
), filters = c('chr_name','start','end’), values =list(chrom,start,end), mart = variation)
write.table(RESULT,paste(GENE,"-SNPs.csv"),sep=";")

b

error = function(e){

print("RETRY")

}

chrom=c(8)
start=c(43140464)
end= c(43202855)
GENE="genename";
#Database

source("GET-SNPs-ENEMBLE.r")

Script 6: This script was included in locating DEGs genomic location. Programming
language: Python3 and Shell (linux) programming Input: list of genes names,
Human genome annotation file (GFF format). Output: chromosomal location of
genes

#!/usr/bin/python3

import re

import os

chrdict={}

with open("chrom-list.txt","r") as chrofp:
for chro in chrofp:

chrdict[chro.split()[0]]=chro.split()[1]

with open("list-genes.txt") as genelist:
for gene in genelist:

command="./find-gene-in-gff"+gene.strip()+"
INFO/GCF_000001405.26_GRCh38_genomic.gff "

stream=o0s.popen(command)
out=stream.read().strip()
if len(out) is not O:
line=out.split("\t")
try:
line[1]=chrdict[line[1]]
print("\t".join(line))
except:

pass

Script 7: Programming language : Circos configuration file

Note: The circos program (http://circos.ca/software/download/) used information
of genes location, SNPs and related diseases count, and the asthma-associated genes
p-value (-logl0pvalue). These files have been retrieved using the steps mentioned
above. Additionally, the human karyotype information was retrieved and chromosome
regions with no associated genes were broken. Input: several information retrieved
from analysis. Output: Human genome in circular shape, where all results are
depicted in figure 1.

karyotype =DEF.txt
###f your chromosomes samller than this please adjust
chromosomes_units = 1000000
chromosomes_breaks=Chr1:209756032-209782320;.........
chromosomes_display_default = yes
chromosomes_scale =PSET=0.1r
<<include ideogram.conf>>
chromosomes_color =PSET=White
<plots>

<plot>

type =text

color =black

file = GENESTITLE.txt

ro =1r

rl =1r+350p

label_size =12

label_font = bold

show_links =yes

link_dims = 0p,2p,6p,2p,5p

link_thickness = 2p

link_color = black

label_snuggle =vyes

max_snuggle_distance = 1r

snuggle_tolerance =0.25r

snuggle_sampling =2

http://circos.ca/software/download/

snuggle_refine =yes

</plot>

<links>

<link>

file = gene-go-link.txt
radius =0.95r

ribbon =yes

bezier_radius = Or

flat =vyes

color = blue
thickness =2

z=100

radiusl =1r
<rules>

<rule>

condition = var(id) =~ /(d+)-(d+)/
</rule>

</rules>

</link>

</links>

<plot>

type = line
stroke_type = outline
file = p-value/M-vs-S.txt
orientation = out

rl1 =0.6r

rO =0.5r

min =2

max =10

fill_color =vdgreen
extend_bin = no
</plot>

<plot>

type = line

stroke_type = outline
file = p-value/S-vs-C.txt
orientation = out

rlt =0.7r

rO =0.6r

min =2

max =10

fill_color =acen
extend_bin = no
</plot>

<plot>

type =line

stroke_type = outline
file = p-value/M-vs-C.txt
orientation = out

rl =0.8r

roO =0.7r

min =2

max =10

fill_color = purple
extend_bin = no
</plot>

<plot>

type =line

stroke_type = outline
file = SNSp-PATH/DISEASE-COUNT.txt

orientation = out

rl =0.9r
rO =0.8r
fill_color =blue

extend_bin = no

</plot>

<plot>

type = line

stroke_type = outline

file = SNSp-PATH/SNP-PATH-COUNT.txt

orientation = out

rl1 =0.99r
rO =0.9r
fill_color =red

extend_bin = no
</plot>
<plot>
type = text
color =red
file = Chrom-info/bands-labels.txt
ro=1r
rl =1r+300p
label_size = 8
label_font = condensed
orientation = out
show_links =yes
link_dims =0p,2p,6p,2p,5p
link_thickness = 2p
link_color = black
label_snuggle =yes
max_snuggle_distance = 1r
snuggle_tolerance =0.25r
snuggle_sampling =2
snuggle_refine =vyes
</plot>
</plots>
<links>
<link>

file = links/LINKS.tx

radius =0.5r
ribbon =yes
bezier_radius = Or
flat =vyes
color = blue
thickness =10
radiusl1 ~ =0.5r
<rules>
<rule>
condition =1
color = eval(var(chr2))
flow = continue
</rule>
</rules>
</link>
</links>

<<include etc/colors_fonts_patterns.conf>>

<<include etc/housekeeping.conf>>

Script 8: This script was used to combine different results using common row name
and information. Programming language: Python3. Note: Combining tables with
“NA” if there is no shared row. This Python script was used to create the list of DEGs
across different gene expression profiles. Input: list of Tables of outputs. Output:
chromosomal location of genes

#1/usr/bin/python3
import sys

import re
myfiles=sys.argv[1:]
rows={}

data={}
filerowlen={}

for fin myfiles:

with open(f,"r") as datafile:
for line in datafile:
r=line.strip().split("\t")[0]
if f in filerowlen:
if len(line.strip().split("\t")) > filerowlen[f]:
filerowlen[f]=len(line.strip().split("\t"))
else:
filerowlen[f]=len(line.strip().split("\t"))
rows[r]=1
if f not in data:
datalf]={}
data[f][r]=line.strip()
for myfile in myfiles:
spacen=filerowlen[myfile]
mfilename=re.sub(r'\S+\/([\S|]+)$',r'\1',myfile)
print((str(mfilename)+"\t")*spacen,end="")

print()

for row in rows:
for myfile in myfiles:
if row in data[myfile]:
rowlen=len(data[myfile][row].split("\t"))
print(data[myfile][row]+"\t"*(filerowlen[myfile]-rowlen),end="\t")
else:
print("NA\t"*(filerowlen[myfile]),end="")

print()

