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Abstract: The heart is par excellence the ‘in-motion’ organ in the human body. Compelling evidence
shows that, besides generating forces to ensure continuous blood supply (e.g., myocardial contractility)
or withstanding passive forces generated by flow (e.g., shear stress on endocardium, myocardial
wall strain, and compression strain at the level of cardiac valves), cells resident in the heart respond
to mechanical cues with the activation of mechanically dependent molecular pathways. Cardiac
stromal cells, most commonly named cardiac fibroblasts, are central in the pathologic evolution of the
cardiovascular system. In their normal function, these cells translate mechanical cues into signals
that are necessary to renew the tissues, e.g., by continuously rebuilding the extracellular matrix
being subjected to mechanical stress. In the presence of tissue insults (e.g., ischemia), inflammatory
cues, or modifiable/unmodifiable risk conditions, these mechanical signals may be ‘misinterpreted’
by cardiac fibroblasts, giving rise to pathology programming. In fact, these cells are subject to
changing their phenotype from that of matrix renewing to that of matrix scarring cells—the so-called
myo-fibroblasts—involved in cardiac fibrosis. The links between alterations in the abilities of
cardiac fibroblasts to ‘sense’ mechanical cues and molecular pathology programming are still under
investigation. On the other hand, various evidence suggests that cell mechanics may control stromal
cells phenotype by modifying the epigenetic landscape, and this involves specific non-coding RNAs.
In the present contribution, we will provide examples in support of this more integrated vision of
cardiac fibrotic progression based on the decryption of mechanical cues in the context of epigenetic
and non-coding RNA biology.

Keywords: mechanotransduction; cardiac fibrosis; epigenetics; non-coding RNAs; cardiac fibroblast;
heart failure

1. Introduction: Relevance of Cell Mechanics in Cardiac Fibrosis

Assessment of the mechanically dependent molecular machinery has become a new, insightful
approach to deciphering cellular dynamics inside tissues, with implications in morphogenesis, tissue
renewal, and pathology progression. For example, mechanically dependent coordination of tissue
growth is recognized as a major determinant, either in pre-implantation or post-implantation embryonic
patterning [1], as well as in cellular pathologic evolutions, such as in cancer [2]. Moreover, progenitor
cell differentiation has been directly linked to compliance of the extracellular matrix (ECM) [3] and to
geometry-dependent intracellular traction forces transmitted through the cytoskeleton to intracellular
compartments, for example, the nucleus [4–8].

The heart is an organ undergoing continuous motion, with more than three billion contraction
cycles during the average human life span. In a healthy myocardium, ECM turnover is under
continuous renewal by the stromal component of the myocardium, composed of cardiac fibroblasts
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(CFs). Under conditions promoting metabolic alterations (e.g., hyperglycemia), inflammations such
as chronic myocardial ischemia, or pressure overload, cardiac fibroblasts proliferate and evolve into
profibrotic cells (so-called myofibroblasts (myoFbs), which contribute to consistent extracellular matrix
deposition (prevalently, collagen I and III) and promote myocardial stiffening [9,10]. As a consequence,
the Young’s elastic modulus increases up to ten times, ranging from 10–20 kPa in the physiological
tissue to 50–200 kPa in the pathological tissue [11].

Other than being connected to pathological activation, cardiac matrix mechanics is relevant for
controlling cardiomyocytes division and maturation. For example, it has been suggested that the
beginning of the embryonic myocytes beating could be related to perturbations of mechanosensitive
Ca2+ channels, determined by the progressive increase in matrix stiffness surrounding the cardiac
progenitors before the onset of electromechanical coupling [12–14]. Additionally, the increase in
mechanical load occurring at birth determines the maturation of the cardiac myocytes (CMs) contractile
apparatus [15], causing further stiffening of the myocardium and mitotic block [16,17]. Furthermore, it
has been shown that until two days after birth, mammalian hearts might regenerate by a mechanism
involving (re)activation of the CMs division [18], and results obtained by treating neonatal mice with
drugs able to ‘soften’ the myocardial matrix showed that the temporal window of heart regeneration
can be experimentally prolonged [19]. In keeping with these findings, mammalian cardiomyocytes
can be induced to back-differentiate and reactivate cell cycles by low-stiffness substrates [20], and
cardiac regeneration in lower vertebrates (e.g., zebrafish) is accompanied by a transient softening of
the extracellular matrix [21].

