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Abstract: Fused deposit modeling (FDM) 3D printing technology cannot generate scaffolds with high
porosity while maintaining good integrity, anatomical-surface detail, or high surface area-to-volume
ratio (S/V). Solvent casting and particulate leaching (SCPL) technique generates scaffolds with high
porosity and high S/V. However, it is challenging to generate complex-shaped scaffolds; and solvent,
particle and residual water removal are time consuming. Here we report techniques surmounting these
problems, successfully generating a highly porous scaffold with the anatomical-shape characteristics
of a human femur by polylactic acid polymer (PLA) and PLA-hydroxyapatite (HA) casting and salt
leaching. The mold is water soluble and is easily removable. By perfusing with ethanol, water, and
dry air sequentially, the solvent, salt, and residual water were removed 20 fold faster than utilizing
conventional methods. The porosities are uniform throughout the femoral shaped scaffold generated
with PLA or PLA-HA. Both scaffolds demonstrated good biocompatibility with the pre-osteoblasts
(MC3T3-E1) fully attaching to the scaffold within 8 h. The cells demonstrated high viability and
proliferation throughout the entire time course. The HA-incorporated scaffolds demonstrated
significantly higher compressive strength, modulus and osteoinductivity as evidenced by higher
levels of alkaline-phosphatase activity and calcium deposition. When 3D printing a 3D model at
95% porosity or above, our technology preserves integrity and surface detail when compared with
FDM-generated scaffolds. Our technology can also generate scaffolds with a 31 fold larger S/V than
FDM. We have developed a technology that is a versatile tool in creating personalized, patient-specific
bone graft scaffolds efficiently with high porosity, good scaffold integrity, high anatomical-shaped
surface detail and large S/V.
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1. Introduction

With an annual cost of more than $2.5 billion, diseases and trauma resulting in bone defects have
affected 500,000 lives/year in the US and can be classified as a serious health problem [1]. Autografts are
often utilized to heal these defects but result in donor site morbidity and are limited by the availability of
the donor bone [2]. Allografts, such as demineralized bone matrix and cancellous chips, face potential
immune rejection, the risk of communicable diseases and have lower incorporation rates [3]. Both
autograft and allograft have limited capability to recreate the anatomical features of the bone [4].
Tissue engineering holds great potential to overcome these major drawbacks [5–7]. Encouraging
progress in bone tissue engineering has been made in recent years. Different types of scaffold
substrates have previously been used to generate engineered bone including decellularized bone,
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β-tricalcium phosphate (TCP), hydroxyapatite (HA), various hydrogels, and various polymers [8–11].
As a result of the many challenges in generating complex shapes with these materials, they have
not been utilized for anatomically-shaped scaffolds. Regenerating the anatomical features of the
native bone may benefit patients in regaining lost function more quickly. However, there have only
been a few techniques reported for generating anatomically-shaped scaffolds. One technique is the
computer-numerical-control (CNC) machining of an existing decellularized bone graft [12]. This
method is limited by the bone graft availability and can only generate a small-sized scaffold because of
material sacrifice during the machining process. 3D printing is another emerging technique to generate
anatomically-shaped scaffolds [13–18]. Fused deposition modeling (FDM) is the most widely used 3D
printing technique in tissue engineering [19–22]. Even though there are many commercially available
FDM 3D printers on the market, these printers only print solid polymers such as polylactic acid polymer
(PLA) and polycaprolactone (PCL). Scaffolds with high porosity, and large surface area-to-volume
ratio are always desirable for tissue engineering [23]. One major limitation of FDM is that only low
porosity [7] scaffolds can be fabricated while maintaining the integrity and a reasonable S/V. When
HA particles are incorporated in the FDM printing process, the porosity is even lower because wider
filament extrusion must be used to prevent clogging during polymer extrusion. Previous reports
document only 30% porosity when PLA-HA scaffolds are constructed in this manner [24]. Porosity,
integrity and S/V are critical features for bone scaffold construction because of their direct relationships
with scaffold degradation, cell viability, cell proliferation, bone remodeling, and mechanical support.
Solvent casting and particulate leaching (SCPL), which can generate a scaffold with over 90% porosity
and large S/V, has previously been widely used in bone tissue engineering [25–27]. The process includes
casting the dissolved polymer and soluble particles, such as sugar and salt, in a mold, evaporating the
solvent and dissolving the particles in water. Various polymers can be used with this technique and
the pore size can be easily controlled by altering the size of the particles [28,29]. To the best of our
knowledge, there is no prior report on anatomically-shaped scaffold generation using SCPL. This
is likely due to the difficulty in generating an anatomically-shaped mold. Teflon and ceramic have
previously been used for these molds. However, Teflon cannot be used to generate anatomical shapes
and ceramic requires a wax inverse-mold which increases the processing time and risks reducing
accuracy. Additionally, they share a common limitation that the mold is difficult to remove after the
scaffold is fabricated. Ideal materials for creating anatomically-shaped molds require strong solvent
resistance, ease of fabrication and ease of removal [30,31].

