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Abstract: We present a novel derivation of the multipole interaction (energies, forces and fields)
in spherical harmonics, which results in an expression that is able to exactly reproduce the results
of earlier Cartesian formulations. Our method follows the derivations of Smith (W. Smith, CCP5
Newsletter 1998, 46, 18.) and Lin (D. Lin, J. Chem. Phys. 2015, 143, 114115), who evaluate the Ewald
sum for multipoles in Cartesian form, and then shows how the resulting expressions can be converted
into spherical harmonics, where the conversion is performed by establishing a relation between an
inner product on the space of symmetric traceless Cartesian tensors, and an inner product on the space
of harmonic polynomials on the unit sphere. We also introduce a diagrammatic method for keeping
track of the terms in the multipole interaction expression, such that the total electrostatic energy can
be viewed as a ‘sum over diagrams’, and where the conversion to spherical harmonics is represented
by ‘braiding’ subsets of Cartesian components together. For multipoles of maximum rank n, our
algorithm is found to have scaling of n3.7 vs. n4.5 for our most optimised Cartesian implementation.

Keywords: multipoles; Ewald; molecular simulation; spherical harmonics

1. Introduction

Point-charge electrostatic models have been a mainstay of molecular simulation for years.
Increasing in sophistication, many authors have also implemented dipole interactions, such that the
electrostatics on each nuclear site is modelled by the combination of a dipole and a charge, which
requires that the simulation code be capable of calculating both charge–dipole and dipole–dipole
interactions in addition to the usual charge–charge interactions required for point charge models. This
presented particular problems for treatment of long-range interactions, as typically handled by an
Ewald sum, or related schemes, as such algorithms were initially developed for the case of point charge
models, and thus needed to be modified in order to account for dipole interactions. Fortunately, the
problem of adapting Ewald sums for dipoles has largely been solved, and, Smith [1] in particular has
provided a formulation which is well organised and easy to follow.

In recent years, some groups have moved even beyond the dipole level, exploring the use of yet
higher terms in the multipole expansion of the charge distribution, where the terms in the next three
ranks are referred to by names quadrupole, octopole and hexadecapole. Again though, the problem
is faced—how to implement these terms in a simulation code, and how to modify an Ewald sum,
or similar algorithm, such that it can properly handle the higher order multipoles interactions.

There is currently a strong need for such methods, given that there now exist reliable convenient
methods to partition the charge distribution from electronic-structure calculations into atomic multipoles
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residing on each nuclear site, with the most notable method being the Distributed Multipole Analysis
(DMA) approach of Stone and coworkers [2–4]. DMA provides a particularly appealing route for the
construction of accurate empirical models, because researchers should now be able take the values
of atomic multipoles as output from a DMA analysis as input for their models. However, doing this
depends, of course, on the ability to write code which can calculate the required multipole interactions,
and this is far from trivial.

Progress has been made, with popular molecular-dynamics packages, such as DL-POLY [5] and
TINKER [6] having functionality to evaluate potential-energy surfaces with multipole interactions. So,
in a sense, this is a solved problem, but it is still worth exploring, given the complexity of the current
approaches, if there are any ways to simplify the mathematical and computational approaches for
computing multipole interactions.

Smith’s method can, in principle, be used up to arbitrary rank, and his original paper even includes
the terms up to quadrupole. However, there is a noticeable increase in complexity and computational
cost incurred by going up to higher ranks, such that the quadrupole terms are both more difficult
to both derive and to calculate than the dipole terms, and, it seems like it would be a significant
undertaking to extend this approach to yet higher ranks.

However, it was recently shown by Lin [7] that we do not have to derive the higher multipole
terms “by hand”, as it were. Instead, it is possible to derive a more general formula which more or less
automatically generates the expression for any degree multipole, without resorting to increasingly
tedious algebra.

It is true that past formulations by Smith and others [8,9] are extendable to arbitrarily higher
rank multipoles, but Lin’s work is, to our best knowledge, the first to give such a direct closed form
expression for the interaction between multipoles of any rank. However, even Lin’s extension to
Smith’s approach suffers from a drawback, which is that they both choose to evaluate the multipole
interaction in Cartesians. Furthermore, this is a problem because, as it turns out, the Cartesian
representation of multipoles is highly redundant. This is due to the presence of symmetries in
the Cartesian representation, resulting in the use of far more numbers than is strictly required to
represent each multipole, making it hard to calculate the multipole interactions in the minimal number
of operations.

Bearing this in mind, it is possible to make many optimisations in the Cartesian implementation,
such that these redundancies have relatively minimal impact. Most notably, it is possible to take
advantage of the fact that the traces of the Cartesian tensors do not contribute to the total energies/forces
of the multipole interaction, and so remove them, an approach that has been used with success by both
Lin and Huang [10,11]. It is also possible to write the required sums in such a way that the redundancy
from the remaining tensor symmetries is reduced.

However, to increase computational efficiency even further, what is really needed is an expression
in which the multipoles are described by a completely non redundant basis. Furthermore, it has long
been known that this is provided by moving from a Cartesian representation to spherical harmonics.

It could be argued that a Cartesian-multipole representation is more compatible with existing
molecular dynamics codes, given they are normally mostly written in Cartesians. Furthermore, it is
certainly true that most people prefer thinking in terms of Cartesians, than the somewhat complex
spherical harmonics. However, the spherical harmonics approach ultimately proves to be faster, and
more elegant, and so is arguably worth the extra effort for codes which make heavy use of multipoles.

Writing the interaction in terms of spherical harmonics is usually regarded as a formidable task,
requiring mastery of the mathematics of manipulating these objects, and intimate knowledge of the
spherical harmonics’ properties. Furthermore, the complexity is further multiplied when it comes
to modifying the treatment of long-range interactions, such as when handled by Ewald sums. Even
so, a derivation of the Ewald sum for multipoles has been given by Leslie [12], who described his
implementation of multipoles in the DL-MULTI software package, which can be interfaced with
DL-POLY [5] molecular dynamics software package. Leslie gave the expression for the Ewald sum
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form of the multipole interaction in terms of Stone’s S functions. These functions, which are derived in
ref. [13], act give the interaction tensor components between two multipoles on different sites, each
described in their local reference frames, where the necessary orientational information is described by
Wigner rotation matrices, and where the S function also contains a spherical harmonic, which acts to
mediate the interaction between.

Another derivation has recently been given by Simmonett et al. [14] who proposed a method for
converting the Ewald sum into the spherical harmonic formulation of Stone, which required the aid of
symbolic algebra package to derive. Furthermore, the resulting expression requires the calculation of
hard to interpret ‘contamination terms’ in the tensorial interactions between the multipoles, which
arise from the modification of the multipole interaction due to the Gaussian screening functions that
are present in the real-space part of the Ewald sum. Although the above derivations appear complete
and satisfactory, they do depend on fairly technical knowledge, which is presumably why many in the
community have been slow to implement such approaches.

In the present contribution, we aim to rectify this situation by providing a surprisingly
straightforward derivation of the multipole interaction in spherical harmonics which, unusually,
does not require any detailed technical knowledge of the theory of spherical harmonics. Our
method provides a direct connection between the Cartesian and spherical harmonic representations,
such that it becomes straightforward to transform between the two representations, and our final
expressions lend themselves to being easily implemented in Ewald sum type methods. Now, we seek
to provide a comprehensive account of the full development of this Cartesian formulation, so this
will necessarily involve some presentation of relatively well-known, pervious material in the theory
and (spherical-harmonics) presentation and treatment of multipoles. Still, in the present contribution,
we wish to provide a full, and self-contained development of a Cartesian formulation, in addition to an
intuitive associated graphical representation.

We do not claim that the resulting expressions are superior to previous derivations, such as that
given by Leslie and Simmonett et al.; we are full of admiration for their work. However, the approach
presented here is significantly different to standard derivations, which makes it interesting in itself,
and our resulting expressions are also in a different form, though they must be completely equivalent
in their predictions, to those obtained with other methods. We also think our approach will be of
interest in showing how the Smith and Lin method for Cartesian multipoles can be transformed into
a spherical harmonic equivalent, while preserving the essential structure of their solution.

It would, of course, be of enormous interest to find a reasonably direct way of connecting our
expressions for the multipole interaction in spherical harmonics to those produced by other derivations.
However, this appears far from trivial, given we have taken what seems to be such a radically different
approach to that used by other authors.

Our approach is also very much inspired by the work of Applequist [15,16], who published
two papers detailing some quite beautiful theorems on the deep connection between homogeneous
polynomials and Cartesian tensors, and also on the properties of the Maxwell Cartesian spherical
harmonics, which are the natural Cartesian analogues of the spherical harmonics, both of which we
will have cause to use in the course of this work.

Our approach is summarised as follows. We first essentially follow the approaches of Smith
and Lin to give the multipole interactions in terms of Cartesians. We then proceed to show how this
interaction can be converted into spherical harmonic form. This is done with the aid of three key
ideas. (i) the use of a diagrammatic representation of the interaction between multipole sites, which
greatly clarifies the math, as it turns out the complete interaction can be calculated in a ‘sum over
diagrams’ type sense. (ii) the use of spherical harmonics to construct an orthogonal basis for the
traceless multipole tensors, such that the Cartesian to spherical harmonic conversion can be achieved
by way of Stone’s tables of spherical harmonics, as given in reference [13]. (iii) the recognition that the
multipole interaction can be written in terms of so-called tensor inner products, which we will show
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are proportional to inner products involving spherical harmonics, allowing us to convert the entire
multipole interaction into spherical-harmonic form.

2. Results

2.1. The Multipole Expansion

Consider a cluster of Nc charges, with charges qm, at positions r + ∆rm, where the ∆ is used to
signify that the displacements are typically quite small (at least, they are closer to r than any test sites
probing the fields from the distribution). We then define the rank-n Cartesian multipole tensors (n = 0,1,
. . . ), M(n), of the distribution, with respect to r, according to

M(n) =
1
n!

Nc∑
m = 1

qm∆Rm(n) (1)

where ∆Rm(n) = ∆rm∆rm∆rm.. is a tensor product, with Cartesian components ∆Rm(n)
αβγ.. = ∆rm

α ∆rm
β ∆rm

γ ..,
in which each Greek index is one of x, y, z, and there being n factors of type ∆rm

α in the product.
Furthermore, where, for n = 0, the tensor becomes unity: ∆Rm(0) = 1 (see Section 4.1).

Note: In Equation (1), and throughout, we are following Smith in subsuming the inverse factorial
in the definition of each multipole, but we warn that other authors use different conventions, and it is
important to check which convention is being used when comparing different works.

The rank 0 multipole, M(0), which is a scalar, is just the sum of the charge. The rank 1 multipole
M(1) multipole is referred to as the dipole moment, and is a vector with components M(1)

x , M(1)
y , M(1)

z .

The rank 2 multipole, M(2) is called the quadrupole, and has 9 components: M(2)
xx , M(2)

xy , M(2)
xz , etc., and

the rank 3 multipole with 27 components is called the hexadecapole, and so on.
It is clear from their definition in Equation (1). that each multipole tensor is symmetric under

any permutation of its indices; e.g., for the rank-3 multipole tensor, M(3)
αβγ = M(3)

αγβ = M(3)
βγα = M(3)

βαγ

= M(3)
γαβ = M(3)

γβα. Furthermore, it can be shown that the same is true in any axis frame. This
permutation symmetry means that the multipole tensors belong to a class that are referred to as
symmetric tensors, and we will have frequent cause to make use of this symmetry throughout this work.

The multipoles are useful because the electrostatic properties of the cluster can often be written in
terms of a rapidly converging series over multipole moments of increasing rank, rather than having
to sum over the individual charges themselves. To see this, let us place the charge distribution in
a background non-uniform electrostatic potential, φ(r). Then, the electrostatic energy, U(r), of the
cluster due to φ(r) is given by

U(r) =
∑

m
qmφ(r + ∆rm) (2)

Now, using the inner product notation 〈A(n), B(n)
〉t, where 〈A(n), B(n)

〉t indicates an inner product
over tensors A(n) and B(n) (see Section 4.1)

〈A(n), B(n)
〉t =

∑
αβγ..

A(n)
αβγ..B

(n)
αβγ.. (3)

the Taylor series expansion of φ(r + ∆rm) can be written as

φ(r + ∆r) =

∞∑
n = 0

1
n!
〈∆R(n),∇(n)〉tφ(r) (4)

where ∇(n) = ∇∇∇.. with components ∇(n)αβγ.. = ∂n/∂rα∂rβ∂rγ.. (again, see Section 4.1).
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Now, defining the rank n symmetric electrostatic field tensors φ(n)(r) from

φ(n)(r) = ∇(n)φ(r) (5)

Furthermore, substituting Equation (4) into Equation (2) and using Equation (1), we can rewrite
the energy expression as

U(r) =

∞∑
n = 0

〈M(n),φ(n)(r)〉t, (6)

Similarly, it can be shown from the elementary theory of multipoles, and from using another
Taylor series expansion, that the electrostatic potential at r, from a charge cluster around the origin,
with multipoles M(n) is given by

φ(r) =

∞∑
n = 0

(−1)n
〈M(n),∇(n)〉t

{1
r

}
. (7)

where we have set 4πε0 = 1 to simplify the formulae.
Thus, assuming the above series converges, and we wish to calculate the electrostatic potential

from the charge cluster, we are justified in ignoring the fine details of the charge distribution and just
working with its multipoles up to a maximum rank, where these multipoles are calculated from the
multipole expansion of the charge distribution in Equation (1), and where we imagine the multipoles
are placed on the multipole expansion site, in this case at the origin.

