
List of rule induction tools presented in the manuscript  

The tools reported in this document are grouped by algorithmic approach. For each tool, a brief 

description of the strategy is reported along with corresponding references and available 

implementations. This list of tools for rule induction, is not meant to be exhaustive but can be used 

as a starting point for users approaching the problem. Almost all of the following tools have been 

applied in literature on cancer omics datasets. 

Decision tree based 

 

C4.5 

C4.5 [1] builds a decision tree from a training set by using an extension of Quinlan's ID3 algorithm. 

The decision tree consists of branches, indicating the results of tests conducted on selected attributes, 

and leaf nodes, which are assigned to class labels. After building the decision tree, C4.5 tries to reduce 

its complexity by applying a pruning step, aiming to remove branches with minimum contribution 

to the overall accuracy. Once the tree has been pruned, knowledge can be extracted and presented in 

the form of (if-then) rules.  

One of the most used implementations of C4.5 is the J48 algorithm implemented in the WEKA [2] 

suite.  

Implementation (language): Weka (Java); Rweka (R); python-weka-wrapper (Python). 

 

 

Grow & prune algorithms  

 

RIPPER  

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [3] is one of the most efficient 

and used rule learning algorithms. It implements a divide-and-conquer strategy to rule induction. 

Ripper applies the so called Incremental Reduced Error Pruning (IREP) to compile an initial set of 

rules for each class. Then, an additional optimization step considers each rule in the current set in 

turn and creates two alternative rules from them: a replacement rule and a revision rule. After that, 

a decision is made on whether the model should keep the original rule, the replacement, or the 

revision rule, based on the minimum description length criterion. 

A widely used implementation of RIPPER is the JRip algorithm from the WEKA suite.  

Implementation (language): Weka (Java); Rweka (R); python-weka-wrapper (Python). 

 

PART  

PART (Projective Adaptive Resonance Theory) [4] is a partial decision tree algorithm. In particular, 

PART generates a set of rules according to the divide-and-conquer strategy, removes all instances 

from the training collection that are covered by this rule and proceeds recursively until no instance 

remains. To generate a single rule, PART builds a partial C4.5 decision tree for the current set of 

instances and selects the leaf with the largest coverage as the new rule. Afterwards, the partial 

decision tree along with the instances covered by the new rule are removed from the training data, 

in order to avoid early generalization. The process is repeated until all instances are covered by 

extracted rules. 

PART is implemented as well in the WEKA suite.  



Implementation (language): Weka (Java); Rweka (R); python-weka-wrapper (Python). 

 

CAMUR  

CAMUR (Classifier with Alternative and MUltiple Rule-based models) [5,6] is based on the RIPPER 

algorithm. It extracts multiple and equivalent rule bases by iteratively computing a rule-based 

classification model. CAMUR includes an ad-hoc knowledge repository (database) and querying 

tool.  

CAMUR is implemented as a standalone java application and a web application available at 

http://dmb.iasi.cnr.it/camur.php. 

Implementation (language): (Java/Web). 

 

BIGBIOCL 

BIGBIOCL (CAMUR improved implementation) [7] is an improved version of CAMUR designed to 

handle hundreds of thousands of features. According to CAMUR strategy, it is designed to learn 

multiple alternative and equivalent classification models through iterative deletion of selected 

features. BIGBIOCL is implemented as a standalone Java application. 

Implementation (language): (Java). 

 

Based on fuzzification: 

 

FURIA  

FURIA (Fuzzy Unordered Rule Induction Algorithm) [8] is an improved version of the RIPPER 

algorithm. FURIA uses a modified RIPPER algorithm as a basis and learns fuzzy rules and unordered 

rule set. The main strength of this algorithm is the rule stretching method, that solves the pressing 

problem of new records that when classified could be outside the space covered by the previously 

induced rules. The representation of fuzzy rules is also advanced, essentially, a fuzzy rule is obtained 

through replacing intervals by fuzzy intervals, namely fuzzy sets with trapezoidal membership 

function. 

FURIA is implemented in Java as a module of the WEKA suite. 

Implementation (language): Weka (Java). 