Polyvinyl Alcohol (PVA), a thermal polymer, has been used in industry previously as a 3D
printing material. It is chemically resistant and our preliminary tests show that it is very stable in
organic solvents. An additional benefit is its water solubility. This allows it to be removed easily after
polymer hardening. To the best of our knowledge, PVA has not been utilized as a molding material for
anatomically-shaped scaffold fabrication even though it has been previously used for simple cubic
shaped mold fabrication [32].

Removal of solvent, porogen particle, and residual water is time consuming in the SCPL process
using conventional methodologies. Solvent and residual water removal rely on evaporation and the
porogen particle removal relies on porogen static-dissolving in water. All of the processes are in static
mode, therefore each takes a few days to accomplish even for small-sized scaffolds.

Here we report on our success fabricating anatomically-shaped bone scaffolds using a novel
indirect 3D printing and perfusion (3D P&P) technique. This innovative approach utilizes the 3D
printing of an anatomically-shaped mold using PVA, casting PLA or PLA-HA mixed salt particles
in the organic solvent solution, and perfusion-based methods to rapidly remove solvent, porogen
particles, and residual water. The generated scaffolds have identical shape characteristics of the imaged
bone. The objective of the current study is to establish a novel 3D printing platform to generate
anatomically-shaped scaffolds with high porosity instead of developing new materials. Here we
specifically utilized PLA and hydroxyapatite as the materials because they have been widely used
and well characterized previously [33,34], which makes them an appropriate tool to evaluate a new
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methodology. In addition, we also compared our 3D P&P technology with FDM in terms of scaffold
porosity, external surface detail, integrity, and S/V.

2. Results

2.1. Anatomically-Shaped Digital Model Generation and Casting Mold Fabrication

An anatomically-shaped digital model of the proximal portion of the femur was successfully
generated as shown in Figure 1. Figure 1A shows the 3D femur model reconstructed from the CT
images of a deidentified real patient. Figure 1B shows the hollow mold model that was used to 3D
print the PVA mold. Figure 1C demonstrates the hollow interior space within the reconstructed model
shown in Figure 1A. There is no interior filling in the hollow mold, therefore supporting features were
added in the digital mold model in order to stabilize the mold during the 3D printing process as shown
in Figure 1A,B. Figure 2A demonstrates two identical successfully printed 3D molds, one of which was
sliced open to show the interior. The anatomically-shaped scaffold was also successfully generated
(Figure 2B) with the same detailed anatomical characteristics as the mold (Figure 2C). The surfaces of
the scaffold were generated with the same level of smoothness as the original bone, by comparing
the corresponding surfaces of the 3D model, which was reconstructed from the CT images, and the
fabricated scaffold. The assumption that the information from the CT images represent those of the
original bone surfaces was made.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 16 

 

2. Results 

2.1. Anatomically-Shaped Digital Model Generation and Casting Mold Fabrication 

An anatomically-shaped digital model of the proximal portion of the femur was successfully 
generated as shown in Figure 1. Figure 1A shows the 3D femur model reconstructed from the CT 
images of a deidentified real patient. Figure 1B shows the hollow mold model that was used to 3D 
print the PVA mold. Figure 1C demonstrates the hollow interior space within the reconstructed 
model shown in Figure 1A. There is no interior filling in the hollow mold, therefore supporting 
features were added in the digital mold model in order to stabilize the mold during the 3D printing 
process as shown in Figure 1A,B. Figure 2A demonstrates two identical successfully printed 3D 
molds, one of which was sliced open to show the interior. The anatomically-shaped scaffold was also 
successfully generated (Figure 2B) with the same detailed anatomical characteristics as the mold 
(Figure 2C). The surfaces of the scaffold were generated with the same level of smoothness as the 
original bone, by comparing the corresponding surfaces of the 3D model, which was reconstructed 
from the CT images, and the fabricated scaffold. The assumption that the information from the CT 
images represent those of the original bone surfaces was made. 

 

Figure 1. (A) The 3D femur model reconstructed from the CT images of a deidentified real patient. 
(B) The hollow mold model which was used to 3D print the Polyvinyl Alcohol (PVA) mold. (C) 
demonstrates the hollow interior space within the reconstructed model shown (A). The arrows 
indicate the X, Y and Z axes. 

 
Figure 2. Two identical molds were successfully 3D printed as demonstrated in (A), one of which was 
sliced open to show the interior. The anatomically-shaped scaffold was also successfully generated as 
shown in (B) and it has the same detailed external anatomical characteristics as the mold (C). 

As shown in Table 1, by perfusing with ethanol, water, and dry air sequentially, the solvent, salt, 
and residual water were quickly removed. Our perfusion-based approach has a processing time that 
is more than 20 fold faster than conventional methods. 
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Figure 2. Two identical molds were successfully 3D printed as demonstrated in (A), one of which was
sliced open to show the interior. The anatomically-shaped scaffold was also successfully generated as
shown in (B) and it has the same detailed external anatomical characteristics as the mold (C).

As shown in Table 1, by perfusing with ethanol, water, and dry air sequentially, the solvent, salt,
and residual water were quickly removed. Our perfusion-based approach has a processing time that is
more than 20 fold faster than conventional methods.
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Table 1. Processing time comparison between perfusion and conventional methods.