2.2. Traceless Tensors and the Detracing Operator

The trace of a rank 2 tensor is given by the sum of its diagonal elements,

Tr(A(2)) =
∑
α

A(2)
αα . (8)

In general, and following Applequist [15] (Section 2.3), we will define the trace of a rank n
symmetric Cartesian tensor as

Tr(A(n))αβγ.. =
∑
χ

A(n)
αβγ..χχ, (9)

where the trace tensor, Tr
(
A(n)

)
, is a symmetric tensor of rank n − 2.

Tensors for which Tr
(
A(n)

)
= 0 will be referred to as traceless. In fact, we have already encountered

two such tensors: (i) the φ(n)(r) tensor, defined in Equation (5) above, and (ii) the ∇(n){1/r} tensor
which occurs in Equation (7).

To show that the φ(n)(r) tensor is traceless, we combine Equations (5) and (9) to obtain

Tr(φ(n))αβγ.. = ∇
(n−2)
αβγ.. ∇

2φ(r) = 0, (10)

where we have used the fact that the electrostatic potential in free space is a solution to Laplace’s eqn,
∇

2φ(r) = 0. Thus, φ(n)(r) is traceless, and, given that 1/r is just the potential from a unit charge,
a similar argument shows that ∇(n){1/r} is also traceless.

As an aside, it may be argued that in real systems the Laplacian is not zero, because any real atomic
site will experience a non-zero charge-density from the inter-atomic and inter-molecular charge-clouds
from the other electrons. However, the standard multipole expansion for the interatomic electrostatic
energy does not account for such effects, and they will henceforth be assumed to be zero.

The addition of any two rank n traceless tensors, or the multiplication of a traceless tensor by
a scalar will result in another traceless tensor. Thus, the traceless tensors of rank n form a vector subspace
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of rank n tensors. As such we ought to be able to find a projection operator which projects out the
non-traceless part of any rank n symmetric tensor. For example, we might (correctly) guess that the
rank 2 tensor A(2) has the traceless projection At(2)

αβ = rαrβ − Tr
{
A(2)

}
δα,β/3. Furthermore, we will

now show how to find this projection in general.
Before we begin, it is convenient to introduce R(n) tensors, R(n) = rrrr.., with components

R(n)
αβγ.. = rαrβrγrδ.., and where R(0) = 1 by convention (see Section 4.1).

We will now make use of a theorem due to Hobson, [17] which has been extensively discussed by
Applequist, ref [15,16] that the projection of the R(n) tensors onto the subspace of traceless tensors is
given by

Rt(n) = D̂R(n) = (−1)n r2n+1

(2n− 1)!!
∇
(n)

{1
r

}
(11)

where D̂ is the so-called detracing projection operator onto the subspace of traceless tensors, and where
Rt(n) = D̂R(n) is the traceless tensor resulting from the projection of R(n) into that traceless subspace.
Furthermore, where that Rt(n) is traceless follows immediately from the traceless nature of ∇(n){1/r}.

Applequist refers to Rt(n) as the Maxwell Cartesian spherical harmonics, given that these gradients
were investigated by James Clerk Maxwell [18], and given that, although they are not orthogonal, they
behave in many senses like the Cartesian analogue of the spherical harmonic polynomials, of which
more later.

For the moment we can think of the D̂ operator as being defined by Equation (11), and so our job
is to show that D̂ defined this way is indeed the detracing projection operator.

Firstly, we need a way to express the action of D̂ on a general degree n tensor. Applequist has
provided a closed-form expression for the matrix representation of D̂ [15], but here we will show
a perhaps easier method, which is to infer these coefficients from Equation (11).

This is perhaps easiest shown by way of example. From Equation (11), and calculating the
repeated derivatives of 1/r, we find that (

D̂R(1)
)
α

= rα (12)

(
D̂R(2)

)
αβ

= rαrβ −
r2

3
δα,β (13)

(
D̂R(3)

)
αβγ

= rαrβrγ −
r2

5

(
rαδβ,γ + rβδα,γ + rγδα,β

)
(14)

(
D̂R(4)

)
αβγδ

= rαrβrγrδ −
r2

7

(
rαrβδγ,δ + . . .

)
+

r4

35

(
δαβδγδ + . . .

)
(15)

where the term in brackets corresponds to a sum over all distinct permutations of the indices.
We can now define the action of the D̂ operator on a general tensor, A(n), through substituting

components of A(n) for those of R(n), which gives(
D̂A(1)

)
α

= Aα (16)

(
D̂A(2)

)
αβ

= Aαβ −
1
3

∑
χ

Aχχδα,β (17)

(
D̂A(3)

)
αβγ

= Aαβγ −
1
5

∑
χ

(
Aχχαδβ,γ + Aχχβδα,γ + Aχχγδα,β

)
(18)

(
D̂A(4)

)
αβγδ

= Aαβγδ −
1
7

∑
χ

(
Aχχαβδγ,δ + . . .

)
+

1
35

∑
χ1χ2

Aχ1χ1χ2χ2

(
δαβδγδ + . . .

)
. (19)



Int. J. Mol. Sci. 2020, 21, 277 7 of 36

We will now show that the D̂A(n) are traceless. Starting from a result from Applequist [15]
(Section 3.3) that it always possible to find ri vectors such that any degree n tensor can be expressed as
a linear combination in Ri(n), viz

A(n) =
∑

i

CiRi(n) (20)

We then apply the D̂ operator to both sides of the above to give

D̂A(n) =
∑

i

CiD̂Ri(n) (21)

and given that every D̂Ri(n) is traceless we have that D̂A(n) must also be traceless, which was to
be shown.

To show that D̂ is a proection operator onto the subspace of traceless tensors we first note that
every term in

(
D̂R(n)

)
αβγ..

in Equations (12)–(15) is of the form

Cr2mrαrβ..δγ,δδε,η.., (22)

where C is some constant and where it is easy to show that there must be m Kronecker deltas if the
term is to be dimensionally correct. That each term must be in this form can be shown from induction
on the repeated directional derivatives of 1/r.

Looking again at Equations (12)–(15), we also see that, for each degree n, there is always a first
term with m = 0, i.e., containing no factors of r2, or Kronecker deltas, which is given by rαrβrγ... Again,
this can be shown from induction.

Now, consider what happens when we make the substitution from R(n) to A(n) in expression 22,
which gives

C
∑

χ1,χ2..χm

A(n)
χ1χ1χ2χ2..χmχm..αβ..δγ,δδε,η.., (23)

where the sum involves taking m traces of A(n). Then if A(n) = At(n) is a traceless tensor, the above
must be equal to zero for every term except the m = 0 term, which is equal to At(n)

αβγ... Furthermore,

it follows that D̂At(n) = At(n).
In general, we have that A(n) is not traceless, but given that, for any A(n), we have already shown

that D̂A(n) is traceless, we also have that D̂
(
D̂A(n)

)
= D̂A(n), and so D̂D̂ = D̂. It follows that D̂ is the

detracing projection operator, which projects onto the entire subspace of traceless tensors.

2.3. The Multipole Interaction in Terms of Traceless Tensors

In this section, we will show how the multipole interaction can be written in terms of
traceless tensors.

We begin with an observation that If A(n) is a rank n tensor and Bt(n) is a traceless tensor of the
same rank, then the inner product 〈A(n), Bt(n)

〉t = 〈D̂A(n), Bt(n)
〉t.

To see this, write A(n) = At(n) + A
′(n), where At(n) = D̂A(n) is the traceless part of A(n), and

A
′(n) is the non-traceless remainder, then 〈A

′(n), Bt(n)
〉t = 0, because A

′(n) is completely outside the
traceless subspace as a result of this decomposition, by construction, and the result follows.

We will now show that the traces of the multipole tensors make no contribution to the energies
forces and torques, and so can be set to zero if desired.

Given that φ(n)(r) is traceless, we can use the above theorem to show that the inner product
in Equation (6) can be written as either 〈M(n),φ(n)(r)〉t = 〈Mt(n),φ(n)(r)〉t, and similarly, the inner
product in Equation (7) can also be written using either M(n) or Mt(n), without making any difference
to the result.
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We have shown that the energy of a multipole in a background field is independent of its trace,
and the field from a multipole, as given by Equation (7) is also independent of the multipole traces.
Thus, the energies of any set of interacting multipoles are also independent of their traces, and the
same is true for all the forces and torques being that they involve gradients of the energy.

Finally, we will show that the electrostatic potential from a multipole distribution at a given point
in space can be written in terms of the traceless tensors Rt(n) and Mt(n). Substitution of Equation (11)
into Equation (7) gives

φ(r) =

∞∑
n = 0

(2n− 1)!!
r2n+1

〈M(n), Rt(n)
〉t. (24)

Furthermore, given the claim at the start of this section, we could use the substitutions
〈M(n), Rt(n)

〉t = 〈Mt(n), Rt(n)
〉t = 〈Mt(n), R(n)

〉t in the above.

2.4. The Multipole Interaction Generating Formula

The ∇(n){1/r} gradients play a central role in the theory of multipoles, as should already be
evident from the last section. However, as shown by Smith, the Ewald sum analogue of the multipole
interaction requires the calculation of more general gradients, in which spherically symmetric functions,
here written as B(r), are substituted for the 1/r terms in equalities like Equation (7). That is, instead of
calculating the ∇(n){1/r} gradients, we will now be interested in finding gradients ∇(n)

{
B0(r)

}
, with the

knowledge that, should we wish to find results for the non-Ewald regular multipole expansion then
we can simply set B(r) = 1/r in the final expressions.

In particular, the Ewald sum analogue to the normal multipole formulae requires using the kernel
B(r) = er f c(αr)/r, where erfc(x) is the complimentary error function, which corresponds to the
interaction of a unit charge with a negative Gaussian ‘screening’ density, where the screening density
is of the form ρ(r) = −Aexp

(
−a2r2

)
(suitably normalised).

To simplify these gradient calculations, Smith defines the radial functions, Bm(r), where the zeroth
term is given by B0(r) = B(r), and with the higher order terms defined according to

Bm+1(r) = −B′m(r)/r (25)

from which it follows that if B0(r) = 1/r, then B1(r) = 1/r3, B2(r) = 3/r5, and, in general,
Bm(r) = (2m− 1)!!/r2m+1, where !! is the double factorial.

As might be expected, the expressions are somewhat more complicated when the
B0(r) = er f c(αr)/r kernel is used, but the repeated derivatives for these functions can be readily
evaluated in terms of Gaussian functions.

It is instructive to calculate the first few terms in the directional gradients of the B0(r)
functions. Begin by recalling that for a general spherically symmetric function, f (r), we have
that ∂ f (r)/∂rα = f ′(r)rα/r. It then follows that

∂
∂rα

Bm(r) = −rαBm+1(r) (26)

from which the first two directional derivatives evaluate to

∂B0(r)
∂rα

= −B1(r)rα
(
= −

rα
r3

)
(27)

and
∂2B0(r)
∂rαrβ

= B2(r)rαrβ − B1(r)δα,β

(
=

1
r5

(
3rαrβ − δα,βr2

))
(28)
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where the terms in brackets are the results for the particular choice of B0(r) = 1/r, and where we note
that these terms can be written in terms of the Maxwell Cartesian spherical harmonics we encountered
in Equation (11).

It is of course possible to continue calculating higher-order terms in this fashion, but the main
point we want to make here is that the first two directional derivatives of B0(r) above contain terms in
Bl(r), for some value of l; in general, as a consequence of the chain rule, it can be shown that gradient
terms in every order can be expressed as a series in Bl(r), where the lth derivative requires calculated
functions up to the lth term.

Returning to the multipole problem, suppose that there are two multipole sites, i and j, at locations
ri and r j respectively, each of which carry a set of multipoles of different ranks, where the multipoles
are placed at the site locations. Then the electrostatic energy of this pair is due to each multipole on
site i interacting with every multipole on site j, which can be determined by first evaluating the field at
r j from the multipoles at ri according to Equation (7), and then calculating the energy of the multipoles
on j in the presence of that field according to Equation (5). Labelling this energy U ji

(
r ji

)
, we obtain

U ji
(
r ji

)
=

∞∑
d j = 0

〈M j(d j),∇
(d j)

j 〉t

∞∑
di = 0

(−1)di〈Mi(di),∇(di)
j 〉t

{
B0

(
r ji

)}
(29)

where r ji = r j
− ri is the inter-site vector, r ji =

∣∣∣r ji
∣∣∣, ∇(di)

j are the directional derivatives with respect

to r j and where we have used the more general form containing the B0
(
r ji

)
kernel.

Similarly to how we found that every order term in the repeated derivatives of B0(r) contain
a series in Bl(r), it is not difficult to see that the same must be true for the interaction energy, U ji

(
rji

)
,

and, following Smith, we can make this clear by collecting terms in Bl
(
r ji

)
to write

U ji
(
r ji

)
=

∞∑
l = 0

Bl
(
r ji

)
Gl

ji

(
r ji

)
(30)

where the Gl
ji

(
r ji

)
functions can be thought of as coefficients in Bl

(
r ji

)
.