The responses of cells to mechanical cues have emerged as a general component of the
chronic evolution of cardiovascular diseases and aging [22], a process with an important epigenetic
component [23]. Taken together, these data suggest a tight relationship between the mechanosensitivity
of CFs and downstream profibrotic cell signaling. This indicates a novel way to address myocardial
fibrosis and to regulate the proliferation/maturation of the contractile cells, based on targeting cell
mechanosensation-related effectors.

2. Alterations in Myocardial Compliance and Progression of Cardiac Fibrosis:
Epigenetics Aspects

Epigenetics encompasses a series of mitotically and meiotically transmissible DNA/chromatin
modifications independent of changes in the primary DNA sequence [24]. Epigenetics exerts its
control of the genome functions through different covalent modifications of the chromatin, consisting
of DNA methylation and histone modifications, as well as by interactions with non-coding RNA.
These modifications affect the topology of the chromatin and, consequently, the accessibility of DNA to
factors facilitating transcription initiation and elongation, DNA replication, recombination, and repair.
We direct readers to specialized review articles on the types and the overall gene regulatory effects of
DNA/chromatin epigenetic modifications in cardiovascular diseases [25]. It will be sufficient here to
mention the following concepts.

(i) DNA methylation is defined by the covalent binding of a methyl group to the 5′ carbon of
cytosine and is usually associated with gene expression repression, as it can decrease the accessibility of
chromatin to DNA-binding proteins or transcription factors that are required for gene transcriptional
activation [26].

(ii) Histones, the structural component of the chromatin, represent a target of several
post-translational modifications, mainly occurring on amino acid residues of the N-terminal tails
that protrude from the chromatin fibers [27]. Among these, acetylation promotes the relaxation of
the chromatin structure associated with gene expression activation [28], while hypoacetylation and
methylation promote chromatin condensation, resulting in gene expression repression [29].

As discussed in other contributions, epigenetic modifications can affect global gene expression by
setting cellular ‘memories’ that reflect onto altered phenotypes and permanent diseased states. In the
cardiovascular scenario, this appears particularly important, given the chronical nature of the disease



Int. J. Mol. Sci. 2020, 21, 28 3 of 12

and its main metabolic basis [30]. Similar to metabolism-dependent memories, mechanical cues can
also set permanent variations in cell functions, with possible consequences for chronic pathological
programming. For example, it was found that cells embedded in three-dimensional hydrogels with
high mechanical compliance are in a permanent activation state, even after shifting them to media
with lower stiffness [31]. Importantly, the cells cultured in high stiffness media exhibit high levels of
mechanically activated YAP/TAZ complex activity (see below) and the expression of pro-calcific master
transcription factor RUNX-1, thus suggesting that activation of profibrotic/pro-calcific pathways can be
permanently established by exposing cells to contacts with an extracellular matrix with high mechanical
compliance. Since subjecting cells to mechanical constraints determines reversible nuclear shuttling
of mechanically dependent transcription factors [7] and changes in the epigenetic landscape [24],
it is possible that metabolic and mechanical cues cooperate in establishing a chronically activated
phenotype that contributes to cardiac fibrosis [32–34].

While biochemical signals responsible for epigenetic alterations occurring in fibroblast activation
are well described, the effect of mechanotransduction on the epigenetic set-up underlying transition
from quiescent to activated myoFbs, and vice versa, is still under investigation [35]. On the other
hand, some examples of pathways potentially involved in the epigenetic setting of myo-fibroblasts
activations have been already provided, as follows.

Peroxisome proliferator-activated receptor (PPARα-δ and PPARα-γ) is a nuclear transcription
factor highly expressed in the heart, with anti-inflammatory and anti-proliferative properties [36].
Diep and colleagues, using an animal model of cardiac hypertrophy, demonstrated that the treatment
with PPARα ligand activator (fenofibrate) is able to prevent the progression of cardiac fibrosis [37].
Interestingly, in vitro experiments showed that the administration of PPARγ ligand resulted in a
decrease in the collagen synthesis by angiotensin II-stimulated cardiac fibroblasts [38]. Although
the molecular mechanism responsible for the PPARs anti-fibrotic effect remains unknown, growing
evidence supports the involvement of epigenetics. In particular, the Methyl CpG binding protein
(MeCP2), which binds methylated DNA [39], targets the 5′ end of the PPARγ gene promoter, silencing
its transcription, and thus promotes fibroblast differentiation into myofibroblast [40], with consequences
such as stiffening of the myocardial matrix.