Processing Time Perfusion (perf.) Conventional
Methods (conv.)

Time Ratio
(Tperf./Tconv.)

Solvent Removal 15 min 48 h 1/192
Salt particle Removal 4 h 48 h 1/12

Residual water removal 10 min 10 h 1/60

By perfusing with ethanol, water, and dry air sequentially, the solvent, salt, and residual water were quickly removed.
Our perfusion-based approach has a processing time that is more than 20 fold faster than conventional methods.

2.2. Porosity and Micro-Architecture of the Scaffold

As shown in Figure 3, the microscopic images demonstrate that both PLA (Figure 3A) and
PLA-HA (Figure 3B) scaffolds are highly porous and interconnected. The results of the absolute
alcohol displacement assay demonstrated porosities of the PLA and PLA-HA disc scaffolds to be
97.14% and 92.66%, respectively. The porosities of PLA and PLA-HA sections from the femoral head,
femoral neck, proximal and distal portions of the femoral shaft are shown in Table 2. There were
no significant differences among the different locations of the anatomically-shaped scaffold and no
porosity differences between simple shaped disc scaffolds and complex anatomically-shaped scaffolds
when the same size of leaching particles were used. This demonstrated that our technique was able to
generate complex anatomically-shaped scaffolds with evenly distributed porosities.
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Figure 3. Phase contrast images show that both polylactic acid polymer (PLA) (A) and
PLA-hydroxyapatite (HA) (B) scaffolds are highly porous and interconnected. Images were captured
with a 4× objective.

Table 2. Porosity analysis among different locations within the anatomically-shaped scaffolds.

Porosity Analysis Femoral Head Femoral Neck Proximal Femoral
Shaft

Distal Femoral
Shaft

PLA 97.31 ± 0.85 96.80 ± 1.79 96.36 ± 0.86 97.38 ± 0.95
PLA-HA 92.02 ± 2.24 92.62 ± 0.43 90.78 ± 1.71 92.75 ± 2.08

There were no significant differences among the different locations of the anatomically-shaped scaffolds when the
same size leaching particles were used. PLA, polylactic acid polymer; PLA-HA, PLA-hydroxyapatite.

2.3. Cell Viability and Proliferation

The cells remained highly viable throughout the period of observation as demonstrated by Calcein
AM staining (Figure 4A–D, day 1–7). The cell viability of cells grown on both PLA and PLA-HA
scaffolds show over 90% cell viability. A higher density of cells was observed on the PLA-HA scaffold
than on the PLA scaffolds as shown by epi fluorescent imaging of 4′,6-diamidino-2-phenylindole
(DAPI) staining (Figure 5, day 5). This implies that there are pro-proliferative effects of the incorporated
HA on pre-osteoblasts. From the quantitative results of DNA content analysis (Figure 6), the PLA-HA
group shows a significantly higher proliferation rate than the PLA group starting from day 3 to day 9,
which further confirms the pro-proliferative effects of the incorporated HA.
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Figure 6. Proliferation chart shows that from the quantitative results of DNA content analysis, both types
of scaffolds support cell growth with the PLA-HA group showing a significantly higher proliferation
rate than the PLA group starting from day 3 to day 9. * indicates p < 0.05.

2.4. ALP Activities

Both PLA and PLA-HA scaffolds provided a 3D environment that supported MC3T3-E1 to undergo
osteogenic differentiation. As shown in Figure 7, both PLA and PLA-HA scaffolds show increased
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Alkaline-Phosphatase (ALP) activities over the time course evaluated. The ALP activities in the
PLA-HA and PLA groups reached a peak value at day 3 and day 6, respectively. Cells growing within
the PLA-HA scaffold demonstrated significantly higher ALP activates than the PLA scaffold (p < 0.01).
This was due to the incorporation of HA which demonstrated higher levels of osteoinductivity. At day
3, the ALP activities in the PLA-HA was more than 3 times higher than those in the PLA group.
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2.5. Calcium Deposition

Similar to the osteodifferentiation activity observed when using ALP as a biomarker,
the pre-osteoblasts show increased activity of calcium deposition (Figure 8) when cultured within
both the PLA and PLA-HA scaffolds. Both ALP and calcium deposition are biomarkers of cell
osteodifferentiation with calcium deposition being more specific than ALP activity. Similar to the
osteoinductivity of the HA observed in the assay of ALP activity, HA-incorporated scaffolds show
significantly higher calcium deposition than the PLA-only scaffold (p < 0.01).
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2.6. Mechanical Analysis

As shown in Figure 9, the yield strengths of the PLA and PLA-HA porous scaffolds were
0.366 ± 0.055 MPa and 0.506 ± 0.073 MPa, respectively. The compressive moduli of PLA and
PLA-HA porous scaffolds were 4.935 ± 0.687 MPa and 7.182 ± 1.096 MPa respectively. The 20% of HA
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incorporation significantly increased the yield strength and the compressive modulus by 38% and 46%,
respectively (p < 0.01).
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Figure 9. HA incorporated porous scaffold shows significantly higher compressive modulus (A) and
strength (B) than the PLA only scaffold (p < 0.01).