Evaluating these functions would seem to require calculating and summing over the ∇(n)
{
B(r)

}
terms ‘by hand’, as it were, which would involve much tedious algebra. However, a closed form
solution has been given by Lin [7], (cf. equation 4.3 in Lin’s paper) and we simply state without proof
that it is given by

Gl
ji

(
r ji

)
=

∑
di+dc+d j = l

Cdi,dc,d j〈(M
i(di+dc).di.R ji(di)), (M j(d j+dc).d j.R ji(d j))〉t, (31)

where R(n) = rrr.. (see Section 4.1); the multipoles are all assumed to be traceless; the notation A.d.B
indicates a d-fold contraction over the tensor indices of A and B (again, see Section 4.1); di is the number
of contractions in the bracket containing Mi; d j is the number of contractions in the bracket containing
M j; dc is the number of contractions acting in the centre, between the two brackets, which we have
expressed as an inner product; and where Cdi,dc,d j are integer combinatorial coefficients, given by

Cdi,dc,d j = (−1)d j
(dc + di)!

(
dc + d j

)
!

di!dc!d j!
. (32)

We also have that the sum in Equation (31) is over all di, d j, dc, where di + dc + d j = l; di, dc, d j ≥ 0,
i.e., the sum is over all possible terms having l contractions.
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We will refer to Equation (31) as the multipole interaction generating formula, as it generates all the
terms in the multipole-multipole expansion of the electrostatic energy. Its derivation is not too difficult,
if a little tedious, and essentially involves expanding out the repeated derivatives of the B0(r) functions,
and using combinatorics to find the number of symmetrically equivalent terms.

The Gl
ji(r) functions up to rank 3 are given in Section 4.1, from which it is readily apparent that

the total number of dots, i.e., the number of contractions, in each term of the lth Gl
ji

(
r ji

)
function is

equal to l, which is also apparent from the structure of Equation (31).

Claim 1. The traces of both the M tensors and the R tensors make no contribution to the multipole interaction
generating formula.

Sketch of Proof: For the multipoles, this follows straightforwardly from the trace condition that all
multipole tensors must be traceless. Furthermore, that the same applies to the R tensors follows
from the fact that their indices are completely contracted with the traceless M tensors, and then using
a similar argument to that used in Section 1 for the traceless multipoles. Q.E.D.

We have shown that it is possible to detrace the R tensors in the sum of Equation (31). However,
we will generally prefer to work with the tensors in their simpler, untraced, form, unless we have
cause otherwise.

One of the real advantages of the Smith and Lin method for deriving the multipole interactions
is that it provides a clean separation between the Gl

ji

(
r ji

)
functions, which depend on the traceless

tensor components, and the spherically symmetric kernel dependent part, which are described by the
Bl

(
r ji

)
functions. This suggests that the Smith and Lin approach may provide a useful starting point

for converting the multipole interaction into spherical harmonics, and later on, we shall show how this
can be done.

2.5. The Diagrammatic Representation

It is possible to construct a diagrammatic representation of the multipole interaction generating
formula of Equation (31), where one such diagram is shown in Figure 1. The figure shows one term in

the formula for l = 6, corresponding to (Mi(5)...R ji(3)) : (M j(3).R ji(1)). The rules being that each node
represents a different tensor, where its rank is given by the number of spokes radiating from the node
in question; the number of spokes shared between two nodes is equal to the degree of the contraction
acting between the corresponding tensors; and the sign of the diagram is taken to be negative when
there are an odd number of bonds connecting the j multipole with its R tensor.
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Figure 1. A term in the multipole interaction generating formula for l = 6, corresponding to

(Mi(5)
...R ji(3)) : (M j(3).R ji(1)), where the nodes from left to right represent R ji (black circle), Mi (red

circle), M j (green circle) and R ji (black circle).

Theorem 1. The complete expression for the lth Gl
ji

(
r ji

)
term involves the sum over all l-bond diagrams, where

the spokes on each multipole tensor are treated as distinct, and where no tensor is allowed to bond to itself.

Proof. The total number of bonds is equal to the total number of contractions which is given by
di + dc + d j = l, which is the range of the sum in Equation (31). Assume that the spokes on each
multipole are distinct, such that it is possible to label the spokes on both multipoles. Then the Cdi,dc,d j
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integer coefficients of Equation (32) are seen to be the number of unique ways of arranging the spokes
on both the i and j multipoles for the topology described by contractions di, dc, d j. Furthermore, the

negative sign mentioned above is a consequence of the (−1)d j factor in Equation (32). Q.E.D. �

We also stated that no tensor may bond to itself. Given that a self-bond corresponds to taking the
partial trace of a tensor, this rule follows directly from the fact that the traces of the M and R tensors
make no contribution to the multipole interaction generating formula, as established in the last section.

The diagrammatic representation is by no means essential for following the math in this work, but
it does provide a useful mnemonic for keeping track of the various terms in the multipole interaction.
Furthermore, it will be interesting to see whether such a simple picture can still be constructed when
we come to convert these expressions into spherical harmonics.

2.6. Forces, Fields, Angular Derivatives and Torques

We are generally interested in more than just calculating the total energy, and for completeness,
this section will detail how to calculate the forces, multipole fields, angular derivatives and
torques, all of which are commonly required when implementing multipole interactions into
molecular-simulation code.

We begin with the forces. Let F ji
(
r ji

)
= −Fi j

(
r ji

)
be the force on multipole site j due to its

interaction with multipoles site i, where the total force on j is given by F j =
N∑
i

F ji
(
r ji

)
.

The force is found through taking the gradient of Equation (30) and evaluates to

F ji
(
r ji

)
= −

∂

∂r j U ji
(
r ji

)
= r ji

∞∑
l = 0

Bl+1

(
r ji

)
Gl

ji

(
r ji

)
−

∞∑
l = 0

Bl
(
r ji

) ∂
∂r j Gl

ji

(
r ji

)
(33)

where we have used Equation (26) to find the gradient of the Bl
(
r ji

)
function, and where the ∂Gl

ji

(
r ji

)
/∂r j

functions are found from taking the gradient of Equation (31), and are given by

∂
∂r j Gl

ji

(
r ji

)
=

∑
di+dc+d j = l

Cdi,dc,d j [di
(
Mi(di+dc).di − 1.R ji(di−1)

)
.dc.

(
M j(d j+dc).d j.R ji(d j)

)
+d j

(
Mi(di+dc).di.R ji(di)

)
.dc.

(
M j(d j+dc).d j − 1.R ji(d j−1)

)
]

. (34)

The ∂Gl
ji

(
r ji

)
/∂r j functions up to rank 3 are listed in Section 4.2.

A diagrammatic representation of one force term is shown in Figure 2, which corresponds to
taking the gradient of the interaction from Figure 1. Comparing Figures 1 and 2, it can be seen that
taking the gradient results in breaking one of the bonds connecting either the i or j multipole with its R
tensor. This leaves the multipole with a bare (or unbonded) spoke, which means that, taken as a whole,
we have a diagrammatic representation of a rank 1 vector.
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...R ji(3)) : M j(3).
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We have already provided an expression for the total energy of the system, but an arguably more
elegant expression for the energy is in terms of multipole field tensors, according to

U =
1
2

N∑
i

∞∑
n = 0

〈Mi(n),φi(n)
〉t, (35)

where φi(n) is the rank n field tensor on site i, which is defined from

φi(n) =
∂U

∂Mi(n)
(36)

Equation (35), which is written in terms of multipole fields has the distinct advantage that it allows
for an automatic decomposition of the total energy into contributions from the different multipole
ranks, i.e., charge, dipole, quadrupole etc. Furthermore, another reason why we may want to calculate
the fields is that it greatly simplifies calculation of angular derivatives and torques, to be given in the
next section.

The fields can be calculated by finding the derivative of the energy with respect to each multipole.
Looking at just one pair of multipole sites, the field on multipole site j due to the multipoles on site i is
given by

φ ji(n) =
∂U ji

(
r ji

)
∂M j(n)

=

∞∑
l = 0

Bl
(
r ji

) ∂

∂M j(n)
Gl

ji

(
r ji

)
(37)

where, taking the derivative of Equation (31) with respect to the multipoles we obtain

∂

∂M j(n)
Gl

ji

(
r ji

)
= SYMM


∑

di+dc+d j = l
dc+dj = n

Cdi,dc,d j(M
i(di+dc).di.R ji(di))R ji(d j)

 (38)

where SYMM indicates that the resulting tensor elements are to be symmetrised over all index
permutations, and for their traces to be removed.

This final step is necessary to ensure that the field tensors have the same symmetries as their
corresponding multipoles, given that per their definition, the field tensors must be unchanged with
respect to any permutation of their indices. Furthermore, the removal of the traces is because the field
traces make no contribution to the energy, and so it makes sense that these are set to zero.

A diagrammatic representation of the field calculation is shown in Figure 3, in which the rank 5
field on Mi(5) and the rank 3 field on M j(3), corresponding to the multipole interaction in Figure 1, are
shown. Both diagrams can be thought of as cutting a multipole free from Figure 1, which corresponds
to taking the derivative with respect to that multipole.
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Figure 3. Representation of the multipole field terms for the interaction in Figure 1. The spokes
radiating from coloured squares represent multipole fields tensors, of rank given by their number of
spokes. The star with the central red square represents the rank-5 field tensor on the i site, and the star
with the central green square represents the rank-3 field tensor on the j site.
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In order that we may calculate the angular derivatives of the energy, let Oαβ be orthogonal rotation
matrices which transform vector components from the reference frame to the laboratory frame (see
Section 4.1). Furthermore, suppose that Oαβ = Oαβ(φ,θ,ψ), where (φ,θ,ψ) are (three) Euler angles
(e.g., see ref. [19]) and we wish to find the energy derivatives with respect to these angles. Taking the
Euler angle ψ as an example, use the chain rule to obtain the contribution from the rank n multipole as

∂U
∂ψ =

∞∑
n = 1

∑
αβγ..

∂U
∂M(n)

αβγ..

∂M(n)
αβγ..
∂ψ

=
∞∑

n = 1
n

∑
αβγ..

φ
(n)
αβγ..

∑
α′β′γ′..

∂
∂ψ {Oαα′ }Oββ′Oγγ′ ..M

re f (n)
α′β′γ′..

(39)

where we have used Equation (78) from Section 4.1 to relate the components of the multipole tensor
to their components in the reference frame, and where the factor of n in the above derives from the

index permutation symmetry of φ(n)
αβγ.. and Mre f (n)

αβγ.. , such that it can be shown that each of the n terms
involving derivatives of the rotation matrices are identical, and so can be added together.

The torques may be evaluated from the energy derivatives with respect to rotations about each
axis. First consider an infinitesimal rotation by ∆θα about the α axis. If a vector r has the value r(∆θα)
after the rotation, then we have r(∆θα) = r + ∆θαα̂× r, which has components

rβ(∆θα) = rβ + ∆θα
∑
δ

εβαδrδ (40)

where εαβγ is the Levi-Civita symbol, εxyz = εyzx = εzxy = 1, εzyx = εyxz = εxzy = −1, and ε = 0
otherwise.

It will prove useful to recast Equation (40) in terms of a rotation matrix. We have
rβ(∆θα) =

∑
γ

Oβγ(∆θα)rγ, where Oβγ(∆θα) is given by

Oβγ(∆θα) = δβ,γ + ∆θαεβαγ (41)

The components of the torque, tα, are obtained from substitution of the above into Equation (39)
to give

tα = −
∂U
∂θα
|θα = 0 = −

∞∑
n = 1

n
∑
βγδεν..

εαβγM(n)
δεν..βφ

(n)
δεν..γ (42)

where we have used ∂Oβγ(θα)/∂θα = εβαγ, and Oβγ(0) = δβ,γ, both of which can be deduced from
Equation (41).

A diagrammatic representation of the torque for one multipole is given in Figure 4.
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2.7. Polynomials and Symmetric Tensors

This section explores the deep connection between homogeneous polynomials and symmetric
tensors, covering similar ground to the treatment by Applequist [15].

We begin with introducing some useful notation. Suppose that A(n)
αβγ.. is a symmetric Cartesian

tensor component where the αβγ.. index contains nx occurrences of x, ny occurrences of y and nz

occurrences of z. Defining n =
(
nx, ny, nz

)
, it will be useful to introduce what Applequist refers to as

compressed tensor notation, in which we write

A(n)
αβγ.. = A(n)

βαγ.. = A(n)
βγα.. = .. = A(n)

(nx,ny,nz)
= A(n)

n (43)

where, in total, there is a multinomial of n!/
(
nx!ny!nz!

)
permutations of the αβγ.. indices belonging to a

particular n.
Now suppose that p(n)(r) is a homogeneous polynomial of degree n, such that p(n)(λr) = λnp(n)(r),

where λ is a scalar. For example, a degree 3 homogenous polynomial is given by pa(3)(r) = 4x3 +

2y2x− 5y3.
To express p(n)(r) in general form, we use compressed notation to write R(n)

n = xnx ynyznz , and

we will label the monomial coefficient in the R(n)
n component as P

(n)
n . The bar is used to signify that the

P
(n)
n are monomial coefficients, although we will shortly see that the P

(n)
n can also be interpreted as

tensor components.

In terms of the polynomial coefficients P
(n)
n , we can express any degree n homogeneous

polynomial as

p(n)(r) =
∑
|n| = n

P
(n)
n R(n)

n =
∑
αβγ..