 

Based on probability estimation 

 

MLRules 

MLRules (Maximum Likelihood Rule Ensembles) [9] is an induction algorithm for solving 

classification problems via probability estimation. The basic idea is to exploit the single rules as 

individual classifiers and then implement upon them an ensemble classification system. Differently 

from classic sequential covering procedures (also known as divide-and-conquer approaches), new 

rules are added without adjusting those that have already been added. The main advantage of the 

MLRules algorithm is given by the fact that a simple and powerful statistical technique is used to 

induce the rules, which in turn lead to final ensembles with very high prediction accuracy. MLRules 

is implemented in Java as a module of the WEKA suite. 

Implementation (language): Weka (Java). 

 

 

Rough set theory 



 

LERS (LEM1, LEM2, MLEM2) 

LERS (Learning from Examples using Rough Sets) [10] uses the rough set theory to handle 

inconsistencies in decision rules. The rough set theory is used to obtain the approximation of lower 

and upper spaces of a crispy set representing a concept. Then, these approximations are used to build 

two different sets of rules: certain and possible. LERS applies a bottom-up strategy in order to define 

rules incrementally. At each iteration, it identifies the certain rules and combine the remain possible 

rules to get the next set of certain and possible rules. This process ends when there are no possible 

rules to be built. LERS represents a general approach to in knowledge acquisition problem. However, 

its use in machine learning needs and additional module or computational step aiming to learn a 

discriminant description [13], i.e., to learn the smallest set of minimal rules, describing the concept. 

Currently, there are three algorithms for this step: LEM1, LEM2 and MLEM2. 

 

Rank based 

 

TSP 

TSP (Top Scoring Pair) [11] is a rule induction technique based on relative values between pairs of 

features. TSP has been developed for microarray data and build rules on a feature space constituted 

by pairwise comparisons of gene expression levels. The main advantage of the TSP approach is that, 

being based on relative values leverages the problem of integrating data from different source that is 

potentially represented in different scales and can suffer from batch effects. In addition, the TSP 

classifier provides decision rules that are easy to interpret since they involve relative values between 

pairs of features (genes in its case). TSP is implemented in R language and available from the tspair 

Bioconductor package. 

 

Implementation (language): R/tspair package (R). 

 

k-TSP 

K-TSP [12] is an extension of the TSP algorithm, which uses exactly k pairs of genes for classifying 

gene expression data. Instead of using a single comparison a literal, K-TSP uses groups of k 

comparisons and applies a majority voting among them to decide the truthiness of the complex literal. 

When k = 1, the algorithm is equivalent to the TSP algorithm. k-TSP is implemented in R language 

and available from the switchbox Bioconductor package. 

Implementation (language): R/switchbox package (R). 

 

 

Genetic Algorithm based 

 

BIOHEL 

BioHEL (Bioinformatics-Oriented Hierarchical Learning) [13] is an evolutionary machine learning 

system designed to handle with large-scale bioinformatic datasets. BioHEL employs the Iterative 

Rule Learning (IRL) paradigm. The IRL procedure begins with an empty rule set and the complete 

set of observations as input and evolves rules one at the time using a genetic algorithm. Each time a 

rule is evolved by system it is added to the current rule set and all observations covered by the rule 

are removed from the training set. By iterating this process, rules are added to the set of rules until 



all the samples in the training set are covered. BioHel is implemented as a standalone tool in C++ 

language and can be run by serial execution in CPU mode or by the parallel execution on GPUs.  

Implementation (language): http://icos.cs.nott.ac.uk/software/biohel. html (C++). 

 

Subgroup Discovery 

 

CN2-SD  

 

CN2-SD algorithm [14] finds rules covering subsets of the population that are sufficiently large and 

“statistically unusual”.  

It works iteratively, searching in each iteration for a set of relationships between features (a complex) 

that covers a large number of examples of a single class and/or other classes. Having found a good 

complex, the algorithm removes covered observations form the training set and adds the 

corresponding rule(s) to the rule set. The procedure is repeated iterates until no more satisfactory 

complexes can be found. CN2-SD is implemented in Java as a module of the KEEL suite. 

Implementation (language): KEEL (Java). 

 

SDEFSR  

SDEFSR (Subgroup Discovery with Evolutionary Fuzzy System) [15] is a collection of rule induction 

algorithms based on subgroup discovery that make use of fuzzy logic improve the interpretability of 

results. SDEFSR algorithms are able to evolve fuzzy rules and use fuzzy set definitions. SDEFSR 

algorithms are implemented in R language and available from the SDEFSR CRAN package. 

Implementation (language): R/ SDEFSR package (R). 
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