2.7. Comparison Assay with FDM Technology

As demonstrated in the disk models in Figure 10, in order to achieve higher porosity, strut distance
must be increased, resulting in less filament deposition and shorter total fiber length. In turn, this results
in smaller S/V. In the anatomical-shaped model as shown in Figure 10 and Table 3, FDM-scaffolds show
lower print resolution with less smooth surfaces at the 70% porosity and rough surfaces at 80% porosity.
This is because increased strut distance results in less surface detail. At 90% porosity, scaffold integrity
loss appeared and the anatomical-shape outlines in the printed model shows deformation compared
with the original 3D digital model. At 95% porosity, the integrity is lost almost completely and
the anatomical-shape of the original 3D model is poorly reproduced. Compare this to the shape
characteristics and 97% average porosity of the scaffolds generated using 3D P&P technology with
only PLA material. As noted in Table 3, when the porosity in the FDM-scaffold increases, the surface
smoothness and S/V decrease. When the porosity reaches 95%, the surface detail is lost dramatically and
S/V drops to 0.5. This is 31 times less than that of the scaffolds generated using 3D P&P at 97% porosity.
Printing at high porosity using FDM technology results in poor surface detail, poor surface integrity and
low S/V, while the 3D P&P technology can generate scaffolds with high porosity, high anatomical-shape
surface detail, high integrity and large S/V.

Table 3. Comparison between FDM Technology and 3D P&P Technology.

FDM Technology 3D P&P

Porosity 50% 60% 70% 80% 90% 95% 97%
Integrity H H H M L EL H
Surface
Detail H H M L EL EL H

S/V 5.0 4.0 3.0 2.0 1.0 0.5 15.5

When the porosity in the FDM-scaffold increases, the surface smoothness and S/V decrease. When printing at high
porosity, FDM technology cannot keep surface details at a high level or good integrity or large S/V, while 3D printing
and perfusion (3D P&P) technology can generate scaffolds with high porosity, high anatomical-shape surface detail,
good integrity, and large S/V. H = high, M = medium, L = low, EL = extreme low.



Int. J. Mol. Sci. 2020, 21, 315 8 of 16

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 16 

 

porosity, high anatomical-shape surface detail, good integrity, and large S/V. H = high, M = medium, 
L = low, EL = extreme low. 

 
Figure 10. From left to right, images of scaffolds with 50%, 60%, 70%, 80%, 90%, and 95% porosities 
generated by fused deposition modeling (FDM) technology. Top and bottom rows show the scaffolds 
3D printed using the disk model and anatomically-shaped femur model, respectively. The middle 
row shows the internal structures of the scaffolds of the bottom row. 

3. Discussion 

Even for the latest high-end 3D FDM printers, the mechanical resolution of the X, Y, and Z axes, 
which can be as low as several microns, must not be confused with the smallest element that a printer 
can generate. This parameter is dictated by the diameter of the thread extruded from the printer head 
and ranges from a few hundred microns to several hundred microns, and even larger when HA is 
incorporated into the polymer. These limitations do not allow FDM 3D printing to generate high 
porosity scaffolds. Mixing micro-particles, such as HA, with the polymer is also a time consuming 
and challenging pre-printing process. Most commercially available polymers do not come in powder 
form, so polymer grinding or heat mixing is required. As demonstrated in the current project, and in 
previous studies [20,35,36], porosity contradicts surface detail, integrity, and S/V. This fact explains 
why many scaffolds fabricated by FDM previously utilized low porosity in order to balance the other 
parameters. These limitations of FDM scaffold printing, especially with regard to particle 
incorporation, beckon the need for new methodologies. 

Particle leaching is a low cost, simple method to generate scaffolds with high porosity. However, 
a significant drawback to this technique is the challenge of generating anatomically-shaped scaffolds. 
This is primarily due to the difficulty generating specific complex shaped molds with the molding 
materials used previously [27]. Our novel 3D P&P approach overcomes this limitation by 3D printing 
hollow molds using PVA material which is solvent-resistant but can be easily removed after scaffold 
generation. 

Image processing is a critical step in generating anatomically-shaped scaffolds. In order for our 
3D P&P technology to have a broader contribution to the scientific community, we primarily used 
open source software to perform the image processing. Due to the complex shape of bones, internal 
supporting features need to be added so that the mold does not collapse during printing. In order to 
generate a smooth internal surface, a 100 µm layer height is preferred and the printing speed should 
not exceed 100 mm/s. Based on our experience, a minimum 2 mm wall thickness should be used for 
the mold to prevent any leakage. 

Removing solvent, porogen, and residual water from the scaffolds are also important steps in 
the SCPL method. Conventionally, these compounds were removed passively with the solvent and 
water removal occurring through evaporation and porogen removal carried out through a dissolving 
process. The entire process usually takes several days. For relatively large scaffolds, removing the 

Figure 10. From left to right, images of scaffolds with 50%, 60%, 70%, 80%, 90%, and 95% porosities
generated by fused deposition modeling (FDM) technology. Top and bottom rows show the scaffolds
3D printed using the disk model and anatomically-shaped femur model, respectively. The middle row
shows the internal structures of the scaffolds of the bottom row.