P(n)
αβγ..R

(n)
αβγ.., (44)

where the sum is over all values of n =
(
nx, ny, nz

)
for which nx + ny + nz = n, and where we have

also introduced the symmetric Cartesian tensor, P(n).
To clarify the above, it may help to take an example. The second order polynomial, p(2)(r), can be

written as either

p(2)(r) = P
(2)
(2,0,0)x

2 + P
(2)
(0,2,0)y2 + P

(2)
(0,0,2)z

2 + P
(2)
(1,1,0)xy + P

(2)
(1,0,1)xz + P

(2)
(0,1,1)yz (45)

or
p(2)(r) = P(2)

xx x2 + P(2)
yy y2 + P(2)

zz z2 + 2P(2)
xy xy + 2P(2)

xz xz + 2P(2)
yz yz (46)

where we have used the permutation symmetry of P(2).

Equating terms in the polynomial, we have P
(2)
(2,0,0) = P(2)

xx , and P
(2)
(1,1,0) = 2P(2)

xy , and similarly for

other terms. In general, P(n)
αβγ.. is related to P

(n)
n by

P(n)
αβγ.. =

nx!ny!nz!
n!

P
(n)
n (47)

where the inverse multinomial coefficients are required due to the permutation symmetry of the
αβγ.. indices.

We can also form inner products, 〈P(n), A(n)
〉t, which can be evaluated as

〈P(n), A(n)
〉t=

∑
αβγ..

P(n)
αβγ..A

(n)
αβγ.. =

∑
|n| = n

P
(n)
n A(n)

n (48)
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Given that P(n) encodes all the information in the polynomial coefficients, i.e., there is a one to
one mapping between the polynomial coefficients and the tensor components, we can think of P(n) as

being the symmetric tensor form of P
(n)
n .

Technically, P(n) is a so-called covariant tensor, which transforms under rotations in the opposite
sense to R(n). To see why, consider a rotation of the coordinate system

p(Or) =
∑
αβγ

P(n)
αβγ..

∑
α′β′γ′..

O(n)
αβγ..,α′β′γ′..R

(n)
α′β′γ′..

=
∑

α′β′γ′..

 ∑
αβγ

O(n)T
α′β′γ′..,αβγ..P

(n)
αβγ..

R(n)
α′β′γ′..

(49)

where O(n) is the orthogonal tensor rotation matrix, O(n)
αβγ..,α′β′γ′ = Oαα′Oββ′Oγγ′ .. (See Section 4.1.)

This shows that we can find p(Or) from either transforming the components of R(n) by the usual
orthogonal rotation O(n), or, we can do it by transforming the components of P(n) by the inverse rotation
O(n)T = O(n)−1.

The P(n) tensor may also be obtained from the polynomial itself by way of a linear operator,
L̂ = (1/n!)∇(n), according to

P(n) = L̂p(n)(r) =
1
n!
∇
(n)p(n)(r) (50)

which may be seen by applying the above gradient operator to Equation (44). Note that because we are
taking n derivatives of a degree-n homogeneous polynomial that the LHS above is independent of r.

Furthermore, we have that the inverse to Equation (50) is given by

p(n)(r) = 〈P(n), R(n)
〉t. (51)

We now introduce the so-called harmonic polynomials, h(n)(r), which are a subset of the p(n)(r)
polynomials which have a vanishing Laplacian, ∇2h(n)(r) = 0. As an example, one such polynomial
is given by ha(3) = 2x3z + 3x2y− 6xy2z− y3, for which it may be confirmed that ∆ha(3) = 0.

The harmonic polynomials are of particular interest, as their corresponding symmetric tensors,
given by H(n) = (1/n!)∇(n)h(n)(r), are traceless, due to the vanishing Laplacian condition on h(n)(r),
i.e., ∑

γ

H(n)
αβ..γγ =

1
n!

∂n−2

∂rα∂rβ..
∇

2h(n)(r) = 0. (52)

Thus, the linear operator, L̂ = (1/n!)∇(n), together with its inverse in Equation (51), establishes
an isomorphism between the vector spaces of harmonic polynomials of degree n, and symmetric
traceless tensors of rank n.

The harmonic polynomials, or equivalently the rank n traceless tensors are spanned by 2n + 1
linearly independent vectors. To see this, first consider the components, An, of a rank n symmetric
Cartesian tensor for which it is a simple matter to show that there are Ns = (n + 1)(n + 2)/2 possible
values of n =

(
nx, ny, nz

)
for which nx + ny + nz = n. Furthermore, the trace condition imposes

Nt = n(n− 1)/2 constraints. To see this, take the trace tensor, Tr
(
A(n)

)
from Equation (9), which is

a degree n − 2 symmetric tensor, having components Tr(A(n))αβγ.. =
∑
χ

A(n)
αβγ..χχ, where clearly, each

component is independent, and as such the trace tensor is described by n(n− 1)/2 linearly independent
vectors, all of which must be independently equal to zero in order that A(n) be traceless. This leaves us
with Nst = Ns −Nt = 2n + 1 degrees of freedom for both the rank n traceless tensors and the degree
n harmonic polynomials.
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2.8. Spherical Harmonics as a Basis for Traceless Symmetric Tensors

The discussion at the end of the last section referred to the fact that symmetric traceless tensors
can in principle be spanned by a minimal set of 2n + 1 linearly independent vectors. It would obviously
be advantageous to work in a representation in which just this number of components are used, and in
this section we shall show how this can be done using spherical harmonics, which provide a natural
orthonormal basis for traceless tensors.

We begin by defining what we will refer to as the spherical inner product, 〈, 〉s, not to be confused
by our tensor inner product, 〈, 〉t, which is given by

〈pa(m), pb(n))〉s =

∫
pa(m)(φ,θ)pb(n)(φ,θ)dS (53)

where the superscripts a and b label two homogeneous polynomials of order m and n, respectively,
and we have switched to spherical coordinates. (Also note, here we are using real polynomials, but
either one of pa(n), or pb(n) in the integral would need to be replaced by its complex conjugate in the
full complex case, in order that 〈, 〉s be a true inner product.)

We now state a theorem which will allow us to convert between the tensor inner product of
traceless tensors and the spherical inner product of harmonic polynomials.

A Theorem on the Equivalence of Two Inner Products

Suppose that h(n)(r) is a degree n harmonic polynomial, and H(n) = (1/n!)∇(n)h(n)(r) is its
traceless tensor equivalent, then the spherical inner product, 〈ha(n), hb(n)

〉s, and the tensor inner product,
〈Ha(n), Hb(n)

〉t, are in a constant ratio for each rank, according to

〈ha(n), hb(n)
〉s =

4πn!
(2n + 1)!!

〈Ha(n), Hb(n)
〉t. (54)

The above theorem may seem like it would be easy to derive through standard algebraic methods,
but in fact, it is surprisingly hard to obtain and our derivation ended up being quite technical. Thus,
we will leave the mathematical details to Section 4.4 through Section 4.6; Section 4.5, we show that
the two inner products are proportional, whilst in Section 4.6 we derive the proportionality constant.
We should also note that similar expressions to Equation (54) have been developed by Ehrentraut and
Muschik, [20] (especially Section 4 in this reference) although using a quite different approach to the
one taken here.

From the theory of spherical harmonics, a complete orthogonal basis (with respect to the spherical
inner product) for degree harmonic polynomials is provided by the spherical harmonics (technically,
the regular solid harmonics), which comprise a set of 2n + 1 real harmonic polynomials orthogonal
over the unit sphere, such that, writing the spherical harmonic polynomials as qi(n)(r), we have that

〈qi(m), q j(n)
〉s

‖ qi(m) ‖s‖ q j(n) ‖s
= δi, jδm,n (55)

where ‖ qi(m)
‖s =

√
〈qi(m), qi(m)〉s is the norm of qi(m)(r), and similarly for q j(n)(r).

A note on the nomenclature. Strictly speaking, a spherical harmonic can be used to describe
any harmonic polynomial confined to the unit sphere. However, here we will use the term spherical
harmonic polynomial to refer specifically to the set of qi(n)(r) polynomials, which are orthogonal over
the unit sphere.

By application of Equation (50), we can also define the traceless tensor form of the spherical
harmonics, which we will call Qi(n), from

Qi(n) =
1
n!
∇
(n)qi(n)(r). (56)
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which, using Equation (51), has an inverse given by

qi(n)(r) = 〈Qi(n), R(n)
〉t=

∑
|n| = n

Q
i(n)
n R(n)

n (57)

The spherical harmonic polynomials up to rank 3 are given in Table 1, adapted from Stone [13].
Given the orthogonality of the spherical harmonic polynomials from Equation (55) and given the

inner product equivalence from Equation (54), we also have that, under suitable normalisation,

〈Qi(n), Q j(n)
〉t= δi, j. (58)

A note on the normalisation: Here, we are choosing the normalisation such that Equation (58)
above holds, i.e., ‖ Qi(n)

‖
2 = 1. So that the qi(n)(r) are consistent with the Qi(n) according to

Equation (56), we have, by way of Equation (54), that the qi(n)(r) polynomials should be normalised
according to ‖ qi(n)

‖
2 = 4πn!/(2n + 1)!!.

Thus the Qi(n) provide an orthogonal basis for the traceless symmetric rank n tensors, and as such,
we can express any symmetric traceless rank n tensor as a linear sum in Qi(n), according to

A(n) =

2n+1∑
k = 1

A(n)
k Qk(n) (59)

and taking the inner product of both sides of Equation (59) above with respect to Qi(n) shows that A(n)
i ,

the components of A(n) in the spherical harmonic basis are given by

A(n)
i = 〈Qi(n), A(n)

〉t=
∑
|n| = n

Q
i(n)
n A(n)

n (60)

where we use the convention that spherical harmonic components are to be indexed by modern roman
lower case letters, as opposed to Greek for the Cartesian indices.

Conversion of traceless tensors from Cartesians to spherical harmonics according to Equation (60)
is perhaps most easily done through consulting tables of spherical harmonics polynomials, such as
those given by Stone [13]. Furthermore, for convenience, the spherical harmonic polynomials up to
rank 3 are listed in Table 1, which is adapted from Stone.

As an example, from Table 1 (Section 4.7), we have that the spherical harmonic
q4(3) =

√
3/2z

(
x2
− y2

)
, which gives, A(3)

4 =
√

3/2
(
Azxx −Azyy

)
, and given that

q1(2) =
(√

6/6
)(

3z2
− r2

)
, we have that A(2)

1 =
(√

6/6
)(

3Azz −
(
Axx + Ayy + Azz

))
, and so on.

The spherical harmonic representation comes in particularly useful for calculating inner products;
for, we can use the orthogonality of spherical harmonics to write

〈A(n), B(n)
〉t =

2n+1∑
i, j = 1

A(n)
i B(n)

j 〈Q
i(n), Q j(n)

〉t=

2n+1∑
i = 1

A(n)
i B(n)

i (61)

Thus, it can be seen that calculating an inner product in spherical harmonics requires the minimal
2n + 1 operations for that rank, which is an enormous saving over the 3n multiplications required for
naively multiplying all of the A(n)

αβγ..B
(n)
αβγ.. matrix Cartesian components together [21,22].

We have seen how the Qi(n)
n coefficients allow for transformation of Cartesians into spherical

harmonics. There is also an inverse transformation, given by Rαβγ..(n)
k , which are the components of

R(n)
αβγ.. projected onto the spherical harmonic basis, and which can be used to transform the components

in the spherical harmonic basis back to Cartesians.
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Furthermore, once again, Stone has provided tables which give a very convenient way for carrying
out these transformations; Table 2, which is also adapted from Stone, provides the relevant information.

As an example, from Table 2, we have that xy2 = −(1/2)q6(3)
−

(√
15/30

)
q2(3), from which it

follows that, if we have spherical harmonic components A(3)
k , then A(3)

xyy = −(1/2)A(3)
6 −

(√
15/30

)
A(3)

2 .
We conclude this section with a discussion of what Applequist [15] has called the detracing operator.
Suppose that T(n) is an in-general non-traceless symmetric tensor. Given that the spherical

harmonics form a complete orthonormal basis for the subspace of traceless rank n tensors, the detracing
operator D̂n can be written in spherical harmonics as

D̂T(n) =

2n+1∑
i = 1

〈T(n), Qi(n)
〉tQ

i(n) (62)

One application of D̂ is in particular worth noting. Applying the above expression for R(n), and
using Equation (57) to make the substitution 〈R(n), Qi(n)

〉t= qi(n)(r) gives via Equation (60) that

Rt(n)
i = qi(n)(r). (63)

where Rt(n) = D̂R are the traceless projections of the R(n) tensors (see Equation (11)), and where we
have used 〈R(n), Qi(n)

〉t = 〈D̂R(n), Qi(n)
〉t, which holds because only the traceless component of R(n)

can contribute to the inner product with the traceless Qi(n).
Thus, the spherical harmonic components of the Maxwell Cartesian spherical harmonics are just

the spherical harmonic polynomials themselves.

3. Discussion

3.1. The Multipole Interaction in Spherical Harmonics

In this section, we will aim to convert the various expressions so far developed in Cartesians into
their spherical harmonic equivalents.

In the last section, we showed how to convert inner products into spherical harmonics.
Furthermore, in this regard, it is unfortunate the multipole interaction generating formula of
Equation (31) cannot be expressed entirely in terms of such products, involving as it does problematic
contractions of the form C(dc) = M(di+dc).di.R(di).