Recent studies have shown that nuclear shape and stiffness controls gene expression and drives
cell differentiation by exposing chromatin to mechanical cues and possible direct/indirect reshuffling
of transcriptional accessibility [41]. These forces originate from tension forces of the cytoskeleton,
namely, the actomyosin stress fibers, which transfer tensional forces from focal adhesions firmly
attaching cells to stiff substrates in the nucleus through the Linker of Nucleoskeleton and Cytoskeleton
(LINC) complex, nuclear lamins, and, finally, chromatin. As a result, the chromatin stretches
and its accessibility to RNA polymerase II changes. Growing evidence supports the hypothesis
that myofibroblast pathological activation is influenced by a convergence of mechanical stimuli
transduced in the nucleus by the cytoskeleton, resulting in activation of profibrotic signaling [42].
For example, Alisafaei and colleagues used a mechanically dependent model of transcription and
epigenetic factors (HDAC3, MKL) nucleocytoplasmic shuttling to investigate the actomyosin-dependent
translocation in the nucleus of NIH 3T3 mice fibroblast cells. Results showed that cells placed on
smaller substrate areas decreased nuclear volumes and increased histone acetylation levels, and that the
reduction of actomyosin contractility caused a nuclear translocation of histone deacetylase 3 (HDAC3).
Once reaching the nucleus, HDAC3 exerted its function, reducing the histone acetylation level and
resulting in chromatin compaction and reduction of nuclear volume. In order to investigate the
association between alterations in actomyosin contractility and HDAC3 shuttling from the cytoplasm
to the nucleus, where it is responsible for chromatin condensation, Jain and colleagues studied treated
NIH 3T3 mice fibroblasts with inhibitors of the actomyosin fibers contractility (e.g., Blebblistatin and
Y27632) [43]. The administration of these drugs favored degradation of the nuclear factor IκB-α (which
normally sequesters HDAC3 in the cytoplasm), releasing the acetylating enzyme that translocates into
the nucleus. Taken together, these data suggest a correlation between the actomyosin contractility
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and the nucleocytoplasmic translocation of the epigenetic factors on substrates with different shapes
and areas. This interplay between mechanical forces and epigenetics may greatly contribute in the
activation/silencing of profibrotic pathways, establishing a direct link between mechanosensation and
permanent epigenetic changes (Figure 1).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 13 
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hippo pathway, an intracellular signaling cascade involved in tissue growth and homeostasis [44]. It 
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via the LINC complex determines YAP/TAZ translocation through the nuclear pores [6]. The 
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activation of cell cycle genes (Figure 2) [44]. In addition, in a mouse model of myocardial infarction, 

Figure 1. Activation of cardiac fibroblasts (CFs) involves mechanosensing and is related to variations
in epigenetic programming and specific non-coding (ncRNAs). The panel illustrates the transition from
normal conditions, characterized by a compliant matrix and a low level of cellular mechanical stress; to
the pathologic programming occurring due to remodeling/crosslinking of the extracellular matrix (ECM);
to the final stage of myo-fibroblast differentiation, which involves nuclear straining, nuclear translocation
of mechanically dependent transcription factors, proliferation, and pro-inflammatory phenotypes.

The YAP/TAZ complex has been identified as the transcriptional component of the so-called hippo
pathway, an intracellular signaling cascade involved in tissue growth and homeostasis [44]. It has
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been demonstrated that transmission of mechanical forces to the nucleus from the cytoskeleton via the
LINC complex determines YAP/TAZ translocation through the nuclear pores [6]. The involvement
of YAP signaling in fibrotic processes has been demonstrated with the finding that human cardiac
fibroblasts exposed to cyclic straining determines YAP nuclear translocation and activation of cell cycle
genes (Figure 2) [44]. In addition, in a mouse model of myocardial infarction, it was demonstrated that
YAP/TAZ is abundantly expressed in cells located juxtaposed to the infarct border zone, suggesting a
direct role in control of collagen deposition and thus in ECM stiffening [45]. Moreover, the stiffening
of the matrix as a consequence of myofibroblast activity mechanoactivates YAP, which positively
regulates the production of profibrotic mediators and ECM proteins, resulting in a feed-forward loop
of fibroblast activation and tissue fibrosis [46]. Since YAP functions are controlled by post-translational
modifications such as acetylation [47], and are subject to metabolic and nutrient control [48,49]; these
data establish a possible convergence between metabolic control of epigenetics and CF mechanics in
cardiac fibrosis.