3. Discussion

Even for the latest high-end 3D FDM printers, the mechanical resolution of the X, Y, and Z axes,
which can be as low as several microns, must not be confused with the smallest element that a printer
can generate. This parameter is dictated by the diameter of the thread extruded from the printer head
and ranges from a few hundred microns to several hundred microns, and even larger when HA is
incorporated into the polymer. These limitations do not allow FDM 3D printing to generate high
porosity scaffolds. Mixing micro-particles, such as HA, with the polymer is also a time consuming and
challenging pre-printing process. Most commercially available polymers do not come in powder form,
so polymer grinding or heat mixing is required. As demonstrated in the current project, and in previous
studies [20,35,36], porosity contradicts surface detail, integrity, and S/V. This fact explains why many
scaffolds fabricated by FDM previously utilized low porosity in order to balance the other parameters.
These limitations of FDM scaffold printing, especially with regard to particle incorporation, beckon the
need for new methodologies.

Particle leaching is a low cost, simple method to generate scaffolds with high porosity.
However, a significant drawback to this technique is the challenge of generating anatomically-shaped
scaffolds. This is primarily due to the difficulty generating specific complex shaped molds with the
molding materials used previously [27]. Our novel 3D P&P approach overcomes this limitation by 3D
printing hollow molds using PVA material which is solvent-resistant but can be easily removed after
scaffold generation.

Image processing is a critical step in generating anatomically-shaped scaffolds. In order for
our 3D P&P technology to have a broader contribution to the scientific community, we primarily
used open source software to perform the image processing. Due to the complex shape of bones,
internal supporting features need to be added so that the mold does not collapse during printing.
In order to generate a smooth internal surface, a 100 µm layer height is preferred and the printing
speed should not exceed 100 mm/s. Based on our experience, a minimum 2 mm wall thickness should
be used for the mold to prevent any leakage.

Removing solvent, porogen, and residual water from the scaffolds are also important steps in
the SCPL method. Conventionally, these compounds were removed passively with the solvent and
water removal occurring through evaporation and porogen removal carried out through a dissolving
process. The entire process usually takes several days. For relatively large scaffolds, removing the
porogen in the center can be even slower. Ultrasonography has been utilized to assist the dissolving



Int. J. Mol. Sci. 2020, 21, 315 9 of 16

process. However, our experience (data not shown) has been that ultrasound only speeds up the
dissolving process to a limited degree [37]. As the ultrasonic waves heat the water, there is an adverse
impact on the microscopic architecture of the scaffold. Instead of using static methods, we created a
novel dynamic approach to allow rapid removal of the compounds. The key to this process is that
dichloromethane is miscible in ethanol. The flowing ethanol utilized in our technique removes the
dichloromethane quickly. Evaporation-based methods require a minimum of 2 days to fully solidify
the polymer even for a small scaffold. During this period, the salt and HA tend to gravitate to the
bottom of the mold resulting in an uneven distribution of both HA and pores. Another benefit of
rapid solvent removal is solidifying the polymer quickly so that the salts and HA particles are evenly
distributed. For this step, a low-flow-rate perfusion should be applied until the PLA polymer solidifies.
This allows the distribution of the porogen and the HA to not be disrupted. After the initial ethanol
perfusion, a high flow rate can be applied to quickly and thoroughly remove the residual solvent. Some
pressure-control should be employed to remove the salt by perfusion. Perfusion can quickly remove
the salt by accelerating its dissolution. Additionally, this process does not require the salt particles to
be fully dissolved because it flushes out the salt particles when they get small enough to pass through
the pores. Conventional techniques require the porogen-free scaffold to be oven-dried for up to 48 h
to remove the residual water within it [2]. By using perfused dry air in our approach, we were able
to remove the residual water within 10 min, even for larger-sized scaffolds. The salt particles are
packed inside the mold, therefore the solution of dissolved polymer filled in the micro-spaces between
particles. As the alcohol flows through the micro-spaces to remove the solvent, the polymer solidified
locally within the micro-space. Therefore, there is no global volume shrinkage.

Our 3D P&P approach allows production of a highly porous scaffold with the porosity evenly
distributed throughout the structure, even within a complex anatomically-shaped scaffold. Additionally,
microscopic evaluation from multiple locations within samples also reveals an even distribution of
HA particles.

Biocompatibility is an important feature for any scaffold. Osteoinductivity, which means that
undifferentiated cells are stimulated to develop into a bone-forming cell lineage [38], is an equally
important feature for scaffolds used for bone regeneration [39]. The scaffolds generated using the 3D
P&P technique are highly biocompatible as evidenced by the observation that cells grown on these
scaffolds demonstrated high viability and continued to proliferate throughout the entire course of the
experiment. At the conclusion of the experiment, the entire scaffold was populated with MC3T3-E1
cells with elongated cell bodies. There were no significant differences in the cell viability among
the cells grown on the PLA, PLA-HA, and tissue culture dishes. This indicates that the technique
successfully and thoroughly removes the toxic solvent. Our results show that HA-incorporated
scaffolds promoted cell proliferation at a higher rate than PLA scaffolds. Similar results have been
reported previously [3]. This is likely due to the proliferation of osteoblasts being linked to the intrinsic
rigidity and the micro-architecture of the substrate [40].