However, even when dealing with such contractions, there is a way of still using the inner product
method, which we shall now describe. We introduce what we will refer to as the split-component
representation of a symmetric tensor, using the notation T(na,nb), where n = na + nb is the full rank of
the tensor, T(na+nb), of which T(na,nb) is but one representation. Taking na = 3, nb = 2 as an illustrative
example, we write the symmetric traceless multipole tensor, M(3,2), which has Cartesian components

M(3,2)
αβγ,δε = M(5)

αβγδε
(64)

where M(3,2) transforms as a symmetric traceless Cartesian tensor with respect to (i) its before-comma
components, (ii) its after-comma components, and (iii) in all its components as a whole. In this
representation, an example contraction can now be written as

C(3)
αβγ =

∑
δε

M(5)
αβγδε

R(2)
δε

=
∑
δε

M(3,2)
αβγ,δεR

(2)
δε

(65)

which behaves like an inner product with respect to the after-comma components, and, as such, can be
readily evaluated in spherical harmonics.



Int. J. Mol. Sci. 2020, 21, 277 19 of 36

We proceed by separately transforming the before-comma and after-comma components of
M(3,2)
αβγ,δε into spherical harmonics, and, using transformations of the sort described by Equation (60),

we have that
M(3,2)

i, j =
∑
αβγδε

Qi(3)
αβγQ j(2)

δε
M(5)
αβγδε

, (66)

where Q j(2)
δε

is used to transform M(3,2)
αβγ,δε →M(3,2)

αβγ,k , and Qi(3)
αβγ is used to transform M(3,2)

αβγ,k →M(3,2)
j,k .

(As discussed in the last section, these transformations are easiest done by way of tables of spherical
harmonics, suitably implemented into code.)

Also, and referring to the discussion of the detracing operator of Equation (62), the R(n) tensor
components are transformed as R(n)

αβ → Rt(n)
i = qi(n)(r) , and so the desired contraction can now be

written in spherical harmonics as

C(3)
a =

5∑
b = 1

M(3,2)
a,b qb(2)(r) (67)

Notes:

(i) The concept of a split component representation can be made quite general. If we wished to,

we could use a mixed Cartesian-spherical harmonic representation, such as M(3,2)
αβγ,k, or we could

choose to use more than one; for instance, M(3,2,1)
a,b,c is a valid split of M(6). However, no matter

how we choose the split, or the base, it is still referring to the same underlying tensor, and,
if necessary, one can always recover all the original components from the by taking the appropriate
inverse transformations.

(ii) The rank-1 spherical harmonics are just x, y and z (see Table 1, in Section 4.7), from which it

follows that a rank 1 tensor has spherical harmonic components T(1)
a = T(1)

x , T(1)
y , T(1)

z , the same

as in Cartesians. Furthermore, in general, we have that T(1,1,1,..)
α,β,γ,. = T(n)

αβγ...

(iii) The split component representation is symmetric with regards to any permutation of its

components, e.g., T(m,n)
a,b = T(n,m)

b,a , and T(l,m,n)
a,b,c = T(n,l,m)

c,a,b = T(n,m,l)
c,b,a , and so on.

(iv) The transformations can all be done by way of the table method explained in the last section. That
is, we do not have to carry out tedious matrix multiplications, but can instead just use Table 1
suitably implemented into code to convert the Cartesians into spherical harmonic components.

At this stage it will prove useful to return to the diagrammatic representation.
Figure 5’s top illustrates the equivalence between different representations of the tensors in

spherical harmonics and Cartesian coordinates. The example given is of a traceless symmetric rank
4 tensor, which can be represented as either T(1,1,1,1), or T(2,1,1), or T(2,2), or T(3,1), or T(4), where the
Cartesian coordinates are, as usual, represented by spokes, and where the transformation to spherical
harmonics is depicted by braiding any number of spokes together. Of course, this is just a visual
metaphor, but it is intended to convey how the transformation into spherical harmonics intertwines
(through taking linear combinations of) multiple Cartesian indices into one spherical harmonic index.
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The next line, in Figure 5’s middle, shows how energy term, (Mi(5)...R ji(3)) : (M j(3).R ji(1)),
depicted in Figure 1, can be converted to spherical harmonics, through performing the braidings

Mi(5)
αβγδε

→Mi(3,2)
a,b , M j(3)

αβγ →M j(2,1)
a,b , R ji(1)

αβ → qa(1)
(
r ji

)
and R ji(3)

αβγ → qa(3)
(
r ji

)
, and then calculating the

contractions according to

(Mi(5)...R ji(3)) : (M j(3).R ji(1)) =

7∑
a = 1

5∑
b = 1

qb(3)
(
r ji

)
Mi(3,2)

b,a

3∑
c = 1

M j(2,1)
a,c qc(1)

(
r ji

)
. (68)

Furthermore, the final diagrammatic equation, in Figure 5’s bottom, shows how to convert
the gradient of the above term into spherical harmonics, which requires the additional braiding
Mi(5)
αβγδε

→Mi(2,1,2)
a,ν,c .

The methods developed here can be used to transform any contraction, and thus, we are now in
a position to transform the entire multipole interaction, energies and forces and fields, into spherical
harmonics. We begin with the multipole interaction generating formula of Equation (31), which in
spherical harmonics is given by

Gl
ji

(
r ji

)
=

∑
di+dc+d j = l

Cdi,dc,d j

2dc+1∑
a = 1

2di+1∑
b = 1

qb(di)
(
r ji

)
Mi(di,dc)

b,a

2d j+1∑
c = 1

M
j(dc,d j)
a,c qc(d j)

(
r ji

)
. (69)
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The spherical harmonic analogue to Equation (34), which gives the gradient terms necessary for
the force calculations (per Equation (31)) is given by

∂

∂r j
γ

Gl
ji

(
r ji

)
=

∑
di+dc+d j = l

Cdi,dc,d j

2dc+1∑
a

[di

2di−1∑
b = 1

qb(di−1)
(
r ji

)
Mi(di−1,1,dc)

b,γ,a

2d j+1∑
c = 1

M
j(dc,d j)
a,c qc(d j)

(
r ji

)
+d j

2di+1∑
c = 1

qc(di)
(
r ji

)
Mi(di,dc)

c,a

2d j−1∑
b = 1

M
j(dc,1,d j−1)
a,γ,b qb(d j−1)

(
r ji

)
]

(70)

and the spherical harmonic analogue to Equation (38), which gives the derivatives necessary for the
multipole fields (per Equation (37)) is given by

∂

∂M j(n)
Gl

ji

(
r ji

)
= SYMM


∑

di+d j+dc = l
dc+dj = n

Cdi,dc,d j


2di+1∑
b = 1

qb(di)
(
r ji

)
Mi(di,dc)

b,a

qc(d j)
(
r ji

)
. (71)

This last expression needs some explanation. Each term in the sum has a tensor representation

of type T
(dc,d j)
a,c , but given that the sum is over dc, d j, the quantity in square brackets will result in

a sum in different split component representations, e.g., for rank 4, the sum will have the form
S(4) = c4T(4) + c3,1T(3,1) + c2,2T(2,2), where the representations do not in general refer to symmetric
tensors. However, once the full sum has been evaluated, it can be symmetrised by converting the
result back into Cartesians, before averaging over all permutations of the Cartesian indices.

The electrostatic potential at r, from a multipole expansion at the origin can be found from the
above by taking the rank 0 multipole derivative and then using Equation (37) to obtain

φ(r) =

∞∑
l = 0

Bl(r)

2l+1∑
a = 1

qa(l)(r)M(l)
a =

∞∑
l = 0

Bl(r)〈M(l), R(l)
〉t (72)

where the last term can be derived from the first, or obtained from taking the rank 0 multipole derivative
of Equation (38), and where we note that it reduces to Equation (22) for the kernel B0(r) = 1/r.

Finally, the spherical harmonic analogue for Equation (42), giving the total torque on a multipole
site is given by

tα = −

∞∑
n = 1

n

2n−1∑
i = 1

∑
βγ

εαβγM(n−1,1)
i,β φ

(n−1,1)
i,γ (73)

Equations (69)–(73) then comprise our final expressions for the multipole interaction in spherical
harmonics, in a form suitable for implementation into the Ewald sum. Here, we should admit that
we have not given spherical harmonic equivalents for rotation of the multipoles, or for calculation of
the angular derivatives (Equation (39)). We currently prefer to keep these in Cartesians for simplicity,
but given that both these calculations can be performed outside the main ij particle loop, there is no
significant computational cost to their calculation.

3.2. Implementation

It may be a cause for worry that implementing the expressions in the last section is technically
very difficult, or computationally costly; however, neither of these things is true.

As far as the implementation goes, it is true that, due to the amount of ‘book-keeping’ required,
implementing the multipole interaction in either Cartesians or spherical harmonics is a moderately
difficult coding task, but implementing Equations (69)–(73), does not need to be any more difficult
than implementing the same sums in Cartesians.
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As for computational cost, note that, contrary to a perennial myth, implementation of the multipole
interaction in spherical harmonics does not require the calculation of any expensive trigonometric
functions. All of the necessary coordinate transformations can be done using Table 1, suitably
implemented into code, obviating the need for any explicit matrix multiplication or calculation of
trigonometric functions (see Section 4.7). It is true that the spherical harmonic transformations may
need to be evaluated afresh each step of a simulation, but the required transformations can be done
exclusively outside the main ij particle loop, which almost always takes up the vast majority of time in
a calculation. These transformations can be done in a time that’s linear with the number of particles,
and which, in any case require no operations more complex than the multiplication of real numbers.
Furthermore, the final expressions in spherical harmonics require fewer operations than their Cartesian
equivalents to calculate, thus providing an overall saving in computational time.

Implementation is greatly aided by the use of tests to verify the results at each stage.
We begin with the energies, where numerical differentiation can be used to check that the multipole

interactions are giving the right energies for each rank.
Suppose we are confident that the multipole interactions are accurate to rank n. Then, it can be

checked that the rank n + 1 multipoles are also giving the right results by comparing the analytic
energies for rank n + 1 multipoles against numerical results found from numerical differentiation of
the rank n multipoles.

One way of doing this is, given rank-n multipole M(n), we construct a fictitious diatom of
bond-length ∆r, in which the first site holds a multipole M(n)/∆r, and the second site holds a multipole
−M(n)/∆r. Then, as ∆r→ 0 , a multipole expansion of the diatom as a whole will give a pure rank n +

1 multipole moment. We can now check to see how the energy of this diatom in the field of other rank
≤ n multipoles compares to the energy of the system when replacing it by an analytic multipole of rank
n + 1, where the analytic multipole is assigned the rank n + 1 multipole moments of the diatom.

If ∆r is made small enough, it should be possible to obtain exact agreement up to numerical
precision. Furthermore, in this way, it is possible to boot-strap our way to checking multipoles of
arbitrary rank. We begin with charges, which can be added together to make numerical dipoles.
Furthermore, once the analytic dipoles are confirmed, pairs of analytic dipoles can be added to together
to make numerical quadrupoles, and so on.

We have implemented our expressions for the energies, fields, forces and torques in spherical
harmonics into an Ewald sum code, going up to rank 3 in the multipole expansion. The analytic forces’
torques and angular derivatives were checked by comparison to numerical derivatives.

The reciprocal space and self-interaction parts of the Ewald sum are given in Section 4.7, and given
that both these terms involve simple to convert inner products over the multipoles, it is absolutely
straightforward to convert the Cartesian multipole form of these expressions as given by Smith [1] into
their spherical harmonic equivalents.

We tested our code on a system of 32 molecules each containing 26 nuclei and interacting under
periodic boundary conditions, and found about a 22% speed-up upon converting the full Ewald sum
to spherical harmonics for multipoles up to rank 3, where the Cartesian form had already been heavily
optimised to remove all obviously redundant operations. This is a not insignificant saving, and the
difference would only be expected to grow with increasing rank.

We have made a copy of our code available on the Internet [21]. It includes all the gradient tests
mentioned in this section, and also includes the aforementioned multipole consistency test, in which
numerical rank n + 1 multipoles are created from displacing rank n multipoles.

3.3. Scaling

The implementation of site multipole expansions does not alter the fundamental scaling with
respect to the number of particles over that of a calculation involving just point charges, but there
is a scaling with respect to the maximum multipole rank used in the expansion, and it is to this we
now turn.
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To obtain an estimate of this scaling, we will try enumerating the number of multiplications
involved in calculating the Gl

ji(r) functions from Equation (31) up to a given rank.
Recall that the inner product of two rank-n tensors requires a minimum of (n + 1)(n + 2)/2

multiplications in Cartesians (accounting for permutation symmetry), and 2n + 1 multiplications in
spherical harmonics. Then, the inner product of Equation (31), which has di left-bracket contractions,
d j right-bracket contractions, and dc between-bracket contractions requires

Xcart
di,dc,d j

=
(
(di + 1)(di + 2) + (dc + 1)(dc + 2) +

(
d j + 1

)(
d j + 2

))
/2− δdi,0 − δd j,0 (74)

multiplications in Cartesians and

XSH
di,dc,d j

= (2di + 1) + (2dc + 1) +
(
2d j + 1

)
− δdi,0 − δd j,0 (75)

multiplications in spherical harmonics, where the −δdi,0 − δd j,0 terms in the above two expressions arise

from the fact that if di = 0, then the corresponding R ji tensor is equal to unity and no multiplication is
required (and similarly for d j = 0).