Other pathways, such as those related to cellular redox control, may represent potent pathological
activators connected to cell mechanics in cardiac fibrosis. In this respect, Hata and colleagues observed
that treating HeLa cells with agents that damaged the DNA and formed methylated bases with
cytotoxic properties (alkylating agents, e.g., methyl methanesulfonate, cisplatin, doxorubicin, and
N-methyl-N-nitrosourea) determined YAP translocation and decreased phosphorylation levels. Once
in the nucleus, nuclear acetyltransferases cardiopulmonary bypass (CBP) targeted YAP at Lys-494 and
Lys-497, determining its transcriptional activation [50]. Although a similar mechanism has not yet
been demonstrated in CFs, this evidence suggests synergism between the epigenetic post-translational
modification pathway and the regulation of the transcriptional component of the hippo pathway,
which depends on the balance between the cytoplasmic and the nuclear-localized YAP, thus reinforcing
mechanical signaling by shifting the balance in favor of nuclear translocation and activation of
profibrotic genes.

Inflammation is involved in cardiac fibrosis progression at multiple levels, from the response to
acute/chronic damages (e.g., ischemia and pressure overload) to the chronic setting of fibrosis, mainly
consisting of collagen deposition. During the first phase after myocardial damage, the release of
pro-inflammatory mediators recruits inflammatory cells, such as neutrophils and monocytes, into
the myocardium and activates myocardial-resident fibroblasts [51]. Although there is no evidence of
cooperation between mechanosensing-activated pathways and epigenetic circuitries in the recruitment
and pro-inflammatory activities of innate immunity cells, it is important to highlight that functional
cooperativity between inflammatory cells (e.g., macrophages) and fibroblasts has been recently
described with the demonstration that deformations in collagen matrices produced by fibroblasts
are directly involved in macrophage migration [52]. This suggests that epigenetic alterations of
the fibroblasts’ activity, such as those observed in cardiac fibrosis, may supervise inflammatory
cells’ recruitment by long-range mechanical signaling spread over the extracellular matrix of the
damaged myocardium.

During the relapse phase of the inflammatory process, a clearer relationship may exist between
epigenetics CFs mechanics and fibrosis through the effects of the transforming growth factor-beta
(TGF-β), the downstream signal transducers (Smads), and transcriptional coactivators p300/CBP
in collagen-I synthesis [53]. Upon their receptor-induced activation promoted by TGF-β, Smad2
and Smad3 oligomerize with Smad4 and translocate into the nucleus to regulate the expression of
several profibrotic genes. This transcriptional activity is further enhanced by co-activator p300/CBP,
which bounds and acetylates Smad2 and Smad3 (Figure 2) [54]. Since the mechanically dependent
transcription factor complex YAP/TAZ has been found to cooperate with transcriptional components of
the TGF-β pathway [47,55], these data, together, add a novel level of complexity to epigenetic control
of cardiac fibrosis through the activity of transcriptional complexes, with histone acetylation activity
directly connected to fibrotic paracrine signaling.
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21, a classical target of the transforming growth factor-beta (TGF-β)/Smad pathway [56]. The 
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Figure 2. The conversion into myofibroblasts from quiescent fibroblast involves mechanical and
paracrine activation of profibrotic pathways. The upper part of the figure represents the transcriptional
readout of the YAP/TAZ nuclear translocation, which is dependent on nuclear straining and opening of
the nuclear pores [6]. Negative regulation of the pathway is exerted by components of the hippo-kinase
pathway (LATS) that phosphorylate YAP and mediate its degradation [55]. The lower part of the panel
represents the signaling cascade converging onto miR-21, a classical target of the transforming growth
factor-beta (TGF-β)/Smad pathway [56]. The convergence of ‘mechano-paracrine’ pathways affecting
the phenotype of profibrotic cells appears to be a new way to integrate signal transduction modalities
once considered separated into the control of gene expression and chromatin structure.