Hydroxyapatite has also previously been reported to support osteodifferentiation when
incorporated into various polymers [4,5]. PLA-HA scaffolds fabricated using 3D P&P technology
demonstrated significantly greater osteoinductivity than the PLA-only scaffolds as indicated by higher
levels of ALP activity and calcium deposition. The concentration of HA (20%) was chosen here because
it was the concentration utilized in previous studies [26,41] with improved biological and biomechanical
functions. A future study might include varying concentrations of HA for further optimization.

While HA incorporation significantly improved the mechanical properties of the generated porous
scaffold, it remains lower than those of a native bone. This has been reported previously when using
the conventional SCPL method [26,42]. The ultimate goal of the current project is to generate an
anatomically-shaped precursor bone construct with reasonable weight-bearing capability in vitro
which has the capacity to mature into the full weight-bearing bone in vivo according to Wolff’s law We
anticipate that when it comes to a clinical use, the scaffold will need to be implanted in a load-sharing
rather than in a load bearing manner.



Int. J. Mol. Sci. 2020, 21, 315 10 of 16

One challenge of culturing cells in a relatively large scaffold is the difficulty of delivering nutrition
to the cells. In this study, we utilized perfusion to remove solvent, porogen, and residual water from
our scaffolds. Using these same principles, we are currently studying perfusing culture media through
the anatomically-shaped scaffold while covered with a 3D printed water-tight shell of the same shape.

There are limitations inherent in the current project. As this is a proof of concept study, we used a
scaled down hollow mold and fabricated the scaffolds with uniform internal structure and porosity.
As with previous studies that focused on producing “anatomically-shaped scaffolds”, we focused on
recapitulating the outer anatomic shape of the bone rather than the internal structure [12,17]. Future
studies can focus on other anatomical features in addition to shape, such as internal structure, which can
be created using 3D printed multiple-compartmented molds so that different porogens and polymers
can be casted and leached. The physical and biomechanical alterations as a function of degradation
in vitro and in vivo should be included in future studies. In addition, as a consequence of PLA and
PLA-HA scaffold degradation, acid and iron release occurs. Other polymers without acid release
and the release profiles of calcium and phosphorus ions from the scaffold should be investigated.
Translation of this 3D P&P technology into the clinical realm, like any other translational tissue
engineering technologies, must consider manufacturing, regulatory compliance, hospital procurement,
and reimbursement [43,44].

In this study, we developed a novel indirect 3D printing and perfusion techniques to successfully
fabricate anatomically-shaped custom scaffolds to precisely match a patient’s femural bone. We were
able to accelerate the fabrication process from 12 to 192 times when compared to conventional methods.
The fabricated scaffolds are highly porous and demonstrate uniform porosity throughout the scaffold.
These scaffolds are also biocompatible and osteoinductive. Their mechanical compressive strength was
significantly increased with HA incorporation. When compare with FDM technology printed at high
porosity levels, the 3D P&P scaffolds maintained high structural integrity and anatomical-shape detail
as well as large S/V.

4. Materials and Methods

4.1. Generating Anatomically-Shaped 3D Model

De-identified computed tomography (CT) images of a healthy human femur were obtained.
The femur model was chosen because it represented a relatively complex anatomical-shape of bone.
The digital images were imported into an open source 3D slicing software (Slicer, Boston, MA, USA)
to generate a solid stereolithography (STL) 3D file. The hard tissue threshold was employed so that
only the target bone was selected to generate the 3D model. A mirror process was then performed
so that final 3D model could theoretically be used to repair a defect in the patient’s contralateral site.
The generated STL was further processed in the open source Blender software (Blender, Amsterdam,
Netherlands) to generate a hollow 3D model. Perfusing inlets and outlets were designed as necessary at
the appropriate positions. The generated 3D model was adjusted to the height of 70 mm in proportion
to the original dimensions. Open source CURA software was used to generate machine codes (Gcodes).

4.2. Mold Generation by 3D Printing

A custom developed Fused Deposition Modeling (FDM) 3D printer [45,46] was used to print
the mold. The PVA (Flashforge USA, City of Industry, CA, USA) material was melted at 180 ◦C and
extruded through a 0.3 mm nozzle with a layer height of 0.1 mm. A 2 mm thick PVA wall was printed.
A two-parts mold that tightly conformed to the PVA mold was printed using the acrylonitrile butadiene
styrene (ABS, Flashforge, USA) material. The ABS mold was used for porogen particles and residual
water removal.
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4.3. Scaffold Manufacture

Poylactic acid polymer (PLA, NatureWorks, Minnetonka, MN, USA) material at a density of
1.25 g/cm3 was dissolved in dichloromethane (Sigma-Aldrich, St. Louis, MO, USA) to a concentration
of 10% (w/v) and shaken gently overnight. Sodium chloride (NaCl, Fisher Scientific, Pittsburgh, PA,
USA) was sieved to obtain a particle size 300–500 µm. The fully dissolved PLA solution was then mixed
with the sieved NaCl particles and casted into the 3D printed PVA anatomically-shaped 70 mm long
femoral mold (Figure 10). For the PLA-hydroxyapatite composite (PLA-HA) scaffold, dissolved PLA
was mixed with 20% (w/v) hydroxyapatite powder (less than 10 µm in particle size, from Hitemco
Medical, Old Bethpage, NY, USA). The mixture was further combined with NaCl as detailed above
and poured into the mold.