To obtain the total number of multiplications involved in calculating the Gl
ji(r) functions for

multipoles up to a given rank, we wrote a simple code to sum the values

X(n) =
∑

l

∑
di+d j+dc = l
di+dc ,dj+dc≤n

Xdi,dc,d j , (76)

where X(n) is the total number of multiplications, and where we are only summing over terms with
multipole ranks di + dc, d j + dc ≤ n.

Finally, to obtain the scaling, we fit the curves ∆X(n) = X(n) −X(0) up to a maximum rank of
n = 8, with the form ∆X = ans, where a,s are fitting coefficients, with s being the scaling power.

The result of this exercise was that we found ∆Xcart(n) = 3.5n3.8 for Cartesians and
∆XSH(n) = 5.8n3.3 in spherical harmonics. Thus, the spherical harmonics are expected to have better
scaling than the Cartesian case (s = 3.3 for spherical harmonics vs. 3.8 for Cartesians.)

It is hard to imagine many users would want to go beyond n = 8, but repeating the above in the
range n = 1 . . . 16 gives a scaling of s = 3.6 for spherical harmonics vs. 4.3 for Cartesians.

This analysis is admittedly quite crude. It does not consider the cost of calculating the forces,
the fields, or the cost of array look-ups. It also ignores the fact that at least some of the inner products
occur more than once in the calculation of the Gl

ji(r) functions, and so only need to be evaluated once
and stored for later use. In light of this, it is worth discussing how our actual implementations perform.

To this end, we ran a 32-molecule test case with each molecule having 26 atoms, for both
periodic and non-periodic boundary conditions, and for both spherical harmonics and Cartesian
implementations of the multipole interactions, where the periodic simulations employed a full
Ewald sum.

We recognise that some groups will be interested in calculations using much larger system sizes,
but our code is optimised for crystal-structure prediction using relatively small numbers of molecules,
as it often makes sense to look for crystal structures with relatively small simulation cells. Here, we
also mention that, unlike many codes, our code allows for arbitrary cut-off radii, [22] where the cut-off

sphere is allowed to be larger than can fit in the simulation cell, which means that we can converge
energies for even small unit cells, and in this case we employed a real space cut-off of 16 Å.

For the periodic calculation we obtained scalings of s = 3.7 for spherical harmonics, and s = 4.5 for
Cartesians, and for the non-periodic calculation we obtained s = 2.7 for spherical harmonics and s = 3.3
for Cartesians; results that are not too dissimilar from our relatively crude theoretical predictions.
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4. Materials and Methods

We discuss in this section, by way of technical sub-sections, the underlying intellectual and
mathematical infrastructure underpinning the above-discussed novel contributions of the present
work outlined in Section 2 and discussed further in Section 3, before summarising and concluding the
article in Section 5 below.

4.1. Some Mathematical Properties of Cartesian Tensors and Notation

Let v be a Cartesian vector in R3, which has Cartesian components v.̂α = vα, where α is one of
x, y or z, and α̂ is a unit vector in the α direction. If x, y, z is an orthogonal axis set, then α̂.β̂ = δα,β,
where δα,β = 1 if α = β, and δα,β = 0 otherwise. Thus, we can write v =

∑
α

vαα̂, where the sum is

over the three directional indices, x, y and z.
Now suppose we also have a reference set of axes, given by x̂re f , ŷre f and ẑre f , where α̂re f .β̂re f = δα,β,

then Oαβ = α̂.β̂re f is the orthogonal 3 × 3 rotation matrix, which takes the reference-frame components
to the components in the laboratory frame via

vα =
∑
β

Oαβv
re f
β (77)

Now, let T(n) =
∑
αβ..

T(n)
αβγ..α̂β̂γ̂.. be a tensor of rank n, which has Cartesian components T(n)

αβγ.., where

the number of indices is equal to its rank, and where the tensor components transform according to

T(n)
αβγ.. =

∑
α′β′γ′..

Oαα′Oββ′Oγγ′ ..T
re f (n)
α′β′γ′.. =

∑
α′β′γ′..

O(n)
αβγ..,α′β′γ′T

re f (n)
α′β′γ′.., (78)

where there are n occurrences of the rotation matrix in the above, and where we have defined the
orthogonal tensor rotation matrix O(n), with components

O(n)
αβγ..,α′β′γ′ = Oαα′Oββ′Oγγ′ .., (79)

We will generally use the superscript notation (n) to indicate the rank of each tensor, except in
a small number of cases where the rank can be inferred from counting its indices. To distinguish
different tensors of the same kind and rank, we will often also use the superscript to give labels to the
tensors, e.g., if we have two rank-n tensors we wish to label a and b, then we will use the notation Ta(n)

and Tb(n), which have components Ta(n)
αβγ.. and Tb(n)

αβγ...
Almost all of the tensors used in this work are symmetric with respect to the permutation of

their indices, e.g., Tαβγ = Tαγβ = Tβγα = Tβαγ = Tγαβ = Tγβα, and we will refer to such tensors
as symmetric.

We now turn to a discussion of tensor contractions. We will only give a brief overview, but we
note that Applequist has written extensively on this topic, and the interested reader should consult his
work [15].

Suppose that A(i) and B( j) are two such symmetric tensors. We introduce the notation A : n : B to
indicate a contraction over n indices of two such tensors, e.g.,

G(3)
γδε

=
(
A(3).2.B(4)

)
γδε

=
∑
αβ

A(3)
αβγB(4)

αβδε
, (80)

is a contraction over 2 indices, and

G(1)
δ

=
(
A(3).3.B(4)

)
δ
=

∑
αβγ

A(3)
αβγB(4)

αβγδ
, (81)
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is a contraction over 3 indices.
Furthermore, in general, the contraction A(i).n.B( j) results in a symmetric tensor of rank i + j − 2n.
For small numbers of contractions, we can use the alternative notation that a contraction is

indicated by vertical dots, where the number of dots is equal to the degree of the contraction, e.g.,

A(i).B( j) = A(i).1.B( j), A(i) : B( j) = A(i).2.B( j), and A(i)...B( j) = A(i).3.B( j).
Now consider the contraction s = A(n).n.B(n), where A(n), and B(n) are traceless rank (n) tensors,

and the result, s, is a scalar. It is easy to show that this contraction forms an inner product on the vector
space of all rank-d tensors. Thus, we will use the notation

〈A(n), B(n)
〉t= A(n).n.B(n) =

∑
αβγ..

A(n)
αβγ..B

(n)
αβγ... (82)

To prove that the above is a genuine inner product, we first use the fact that symmetric rank-n
tensors form a vector space, that is, the addition of any two rank-n symmetric tensors results in another
rank-n symmetric tensor, and the multiplication of any symmetric rank-n tensor by a scalar also results in
another rank-n symmetric tensor. Then, we can show that on this vector space, (i) 〈A(n), B(n)

〉t is always
a scalar. (ii) for any scalar, s: s〈A(n), B(n)

〉t = 〈sA(n), B(n)
〉t (linearity), (iii) 〈A(n), B(n)

〉t= 〈B(n), A(n)
〉t

(symmetry), and (iv) 〈A(n), A(n)
〉t≥ 0. (positive defiteness). Which are the four conditions required for

〈A(n), B(n)
〉t to be an inner product.

It remains to be shown that the inner product is the same in any axis frame, such that it operates
on the tensors, and not just their components.

Firstly, working in the lab-axis frame, if a, b, c, d are any rank 1 Cartesian vectors, then ab :
cd = (a.c)(b.d). From which it follows that if we have axes defined by orthogonal unit vectors α̂ and
α̂′, where one is rotated with respected to the other, then α̂β̂ : γ̂′δ̂′ = AαγAβδ, where Aαγ = α.γ̂′ are
the components of the rotation matrix which transforms between the two frames.

Now, suppose we expand out the inner product of two rank 2 tensors C(2) and D(2), where the
latter’s components are calculated in the α̂′ frame, then, writing D′αβ for the components in this frame
we have ∑

αβ

Cαβα̂β̂ :
∑
γδ

D′γδγ̂
′δ̂′ =

∑
αβ

Cαβ
∑
γδ

AαγAβδD′γδ =
∑
αβ

CαβDαβ (83)

which is the same as if both tensors components were calculated in the same frame. Thus, 〈C(n), D(n)
〉t

is the same no matter the frame each tensor’s components are calculated in, and the same goes for all
tensor inner products in general.

Finally, it is useful to define the tensors

R(n) = rrrr.., (84)

with components R(n)
αβγ.. = rαrβrγrδ.., where the number of rs is equal to its rank. It can be readily seen

that R(m)R(n) = R(m+n), which implies that R(0) = 1.
Similarly, we define the tensors

∇
(n) = ∇∇∇∇.., (85)

where∇α = ∂/∂rα, and∇(n)αβγ.. = ∂n/∂rα∂rβ∂rγ.. Furthermore, again, we have that ∇(m)
∇
(n) = ∇(m+n),

which implies that ∇(0) = 1.
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4.2. The Gl
ji(r) Functions up to Rank 3

The following lists the Gl
ji(r) functions defined from Equation (31) (and surrounding text) up to

multipoles of rank 3. These formulae agree with those derived by Smith, [1] who calculated terms up
to rank 3, except that here we list only those terms which occur for traceless multipole tensors.

G0
ji

(
r ji

)
=

(
Mi(0)

)(
M j(0)

)
(86)

G1
ji

(
r ji

)
=

(
Mi(1).R ji(1)

)(
M j(0)

)
−

(
M j(1).R ji(1)

)(
Mi(0)

)
+

(
Mi(1)

)
.
(
M j(1)

) (87)

G2
ji

(
r ji

)
= −

(
Mi(1).R ji(1)

)(
M j(1).R ji(1)

)
+2

(
Mi(2).R ji(1)

)
.
(
M j(1)

)
− 2

(
M j(2).R ji(1)

)
.
(
Mi(1)

)
+

(
Mi(2) : R ji(2)

)(
M j(0)

)
+

(
M j(2) : R ji(2)

)(
Mi(0)

)
+2

(
Mi(2)

)
:
(
M j(2)

) (88)

G3
ji

(
r ji

)
= −4

(
Mi(2).R ji(1)

)
.
(
M j(2).R ji(1)

)
−

(
Mi(2) : R ji(2)

)(
M j(1).R ji(1)

)
+

(
M j(2) : R ji(2)

)(
Mi(1).R ji(1)

)
+(Mi(3)...R ji(3))M j(0)

− (M j(3)...R ji(3))Mi(0)

+3(Mi(1)).(M j(3) : R ji(2)) + 3(M j(1)).(Mi(3) : R ji(2))

−6(Mi(2)) : (M j(3).R ji(1)) + 6(M j(2)) : (Mi(3).R ji(1))

+6(Mi(3))
...(M j(3))

(89)

G4
ji

(
r ji

)
=

(
Mi(2) : R ji(2)

)(
M j(2) : R ji(2)

)
−(Mi(3)...R ji(3))(M j(1).R ji(1)) − (M j(3)...R ji(3))(Mi(1).R ji(1))

−6(Mi(3) : R ji(2)).(M j(2).R ji(1)) + 6(M j(3) : R ji(2)).(Mi(2).R ji(1))

−18(Mi(3).R ji(1)) : (M j(3).R ji(1))

(90)

G5
ji

(
r ji

)
= (Mi(3)...R ji(3))(M j(2) : R ji(2)) − (M j(3)...R ji(3))(Mi(2) : R ji(2))

+9(Mi(3) : R ji(2)).(M j(3) : R ji(2))
(91)

G6
ji

(
r ji

)
= −(Mi(3)...R ji(3))(M j(3)...R ji(3)) (92)

4.3. The ∂Gl
ji(r

ji)/∂rj Functions up to Rank 3

The following lists the ∂Gl
ji

(
r ji

)
/∂r j functions given by Equation (34), up to rank 3 in the multipoles.

These formulae agree with those derived by Smith, [1] who calculated terms up to rank 3, except that
here we list only those terms which occur for traceless multipole tensors.