3. Non-Coding RNAs as Mechanotransducers in Cardiac Fibroblast Differentiation and
Fibrosis Progression

Non-coding RNAs (ncRNAs) are RNA species transcribed but not translated into proteins.
There are two different categories of ncRNA, depending on size: (1) small non-coding RNAs (<200 bp),
including microRNAs (miRNA) and PIWI-interacting RNAs (piRNA); and (2) long non-coding RNAs
(lncRNAs, >200 bp), including long intergenic non-coding RNA (lincRNA), circular RNA (circRNAs),
natural antisense transcripts (NATs), and enhancer RNAs (eRNAs) [57]. For a complete description of
the ncRNAs’ biology in the context of cardiovascular disease, we redirect to a companion article to this
report [58]. The principal ncRNAs involved in the cardiac firotic process are listed in Table 1.

Table 1. Non-coding (ncRNAs) with implications in cardiac fibrosis.

NcRNA Target Gene Pro- or Anti-Fibrotic References

miR-18 CTGF Anti [59]
miR-19 CTGF Anti [59]
miR-21 PTEN, SMAD7, STAT3, PPAR-α Pro [60]

miR-29 COL1A1, 1A2, 4A5, FBN, ELN1, PDGFR,
TAB1, ADAM Anti [61]

miR-130a PPAR-α Pro [62]



Int. J. Mol. Sci. 2020, 21, 28 7 of 12

Table 1. Cont.

NcRNA Target Gene Pro- or Anti-Fibrotic References

miR-133 CTGF Anti [63]
miR-15 TGF-β, SMAD7, SMAD3 Anti [63]
miR-30c CTGF Anti [63]
miR-101 TGF-β Anti [64]
miR-34 SMAD4 Pro [65]

miR-212 FoxO3 Pro [66]
miR-199b Dyrk1A Pro [67]
miR-150 PTX3 Pro [68]
miR-155 SMAD4, SMA2, RhoA Pro [69]

LncRNA-Meg3 MMP2 Pro [70]
LncRNA-Wisper Col3α2, Fn1 Pro [71]

LncRNA-Miat miR-29, miR-30, and miR-133 Pro [72]
LncRNA-Malat1 TGFBR2, SMAD3 Pro [73]

LncRNA-PRL miR-Let7d Pro [74]
LncRNA-H19 DUSP5, ERK1 Pro [61]

LncRNA-n379519 miR-30 Pro [75]
LncRNA-NR024118 AT1 Pro [76]

To date, several studies demonstrate the involvement of ncRNAs in fibrosis, with potential clinical
implications as biomarkers and therapeutic targets. Piccoli and colleagues performed a lncRNA analysis
in mice CFs and identified more than 1400 lncRNAs that were deregulated in hypertrophic mice hearts.
Among these, CF-specific lncRNA maternally expressed that gene 3 (Meg3) was upregulated [70].
Meg-3 is a conserved chromatin-associated lncRNA that transcriptionally controls the activity of p53
in the promoter regions of MMP-2 and is expressed by CFs. Moreover, it has been reported that
MMP-2 is transcriptionally induced by the well-known fibrogenic factor TGF-β. The direct interaction
between Meg-3 and p53 activates matrix metalloproteinase-2 (MMP-2), affecting the composition of
the ECM. Modification of the cardiac matrix is linked to variations in its mechanical characteristics,
which represents further stimuli for the activation of cardiac fibroblasts and fibrosis progression.

An important mechanism involved in the role of miRNAs in cardiac fibrosis has been found
from the discovery that several miRNAs are dysregulated in myocardial injury models. One of them,
miR-29, was found downregulated in infarcted hearts, with the consequent elevation of profibrotic
proteins expression, including collagens [77]. This finding is in line with observations showing a
lower expression of the miRNA in fibrosis-related diseases [61], clearly indicating a potential role
of miR-29 as a ‘cardioprotector’. On the other hand, compelling evidence shows that expression of
miR-29 is under the control of mechanotransduction pathways, and in particular by the YAP/TEAD
transcriptional complex through consensus binding sequences for YAP/TEAD in the promoters of the
microRNAs-29a/b/c gene variants, thus producing apparently contradictory results. At the moment, it
is not possible to conclude whether or not the ischemia-related dowregulation of miR-29 is the only
signal promoting cardiac fibrosis in the context of cardiac stiffening. In this regard, it has to be noted that
overexpression of miR-29 in fibroblasts has led to only a partial inhibition of collagens expression [77],
and that variations in viscoelastic properties of the 3D matrix have stiffness-independent effects on
the machinery responsible for miRNA biogenesis [78], thus reconciling the role of YAP as a positive
regulator of miR-29 with antifibrotic activity of the miR (Figure 1).