Next, the mold was connected to a perfusion system through the designed ports. A 50:1 volume
of ethanol:solvent was added from the top opening (Figure 11A) and a vacuum was applied from the
bottom so that the ethanol flowed through the polymer to remove the solvent. The level of vacuum is
preoptimized according to the size and shape of the scaffold. It was controlled to increase gradually by
monitoring the level of fluid passing through the scaffold in order to minimize the deformation of the
scaffold by the vacuum pressure. The molded polymer solidified after removing the solvent. A 750:1
volume of distilled water: solvent was perfused through the material to remove the residual ethanol
and NaCl particles. Most of the PVA layer was dissolved during the perfusion after about 40% of the
total amount of water was used. Next, the construct was soaked in a stirred distilled water bath to
quickly remove any remaining PVA mold. The wet scaffold was placed into another conforming two
part anatomically-shaped ABS mold that was independently printed previously and the remaining
60% of water was further perfused. Finally, filtered dry air was perfused through the construct in a
dust-free hood to completely remove any residual water, which was confirmed when there was no
further weight decrease.
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Figure 11. Schematics of the workflow. (A) The PLA polymer was dissolved in dichloromethane (green
indicates the PLA solution) and mixed with NaCl (black) and loaded into the PVA mold (red). (B) The
dichloromethane was removed by perfusing with 100% ethanol (blue indicates the solid PLA). (C) A
3D printed mold using acrylonitrile butadiene styrene (ABS, yellow) was added to cover the original
PVA mold. (D) NaCl porogens were removed by perfusing with water. (E) An anatomically-shaped
scaffold was generated after removing the ABS and PVA molds (white indicates the pores).

A 70 mm long × 10 mm diameter 3D printed PVA cylindrical mold was used to generate a cylinder
scaffold using the same protocol as above. The generated scaffold was sliced into disks with 5 mm
height using a custom-fabricated two blade cutter for biocompatibility analysis.

In order to compare the processing time of removing solvent, salt, and residual water between our
perfusion-based approach and the conventional method, 3D printed cylinder molds were used to cast
a polymer of approximately 15 mm diameter × 7 mm height. After polymer casting, the removal of
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solvent, salt, and residual water was accomplished using our perfusion approach and the conventional
method [42] independently, and the processing time for each step was recorded.

4.4. Micro-Architecture and Porosity Analysis

To examine the microarchitecture, disc shaped (10 mm diameter × 5 mm height) scaffolds (PLA
and PLA-HA) were created with disk molds using the same methods as documented above. The
disk scaffold was examined using a Nikon inverted microscope (Eclipse TE2000, Nikon, NY, U.S.A.)
and images were obtained using a Retiga camera (Teledyne QImaging, Surrey, Canada). In order to
analyze whether there were differences in porosity in the 70 mm femur-shaped scaffold, 5 mm slices
were obtained and imaged from four locations: the femoral head, femoral neck, proximal femoral
shaft, and distal femoral shaft. The porosity of the slices was measured using an absolute alcohol
displacement assay according to a protocol published previously [41,47].

4.5. Cell Culture and Seeding into the Scaffolds

Preosteoblast MC3T3-E1 cells (ATCC) were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM, Life Technology, Carlsbad, CA, USA) with 10% FBS at 37 ◦C with 5% CO2. Medium was
changed 2–3 times per week. Disk scaffolds were prepared as above and coated with 100 µg/mL bovine
collagen solution (PureCol®, Advanced BioMatrix, Inc. San Diego, USA). One piece of scaffold was
placed in each well of a 24-well plate. Once they reached approximately 80% confluence, cells were
detached with 0.05% trypsin-EDTA (Life Technology) and adjusted to 1 × 105/mL. Five-hundred
microliters of cell suspension was seeded onto each scaffold and cultured in the incubator at 37 ◦C with
5% CO2. After 2 h, 500 µL complete culture medium was added into each well and cultured under the
same conditions.

4.6. Cell Viability Analysis

Cell viability was analyzed using a live/dead cell staining kit according to instructions from the
manufacturer (Thermo Fisher Scientific) [48]. In brief, 1 mL DMSO and 9 mL DMEM media without
serum were mixed with 50 µg Calcein-AM and part B of the kit to generate the staining solution. The
disk-shaped scaffolds seeded with MC3T3-E1 were washed 3 times with PBS and stained using the
above solution for 30 min in the dark. Cell viability was then observed under a Nikon epifluorescence
microscope (Eclipse TE2000-U) and images were obtained. The cytoplasms of the live cells demonstrate
green fluorescence and the nuclei of dead cells show red fluorescence. The images were further
processed and analyzed using ImageJ software (Rasband, W.S., ImageJ, U.S. National Institutes of
Health, Bethesda, MD, USA, https://imagej.nih.gov/ij/, 1997–2018.)