∂G0
ji

(
r ji

)
/∂r j = 0 (93)

∂G1
ji

(
r ji

)
/∂r j =

(
Mi(1)

)(
M j(0)

)
−

(
M j(1)

)(
Mi(0)

)
(94)

∂G2
ji

(
r ji

)
/∂r j = −

(
Mi(1)

)(
M j(1).R ji(1)

)
−

(
Mi(1).R ji(1)

)(
M j(1)

)
+2

(
Mi(2)

)
.
(
M j(1)

)
− 2

(
M j(2)

)
.
(
Mi(1)

)
+2

(
Mi(2).R ji(1)

)(
M j(0)

)
+ 2

(
M j(2).R ji(1)

)(
Mi(0)

) (95)
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∂G3
ji

(
r ji

)
/∂r j = −4

(
Mi(2)

)
.
(
M j(2).R ji(1)

)
− 4

(
Mi(2).R ji(1)

)
.
(
M j(2)

)
−2

(
Mi(2).R ji(1)

)(
M j(1).R ji(1)

)
−

(
Mi(2) : R ji(2)

)(
M j(1)

)
+2

(
M j(2).R ji(1)

)(
Mi(1).R ji(1)

)
+

(
M j(2) : R ji(2)

)(
Mi(1)

)
+3

(
Mi(3) : R ji(2)

)
M j(0)

− 3
(
M j(3) : R ji(2)

)
Mi(0)

+6
(
Mi(1)

)
.
(
M j(3).R ji(1)

)
+ 6

(
M j(1)

)
.
(
Mi(3).R ji(1)

)
−6

(
Mi(2)

)
:
(
M j(3)

)
+ 6

(
M j(2)

)
:
(
Mi(3)

)
(96)

∂G4
ji

(
r ji

)
/∂r j =

2
(
Mi(2).R ji(1)

)(
M j(2) : R ji(2)

)
+ 2

(
Mi(2) : R ji(2)

)(
M j(2).R ji(1)

)
−3

(
Mi(3) : R ji(2)

)(
M j(1).R ji(1)

)
− (Mi(3)...R ji(3))

(
M j(1)

)
−3

(
M j(3) : R ji(2)

)(
Mi(1).R ji(1)

)
− (M j(3)...R ji(3))

(
Mi(1)

)
−12

(
Mi(3).R ji(1)

)
.
(
M j(2).R ji(1)

)
− 6

(
Mi(3) : R ji(2)

)
.
(
M j(2)

)
+12

(
M j(3).R ji(1)

)
.
(
Mi(2).R ji(1)

)
+ 6

(
M j(3) : R ji(2)

)
.
(
Mi(2)

)
−18

(
Mi(3)

)
:
(
M j(3).R ji(1)

)
− 18

(
Mi(3).R ji(1)

)
:
(
M j(3)

)
(97)

∂G5
ji

(
r ji

)
/∂r j =

3
(
Mi(3) : R ji(2)

)(
M j(2) : R ji(2)

)
+ 2(Mi(3)...R ji(3))

(
M j(2).R ji(1)

)
−3

(
M j(3) : R ji(2)

)(
Mi(2) : R ji(2)

)
− 2(M j(3)...R ji(3))

(
Mi(2).R ji(1)

)
+18

(
Mi(3).R ji(1)

)
.
(
M j(3) : R ji(2)

)
+ 18

(
Mi(3) : R ji(2)

)
.
(
M j(3).R ji(1)

) (98)

∂G6
ji

(
r ji

)
/∂r j =

−3
(
Mi(3) : R ji(2)

)
(M j(3)...R ji(3)) − 3(Mi(3)...R ji(3))(M j(3) : R ji(2))

(99)

4.4. The General Decomposition for Homogeneous Polynomials

This sub-section introduces a standard decomposition for polynomials into mutually orthogonal
rotationally invariant subspaces. The results will be used below in Section 4.5, in which we explain
how to convert between the tensor and spherical inner products.

A result from the theory of spherical harmonics (e.g., see chapter 2 of ref. [23]): Any degree n
homogeneous polynomial, p(n)(r), has a unique decomposition given by

p(n)(r) =

bn/2c∑
m = 0

r2mhm(n−2m)(r) (100)

where hm(n−2m)(r) is the mth harmonic polynomial, and where, as usual, the degree of the polynomial is
placed in brackets, so that hm(n−2m)(r) describes a polynomial of degree n−2m. Furthermore, where, the
bn/2c in Equation (77) is the smallest integer less than or equal to n/2, e.g., b8/2c = 4 and b11/2c = 5.

The decomposition of Equation (100) is unique, because each term in the sum resides in a subspace
which is mutually orthogonal under the spherical inner product.

To show this, use the result from the theory of spherical harmonics (e.g., chapter 2 of ref. [23])
that for any two harmonic polynomials of degree m and n, the spherical inner product 〈ha(m), hb(n)

〉s is
zero, unless m = n. Thus, if pm(n)(r) = r2mhm(n−2m)(r), and pm′(n)(r) = r2m′hm′(n−2m′)(r), then the
spherical inner product, 〈pm(n), pm′(n)

〉s = 〈hm(n−2m), hm′(n−2m′)
〉s is zero unless m = m′.

The decomposition of Equation (100) is also complete, because the dimension of the mth subspace
is 2(n− 2m) + 1, and summing over all subspaces gives a dimension of (n + 1)(n + 2)/2 (which can
be proved by induction), which is the full dimension of the vector space of degree n homogeneous
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polynomials. (For example, if n = 7, then 2n + 1 = 15, and the total dimension is 15 + 11 + 7 +

3 = 36 = (7 + 1)(7 + 2)/2.)
Now consider a polynomial in the mth subspace, and so of the form p(n)(r) = r2mh(n−2m)(r), and

what happens when that polynomial is rotated.
We can rotate the polynomial through calculating p(n)(Or), where O is an orthogonal rotation

matrix, and where the result of which is p(n)(Or) = r2mh(n−2m)(Or). However, given that the rotation
of any harmonic polynomial is still a harmonic polynomial of the same degree, we have that p(n)(Or)
must still belong to the same subspace as p(n)(r). Thus, any polynomial which belongs to the mth
subspace is guaranteed to remain in that subspace after any rotation.

Furthermore, it can be shown (e.g., chapter 2 of ref. [23]) that each subspace is irreducible, in the
sense that it cannot be further divided into rotationally invariant orthogonal subspaces. (Spherical
harmonic polynomials of degree n form a 2n + 1 dimensional basis for the irreducible representation of
SO(3), the group of all rotations in three dimensions. See also, for example, chapter 8 in ref. [24]).

We can also define associated projection operators, d̂m, such that the mth projection operator
projects a homogeneous polynomial into the mth subspace, according to.

d̂mp(n)(r) = r2mhm(n−2m)(r) (101)

It was shown in Equation (44) that a degree-n polynomial can be written in the form

p(n)(r) =
∑
αβγ..

P(n)
αβγ..R

(n)
αβγ... (102)

which allows us to define the associated tensor operators, D̂m, according to

d̂mp(n)(r) =
∑
αβγ..

(
D̂mP(n)

)
αβγ..

R(n)
αβγ.. (103)

where Equation (103) must define uniquely the D̂m, because the polynomial d̂mp(n)(r) is uniquely
defined, and there is a one to one correspondence between polynomials and their equivalent tensors.

One iteration of Equation (103) gives

d̂m′ d̂mp(n)(r) =
∑
αβγ..

(
D̂m′D̂mP(n)

)
αβγ..

R(n)
αβγ.. (104)

Consider the case m′ = m, for which we have d̂m = d̂md̂m, given that d̂m are projection operators.
In this case, equating Equations (103) and (104) then implies that D̂mD̂m = D̂m, and so D̂m is also
a projection operator.

Conversely, for m′ , m, we have that d̂m′ d̂m = 0, because d̂m are orthogonal projectional
operators, in which case, Equation (104) must equal zero, which can only be possible for all P(n), R(n) if
D̂m′D̂m = 0, again for m′ , m; from which we conclude that the D̂m are orthogonal projection operators.

It can be seen from Equation (101) that the d̂0 operator projects polynomials into the space of
harmonic polynomials of the same degree, with d̂0h(n)(r) = h(n)(r) for any h(n)(r). Given that the
tensor equivalent to a harmonic polynomial is traceless, the corresponding D̂0 operator must project
tensors into the space of traceless tensors, i.e., we have that D̂0 = D̂, the detracing operator.

4.5. Conversion between the Tensor and Spherical Inner Products

This sub-section gives the conversion between the spherical inner product 〈pa(n), pb(n)
〉s, defined

in Equation (53), and the tensor inner product, 〈Pa(n), Pb(n)
〉t, where Pa(n) is the tensor equivalent to

pa(n)(r), and similarly for Pb(n) and pb(n)(r).
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We begin by recalling from Equation (44) that any degree n homogeneous polynomial can be
written as

p(n)(r) =
∑
αβγ..

P(n)
αβγ..R

(n)
αβγ.. (105)

Substituting the above into the 〈pa(n), pb(n)
〉s spherical inner product gives

〈pa(n), pb(n)
〉s =

∑
αβγ..

Pa(n)
αβγ..

∑
α′β′γ′..

〈R(n)
αβγ.., R(n)

α′β′γ′..〉sP
b(n)
α′β′γ′.. , (106)

which can be rewritten as
〈pa(n), pb(n)

〉s = 〈Pa(n), K̂Pb(n)
〉t (107)

where the self-adjoint tensor operator K̂ is defined from its action on a degree n Cartesian tensor, P(n),
according to (

K̂P(n)
)
αβγ..

=
∑
α′β′

Kαβγ..,α′β′γ′..Pα′β′γ′.., (108)

where K̂ has matrix elements
Kαβγ..,α′β′,γ′.. = 〈R(n)

αβγ.., R(n)
α′β′γ′..〉s. (109)

The components of K̂ are easiest expressed in compressed notation, in which they are given by

Km,n =
∫

xmx+nx ymy+nyzmz+nzdS

= 4π
(mx+nx−1)!!(my+ny−1)!!(mz+nz−1)!!

(2n+1)!! em+n
(110)

where = mx + my + mz = nx + ny + nz, and em+n = 1 if mx + nx, my + ny and mz + nz are all even,
and em+n = 0 otherwise, and where the integral above was solved using the methods for integrating
polynomials over the unit sphere in ref. [25].

Although Equation (110) defines completely the matrix elements of K̂, it is not in a very useful
form. In the remainder of this section we will show how K̂ can be put in a more useful form by writing
it as a spectral sum in the projection operators, D̂m, defined in Section 4.5.

Let R̂ = R̂(φ,θ,ψ) be a rotation operator, parameterised in terms of Euler angles φ,θ,ψ say,
which acts to rotate the system, where R̂ acting on a polynomial rotates the polynomial by Euler angles
φ,θ,ψ, i.e., R̂p(r) = p

(
R̂−1r

)
, where rotation of r can be achieved using orthogonal rotation matrices

as described in Section 4.1. We also define the action of R̂ on tensors, such that if P(n) is the tensor
equivalent of the polynomial p(n)(r), then R̂P(n) is the tensor equivalent of the polynomial R̂p(n)(r).

We will now establish that both D̂m and R̂, and K̂ and R̂ always commute, i.e.,
[
D̂m, R̂

]
= 0 and[

K̂, R̂
]
= 0. Furthermore, this will allow us to show that K̂ must be a linear combination of D̂m.

We first show that
[
D̂m, R̂

]
= 0. Recall from Section 4.4 that no rotation can move a polynomial,

d̂mp(n)(r), in the mth subspace out of its subspace, which implies that d̂mR̂ = R̂d̂m, or
[
d̂m, R̂

]
= 0.

Now, given that any polynomial in the mth subspace (with associated projection operator d̂m) is
equivalent to a tensor in its mth subspace (with associated projection operator D̂m), it also follows that
no rotation of a tensor in its mth subspace can move that tensor out of the mth subspace. (If it could,
we could transform a polynomial in the mth subspace into its corresponding tensor, rotate that tensor
out of the mth subspace, and then transform back, which would mean that the mth subspace is not
rotationally invariant.)

Thus, we also have that D̂mR̂ = R̂D̂m, or
[
D̂m, R̂

]
= 0, which was to be shown.
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We will now show that
[
K̂, R̂

]
= 0. First note that because the spherical inner product is the

integral of the product of two polynomials over the unit sphere, we have that rotating both polynomials
by the same Euler angles must leave the inner product unchanged. We thus have that

〈pa(r), pb(r)〉s = 〈R̂pa(r), R̂pb(r)〉s. (111)

From Equation (107), the LHS above can be rewritten as 〈Pa(n), K̂Pb(n)
〉t. Further, we also have

that the RHS above can be rewritten as

〈R̂pa(r), R̂pb(r)〉s = 〈R̂Pa(n), K̂R̂Pb(n)
〉t = 〈Pa(n), R̂−1K̂R̂Pb(n)

〉t (112)

where the last part of Equation (112) above comes from applying the inverse rotation, R̂−1, to both
sides of the inner product. We thus have that

〈Pa(n), K̂Pb(n)
〉t = 〈Pa(n), R̂−1K̂R̂Pb(n)

〉t (113)

which implies that K̂ = R̂−1K̂R̂, or
[
K̂, R̂

]
= 0, which was to be shown.

We will now show that since
[
K̂, R̂

]
= 0 and

[
D̂m, R̂

]
= 0, it follows that K̂ must be a linear

combination of D̂m.
Suppose that v is an eigenvector of K̂ with eigenvalue α. Given that

[
K̂, R̂

]
= 0, we have that

K̂R̂v = R̂K̂v = αR̂v (114)

It follows that R̂v is also an eigenvector of K̂, also with eigenvalue α. Thus, v must belong to
a degenerate subspace of K̂ spanned by all eigenvectors of K̂ with eigenvalue α. Furthermore, this
subspace is rotationally invariant, i.e., for any vector v in that subspace R̂v also belongs to that subspace.
However, we have seen that the orthogonal irreducible rotationally invariant subspaces on the vector
space of tensors are described by projection operators D̂m, so each one of the mutually orthogonal
degenerate eigenspaces of K̂ is one of the m spaces associated with the D̂m projection operators.