As introduced in the previous section, cells appear to keep a memory of cumulative exposure to
mechanical cues, with possible interplay of permanent modifications of the epigenetic landscape [31].
Additionally, ncRNA expression in fibrotic cells may take part in mechanical memory. For example, in
mesenchymal cells (MSCs), miR-21 has been identified as a long-term memory keeper of the fibrogenic
program [60]. As demonstrated in a study with rats MSCs cultured on gels with different stiffness,
the stiffening of the ECM causes the upregulation of miR-21, which is in turn involved in the ECM
deposition. The increase in miR-21 expression during stiff-priming depended on the regulation exerted
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by acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and was
maintained over two weeks after the removal of mechanical cues. Moreover, silencing miR-21 at the
end of stiff-priming resulted in a loss of mechanical memory and the re-acquisition of cellular sensibility
into soft matrices [60]. Since MRTF is translocated in the nucleus in response to cell straining [79] and
miR-21 is a part of the fibrotic process under the control of TGF-β [56], this evidence establishes a
direct link between cell mechanosensing and the ncRNA regulation of cardiac fibrosis (Figure 1).

Recently, a study carried out on mice fibroblasts described a pattern of miRNAs able to exert control
on the mechanical properties of cells and tissues [80]. Once they identified the interaction between
miRNAs and mRNA, results showed 127 mRNAs. Seventy-three of these specifically encoded a group
of proteins called contractility adhesion matrix proteins (CAM). Remarkably, the post-transcriptional
regulation of these proteins depended on substrate stiffness and thus on cell mechanics. In order
to investigate this regulation, the authors seeded endothelial cells lacking Argonaute2 (AGO2) or
DROSHA, two proteins involved in miRNA maturation [72], on substrates with different stiffness.
Results showed that, while in control cells, the contractility increased only in high levels of stiffness. In
mutant cells, this occurred also on softer substrates. Interestingly, the mutant population exhibited
cell area, contractility, and YAP nuclear localization significantly higher compared to controls, thus
demonstrating that miRNA biogenesis is necessary for the discrimination between physiologic and
non-physiologic cell mechanics.

A further lncRNA emerging for its involvement in fibrosis is the myocardial infarction associated
transcript (MIAT) [81], whose expression was reported to be higher in association with cardiac fibrosis
in a mouse model of myocardial infarction. As a result of MIAT knockdown, fibrosis was reduced,
with a decrease in collagen deposition and inhibition of fibroblasts proliferation. Moreover, cardiac
functions improved, with a restoring of physiological levels of fibrosis-related effectors [72].

Finally, there is evidence that the connective tissue growth factor (CTGF), a crucial player in
fibrosis onset, is post-transcriptionally controlled by miR-133 and miR-30, which interact directly
with the 3′ untranslated region of CTGF. In particular, the expression of both miRNAs is inversely
related to the levels of CTGF, and their knockdown resulted in an increase of the CTGF amount in
mice fibroblasts. Moreover, overexpression of miR-133 or miR-30 reduced CTFG levels and subsequent
collagen synthesis [63]. Since CTGF is a canonical target of the YAP/TAZ complex, this constitutes an
interesting example of a potential feedback loop for mechanosensing-dependent control of fibrosis
in the heart. Almen and collegues unraveled a similar regulatory role of miR-18/19 in CTGF; the
expression of these miRs, indeed, resulted in a decrease of collagen type I and III depositions [59].

4. Conclusions

In the present report, we highlight the possible interplay of mechanotransduction pathways with
epigenetic and ncRNAs in the control of gene expression in heart fibrosis. Cell-based mechanosensing,
indeed, has a significant impact on a variety of cellular functions, from embryonic stages to tissue
aging and remodeling, and it has a potential to interact on a multilevel and multiscale modality
with classical paracrine and metabolic and inflammatory pathways, thus connecting cellular disease
memories with tissue architecture and remodeling. While in cancer pathophysiology these concepts
are better established and demonstrated, in the cardiovascular diseases scenario, these relationships
are only starting to be discovered. We believe that a deeper understanding of these aspects, using
interdisciplinary research approaches, will contribute to resolving the molecular setting of cardiac
fibrosis and devising therapeutic strategies to combat the increasing burden of heart failure.
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