4.7. Cell Proliferation Analysis

A cell proliferation analysis was carried out using a PicoGreen dsDNA quantification kit
(Invitrogen) according to instructions from the manufacturer. In brief, the scaffolds were rinsed
with PBS and the cells within the scaffolds were lysed with a lysis solution (0.1% (v/v) Triton X-100,
10 mm Tris, 1 mm EDTA) followed by three freeze-thaw cycles. 100 µL of DNA solution was mixed
with an equal volume of PicoGreen working solution and added into each well of a 96-well plate. The
fluorescence intensity of the mixed solution was analyzed using a fluorescence plate reader (Wallac
Victor3, Perkin Elmer, MA, USA).

4.8. Alkaline-Phosphatase (ALP) Activity Assay

The MC3T3-E1 cells were cultured on scaffolds in the medium as above with supplementary
50 µg/mL ascorbic acid, 10 nM dexamethasone, and 10 nM β-glycerolphosphate added. The ALP
activities were analyzed at days 3, 6, and 9 (3 scaffolds per group per time point). For each analysis,
the scaffolds were rinsed with PBS and lysed. The reaction solution consisting of 2 mg/mL p-nitrophenyl
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phosphate (Sigma) and 0.1 M amino propanol (10 µL/well) in 2 mM MgCl2 (100 µL/well) at a pH 10.5,
was added to each scaffold and incubated at 37 ◦C for 15 min. The reaction was stopped with 50 mM
NaOH and the result was obtained from the reading of the absorbance at 410 nm using a plate reader.
The DNA content of the cells was quantified using a PicoGreen dsDNA quantification kit as above.
The results of ALP activity were recorded as ng ALP per µg total DNA content. The ALP activity of the
cells seeded onto the PLA scaffold after only 8 h, which is the time point when maximal cell attachment
was reached, was recorded as the baseline. All of the data was further normalized to this baseline.

4.9. Calcium Content Measurement

Scaffolds were seeded and cultured as in the ALP activity assay described above. After 7 and
14 days, the scaffolds were washed twice with PBS and incubated in 0.5 N acetic acid solution in an
orbital shaker overnight. The calcium content was quantified using the OCPC (orthocresolphthalein
complex one) method as reported previously [49]. Briefly, 20 µL of the samples were incubated with
250 µL of the working solution consisting of 0.05 mg/mL OCPC solution and ethanolamine/boric
acid/8-hydroxyquinoline buffer (Sigma) in a 96-well plate for 10 min at room temperature and the
plate was read using a microplate reader (PerkinElmer, MA) at 570 nm. CaCl2 solutions with known
concentrations were used as the standard for the assay. In order to calculate the calcium deposition on
the PLA-HA, the scaffolds without cells were incubated in the medium and the amount of calcium
was measured as the baseline. The calcium deposited by the cells was the difference between the total
amount of calcium and the baseline.

4.10. Mechanical Property Analysis

The compressive mechanical properties of the PLA (n = 5) and PLA/HA (n = 5) porous cylinder
scaffolds were analyzed at the room temperature using a universal testing machine, which is comprised
of a ball-screw guide rail driven by a servo motor (Panasonic, Osaka, Japan) and a displacement
encoder with the resolution of 0.5 µm (Panasonic, Japan) and load cells (HBM, Suzhou, China) and
custom developed compress platens. The scaffold was compressed between two stainless steel platens
at the rate of 1 mm/min and data was recorded using 200 Hz sampling frequency. According to ASTM
F451–16, the stress-strain curves were generated, and the slopes of the initial linear portions were used
to calculate the values of compressive modulus and the values of compressive strength were calculated
from the peak of the curve.

4.11. Comparison with FDM Technology

Fibrous scaffolds were 3D printed using the same 3D model and 3D printer in FDM mode as
documented above. A disk model of 30 mm in diameter and 5 mm in height was also printed in
FDM mode for analysis. The 0.4 mm fiber diameter was used as it was widely reported previously as
an optimized parameter. The porosities of 50%, 60%, 70%, 80%, 90%, and 95% were used to control
the strut distance-this methodology was approved previously by both mathematical modeling and
micro-CT analysis [36]. It is notable here that any scaffold designed with porosity higher than 95%
failed to print. The porosity, anatomical-shape surface detail, scaffold integrity and S/V were compared
between our 3D P&P technology and the FDM technology. Only PLA material was used in the
comparison because of technical difficulties of generating anatomically-shaped scaffolds at higher
porosity with the HA incorporation [36]. The porosity of the FDM-scaffold and the S/V of scaffolds
fabricated using both technologies were calculated using the methods reported previously [35,50].
Surface details were evaluated as documented above and categorized by two senior scientists.

4.12. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Independent t-test was used to analyze
differences between two groups. Analysis of variance (ANOVA) was used to analyze overall differences
among groups. Statistical significance was set at p < 0.05.
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Abbreviations

PLA polylactic acid polymer
HA hydroxyapatite
TCP β-tricalcium phosphate
CNC computer-numerical-control
FDM Fused deposition modeling
SCPL Solvent casting and particulate leaching
PVA Polyvinyl Alcohol
CT computed tomography
STL solid stereolithography
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