Now, given that any symmetric matrix can be expressed as a linear sum: A =
∑
i
λiP̂i, where P̂i is

the projection into the ith degenerate eigenspace, with associated eigenvalue λi, we have that K̂ can be
written in the form

K̂ =
∑

m
αmD̂m (115)

with the αm to be determined.
As a check, we can take the commutator of both sides of Equation (115) above with respect to R̂,

which gives

[K̂, R̂]=
∑

m
αm[D̂m, R̂] = 0 (116)

as expected.
Finally, substitution of Equation (116) above into Equation (107) gives∑

m
〈d̂mpa(n), d̂mpb(n)

〉s =
∑

m
αn,m〈D̂mPa(n), D̂mPb(n)

〉t (117)

where we have now included the index n in αn,m given that it is possible these scalars also have
a dependence on n, and where we have used

〈pa(n), pb(n)
〉s =

∑
m
〈d̂mpa(n), d̂mpb(n)

〉s (118)
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However, Equation (117) must hold separately for each value of m, for the mth term on the LHS
can only depend on the mth term on the RHS. So we have that

〈d̂mpa(n), d̂mpb(n)
〉s = αn,m〈D̂mPa(n), D̂mPb(n)

〉t (119)

which, apart from the αn,m to be determined in the next sub-section (i.e., 4.6) for the m = 0 case, is our
final form for the conversion between inner products.

4.6. Proportionality Constants for Conversion between the Tensor and Spherical Inner Products for the Case of
Traceless Tensors and Harmonic Functions

In Section 4.5, we developed a general expression (Equation (119)) for the conversion between the
spherical and tensor inner products. We will only need the m = 0 case for this present work, for which
the D̂0 projection operator is the detracing operator, D̂ = D̂0, and the associated d̂0 operator describes
a projection onto the space of harmonic polynomials. Thus, for m = 0, Equation (119) can be written as

〈ha(n), h(n)〉s = αn,0〈Ha(n), Hb(n)
〉t (120)

where H(n) are traceless tensors, and h(n)(r) are their associated harmonic polynomials.
In the present sub-section, it will be shown that the rank-dependent proportionality constants αn,0

are given by

αn,0 =
4πn!

(2n + 1)!!
(121)

Note that as the multipole interaction formulae are written in terms of traceless tensors, only the
m = 0 case is required for this present work. However, the general approach described here should be
extensible to results for higher orders.

Our ‘plan of attack’ is to fix its value by choosing the simplest rank n harmonic polynomials we
can think of, which are arguably provided by the so-called zonal spherical harmonics, rnln(z/r), where
ln(z) is the nth Legendre polynomial, and where ∆

{
rnln(z/r)

}
= 0. We also have that the zonal

spherical harmonics are symmetric about the z axis, which should make them particularly simple to
work with.

Again, aiming for simplicity, we will set both ha(n)(r) and hb(n)(r) to the same zonal
spherical harmonic.

ha(n)(r) = hb(n)(r) = rnln(z/r) (122)

Now, using the properties of Legendre polynomials, we have that the LHS of Equation (120) is
given by

〈ln, ln〉s =

∫ 2π

φ = 0

∫ π

θ = 0
l2n(cos(θ))sin(θ)dθdφ = 2π

∫ 1

z = −1
l2n(z)dz =

4π
2n + 1

(123)

where we have used the standard formula for Legendre polynomials that the integral of lm(x)ln(x)
over z = −1 to 1 is given by 2/(2n + 1)δm,n.

We next turn to calculating the equivalent inner product on the RHS of Equation (120). Let L(n)

be the zonal spherical harmonics in Cartesian tensor form, which using Equation (50) are given by
L(n) = (1/n!)∇(n)

{
rnln(z/r)

}
. Given the z symmetry of the zonal harmonics, we have that the L(n)

must be proportional to D̂Z(n), where Z(n) = ẑ̂ẑz... (No other choice would have the right symmetry.)
Taking the inner product of a rank n tensor, e.g., A(n), with Z(n) returns the A(n)

zzz.. component, i.e.,
〈A(n), Z(n)

〉t = A(n)
zzz.., and we will now state two such inner products (to be proved at the end of this

section), which will come in useful for the following.

〈L(n), Z(n)
〉t = 1 (124)
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〈D̂Z(n), Z(n)
〉t =

n!
(2n− 1)!!

(125)

Using the last two identities above fixes the proportionality constant between D̂Z(n) and L(n)

to give

L(n) =
(2n− 1)!!

n!
D̂Z(n). (126)

We can then write
〈L(n), L(n)

〉t =
(2n−1)!!

n! 〈L(n), D̂Z(n)
〉t

=
(2n−1)!!

n! 〈L(n), Z(n)
〉t =

(2n−1)!!
n!

(127)

where we have (i) used Equation (126) to exchange L(n) for D̂Z(n), (ii) used the fact that L(n) is inside
the traceless subspace to allow us to exchange D̂Z(n) for Z(n), and (iii) used Equation (124) above.

Finally, substituting Equations (127) and (123) into Equation (120) fixes αn,0 = 4πn!/(2n + 1)!!,
which is Equation (121).

As promised, we will now provide the proofs of Equations (124) and (125).
To prove Equation (124), we use the identity

∂
∂z

{
rnln(z/r)

}
= nrn−1ln−1(z/r) (128)

which can be proved by algebraic differentiation using the standard identity for the derivative of a
Legendre polynomial: l′n(x) =

(
n/

(
x2
− 1

))
(xln(x) − ln−1(x)).

Thus, we have that

〈L(n), Z(n)
〉t = L(n)

zzz.. =
1
n!
∂n

∂zn
{
rnln(z/r)

}
= 1. (129)

To prove Equation (125), we use the standard generating function for Legendre polynomials

1

(1− 2xt + t2)1/2
=

∞∑
n = 0

ln(x)tn (130)

Substituting x = cos(θ) and t = r, where cos(θ) = z/r, and recognising that, under these

substitutions, the LHS above is now equivalent to
∣∣∣r− ẑ

∣∣∣−1
, we have

1∣∣∣r− ẑ
∣∣∣ =

∞∑
n = 0

ln(cos(θ))rn (131)

However, the LHS above can also be Taylor-expanded as

1∣∣∣r− ẑ
∣∣∣ =

∞∑
n = 0

(−1)n

n!
〈Z(n)),∇(n)〉t

{1
r

}
=

(2n− 1)!!
n!r2n+1

∞∑
n = 0

〈Z(n)), Rt(n)
〉t (132)

where we have made use of the expression for the Maxwell Cartesian spherical harmonics from
Equation (11).

Comparing Equations (131) and (132), we deduce that

〈Z(n)), Rt(n)
〉t =

n!r2n+1

(2n− 1)!!
ln(cos(θ))rn (133)

Now, setting r = 1 and θ = 0 means the LHS becomes equal to 〈Z(n), D̂Z(n)
〉t, and RHS is given

by n!/(2n− 1)!!, which gives the required identity.
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4.7. Ewald-Sum Terms

For completeness, the full Ewald sum is given by (following Smith [1]).

U = 1
2V

∞∑
k,0

A(k)

∣∣∣∣∣∣N∑
j

f j(k)exp
(
−ik.r j

)∣∣∣∣∣∣2+
1

4πε0

∑
l = 1

N∑
i = 1

∞∑
j>i

Gl
ji

(
r ji

)
Bl

(
r ji

)
+ 1

2

N∑
i
φS

i

(134)

where the Gl
ji

(
r ji

)
terms are given by Equation (31) for Cartesians, and by Equation (69) for spherical

harmonics, and where the kernel B0(r) = er f c(εr)/r is used, where ε is a width parameter, which
controls the Gaussian width of the Ewald screening charges, and where the higher order B functions
generated by Equation (25).

The k in Equation (134) are reciprocal-lattice vectors: k = 2π(na/La, nb/Lb, nc/Lc) for an
orthogonal unit cell of dimensions La, Lb, Lc.

f j(k) =
∑
l = 0

(−i)l
〈M(l), K(l)

〉t (135)

where K(l) is the tensor product K(l) = kkk..
The φS

i in Equation (134) are so-called self terms, given by

φS
i = −

1
4πε0

∑
l = 0

(2ζ2)
l+1

(2l + 1)ζ
√
π
〈M(l), M(l)

〉t (136)

Note: A recent paper by Stamm et al. [26] provides a mathematically rigorous derivation of the
self terms as given by Smith.

Both Equations (135) and (136) are in the form of inner products, and so can be readily expressed
in either Cartesians or in spherical harmonics using Equation (61).

Table 1. Spherical harmonics qi(n)(r) in Cartesians up to rank 3. Adapted from Stone, and normalised
such that ‖ Qi(n)

‖= 1, where Qi(n) are the tensor forms of the qi(n)(r) polynomials (see text for details).
Here, we are using a simplified labelling scheme, in which the spherical harmonics, qi(n), are identified
by their degree, (n), and an index, i, within each degree, where the index runs from 1..2n + 1, and the
ordering within each degree is (for our purposes) arbitrary.

Degree 0
qi(0) = 1

Degree 1
q1(1) = x q2(1) = y q3(1) = z

Degree 2
q1(2) =

(√
6/6

)(
3z2
− r2

)
q2(2) =

(√
2
)
xz q3(2) =

(√
2
)
yz

q4(2) =
(√

2/2
)(

x2
− y2

)
q5(2) =

(√
2
)
xy

Degree 3
q1(3) =

(√
10/10

)
z
(
5z2
− 3r2

)
q2(3) =

(√
15/10

)
x
(
5z2
− r2

)
q3(3) =

(√
15/10

)
y
(
5z2
− r2

)
q4(3) =

√
3/2z

(
x2
− y2

)
q5(3) =

√

6xyz q6(3) = (1/2)x
(
x2
− 3y2

)
q7(3) = (1/2)y

(
3x2
− y2

)
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Table 2. Cartesians in terms of spherical harmonics, up to rank 3. Adapted from Stone, such that the
transformation is the inverse of Table 1.

Degree 2
x2 = −

(√
6/6

)
q1(2) +

(√
2/2

)
q4(2)y2 = −

(√
6/6

)
q1(2)

−

(√
2/2

)
q4(2)

z2 =
(√

6/3
)
q1(2) xy =

(√
2/2

)
q5(2)

xz =
(√

2/2
)
q2(2) yz =

(√
2/2

)
q3(2)

Degree 3
x3 = (1/2)q6(3)

−

(√
15/10

)
q2(3) x2y = (1/2)q7(3)

−

(√
15/30

)
q3(3)

xy2 = −(1/2)q6(3)
−

(√
15/30

)
q2(3) y3 = −(1/2)q7(3)

−

(√
15/10

)
q3(3)

x2z =
(√

6/6
)
q4(3)

−

(√
10/10

)
q1(3) xyz =

(√
6/6

)
q5(3)

y2z = −
(√

6/6
)
q4(3)

−

(√
10/10

)
q1(3) xz2 = 2

(√
15/15

)
q2(3)

yz2 = 2
(√

15/15
)
q3(3) z3 = (

√
2/
√

5)q1(3)

5. Conclusions

We have presented a non-technical—indeed, almost trivial—derivation of the multipole interaction
in spherical harmonics, in a form suitable for use with Ewald-sum methods.

We began by summarising one derivation of the multipole interaction in Cartesians, most of which
is not new to us, but goes back to the work of Smith and earlier, and continues up to Lin’s derivation of
what we refer to as the multipole interaction generating formula.

We then introduced a diagrammatic method for visualising the multipole interactions, in where it
was shown that the entire multipole interaction can be represented as a ‘sum over diagrams’, which
arguably makes for a much more appealing representation of the interaction than thinking in terms of
mathematical formulae alone.

Here, we admit that the results in this work could have been obtained without the aid of diagrams,
but given that the diagrams show so clearly the structure of the interaction, we think they provide
a valuable insight into what our various algebraic manipulations are actually doing.

Using what we believe to be a novel approach, the remainder of this work showed how the
multipole interaction can be converted from Cartesians into spherical harmonics. This involved what
was perhaps the key part of this paper, which was (i) the recognition that the multipole interaction in
Cartesians involve expressions that can be written as inner products over tensors, (ii) showing that
these tensor inner products are proportional to an inner product over the vector space of harmonic
polynomials on the unit sphere, (iii) using this relation to convert the Cartesian tensor inner products
to spherical inner products involving spherical harmonic polynomials.

The key expression here is Equation (54), which gives the proportionality relation between tensor
and spherical inner products. Deriving this relation turns out to be a surprisingly non-trivial problem,
but once it has been shown, it becomes a relatively straightforward task to convert the entire multipole
interaction from Cartesians into spherical harmonics.

Our method relies on the use of existing tables of spherical harmonics to Cartesian transformations,
which have already been given by Stone, and whose properties have been analysed extensively by
Stone and others.

Another novelty of our method is that our ‘end-result’ formulae are not pure functions of the
spherical harmonic multipoles, like seen in other approaches. Instead, our formulae are functions
of split tensor components, which may have several indices, all of which are separately represented
in spherical harmonics. However, what really distinguishes our approach from others is that our
approach involves fully transforming the between-tensor contractions (bonds in the diagrams) into their
spherical harmonic form, while respecting the underlying structure of the contractions; this structure
which is particularly evident from the diagrammatic form.
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It is surprising to us that such a straightforward conversion method appears to have been
overlooked in the literature. It is not clear to us if this method will prove to give superior efficiency
when compared to standard approaches, but it is faster than the Cartesian scheme, and it appears to
us that our method is comparatively more straightforward and easier to implement than previous
approaches. Furthermore, it is our hope that this work will prove a ‘less-painful’ route for the
implementation of spherical-harmonic multipole expansions in computational-chemistry codes.
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