
 International Journal of 

Molecular Sciences

Review

Recent Developments of Electrochemical and Optical
Biosensors for Antibody Detection

Wei Xu 1, Daniel Wang 2, Derek Li 3 and Chung Chiun Liu 2,*
1 Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;

wxx104@case.edu
2 Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH

44106, USA; dnw17@case.edu
3 Solon High School, Solon, OH 44139, USA; dxl670@case.edu
* Correspondence: cxl9@case.edu

Received: 3 December 2019; Accepted: 18 December 2019; Published: 24 December 2019 ����������
�������

Abstract: Detection of biomarkers has raised much interest recently due to the need for disease
diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers,
antibodies are an important type of detection target due to their potential for indicating disease
progression stage and the efficiency of therapeutic antibody drug treatment. In this review,
electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label
and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for
electrochemical detection are suggested. For optical transduction, a rapid and programmable platform
for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence
resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies
have demonstrated their potential for resolving current challenges in antibody detection such as
high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling
detection. This review provides a general update for recent developments in antibody detection
strategies and potential solutions for future clinical point-of-care systems.
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1. Introduction

Rapid, accurate, simple, and cost-effective disease diagnostic methods have progressed
significantly, including personalized medicine in the medical industry [1]. The growing understanding
of disease pathological pathways provides different biomolecules as the indicators for various diseases.
These biomolecules are generally defined as the biomarkers of the disease and quantitative information
from such biomarkers assists in assessing the stage of the disease and providing information to
design effective drug treatments, leading to the development of personalized medicine [2,3]. Various
biomarkers, including proteins, small molecules, and nucleic acids, are efficacious indicators for
cancers, neuro-degenerative disorders, and genetic disorders [4–8].

Among the biomarkers of interest, antibodies represent an important type of detection marker
for several reasons. First, for many human diseases, such as oncological, inflammatory, neurological
and psychiatric disorders, the human immune system defends against external antigens through the
production of the corresponding antibodies. Therefore, quantification of the antibody is a reliable
indicator for disease progression [9]. Second, as therapeutic antibodies are established as a successful
class of drugs to specifically target cancers and inflammatory diseases, quantification of the antibodies
is critical for clinically tracking the toxicity of the drug treatment and assessing the efficiency of the drug
delivery [10]. Third, antibodies are abundant in human blood; consequently, they provide a feasible
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and reliable opportunity for biomarker detection, owing to the simplicity of blood processing [11].
Moreover, the challenge for antibody detection is actually diminished by the evolutionary process.
The production of antibody is the result of prior expression of the corresponding antigen by the
disease-related genome. Therefore, nature provides a high-affinity antibody binding agent, the antigen,
which is used as the recognition element for the antibody detection, predigesting the efforts for specific
design of the recognition elements for biosensing systems. Currently, the conventional methods for
detection of such biomarkers, such as ELISA and Western Blot, require exhaustive processing steps
and multiple reagents, which are expensive, difficult to operate, and time-consuming [12]. Thus,
these methods are not ideal for the robust demands of a rapid, simple, cost-effective point-of-care
system. In order to overcome this concern, a substantial number of advanced detection methods of
antibodies have recently been developed, especially methods based on optical and electrochemical
systems [13–16]. Optical systems measure an optical signal through fluorescent, colorimetric, or
luminescent methods, enabling rapid, sensitive, and direct detection of antibodies. Electrochemical
systems are also ideal for the development of point-of-care devices due to their simplicity, portability,
rapidness, cost-effectiveness and sensitivity with the capability of applying various transduction
methods [14]. Detection of target biomarkers directly using human sera samples can be achieved using
electrochemical detection method [17,18].

However, technical challenges remain for both the electrochemical and the optical biosensing
systems in antibody detection. For example, the matrix effect induced by the non-specific components in
complex biological fluids causes nonspecific adsorption leading to false-positive results. The sensitivity
and the detection limit of antibodies are also critical for an early disease diagnosis, due to the relatively
low abundance of antibodies in human fluids at the early stage of the disease. Furthermore, in order
to improve the detection efficiency, the antibody detection process needs to be rapid. For a globally
applicable point-of-care system, the detection strategy should also be portable and cost-effective.
In this review, we specifically select the few recent advances of antibody detection strategies that
can be representative, which resolve the obstacles described above, delivering potential clinically
applicable platforms. Detailed descriptions of detection strategies and future perspectives for the
ultimate point-of-care systems are discussed. This review aims to provide the biosensing community
a general update on trends in antibody detection strategies and the potential general methods for
clinical applications.

2. Electrochemical Detection

Electrochemical-based biosensors quantify the antibody concentration by measuring the current
or the impedance through various electrochemical analytical methods. Electrochemical biosensors
provide simple, cost-effective, and accurate measurements [14]. However, challenges remain in
directly employing electrochemical detection strategies for point-of-care systems. First, selectivity
of the detection methods, which can differentiate different antibodies, is crucial for the reliability of
the detection results. This challenge can be addressed by using high-affinity antibody recognition
elements, such as epitope or antigen. Second, high sensitivity is necessary to provide a reliable and
generalized detection platform. With the development of simple fabrication methods of highly sensitive
materials [19–23], the sensing material can provide a precise response to minute changes in electrical
conductivity. Moreover, the simplicity of the detection strategy is critical for its potential applications.
The sensing strategy can be simplified by creating a novel sensing platform that is non-label, and
reagent-free [24–26]. Reducing fouling events is also a key challenge for antibody detection since
fouling can lead to false-positive detection signals [24,27]. Therefore, construction of an anti-fouling
electrochemical surface is important to enhance the detection accuracy.

2.1. Selective Detection Strategy

A key challenge in the development of antibody detection platforms for point-of-care use is
selectivity. Highly specific, target responsive, biomolecular scaffolds demonstrate an excellent selectivity
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for antibody detection. An antibody-activated electrochemical “switch” was recently demonstrated
with a high detection specificity (Figure 1a) [28]. Bound by thiol group to a gold working electrode,
the platform’s recognition element consisted of a single-stranded DNA probe containing two target
recognition elements (antigens, epitopes, or haptens). The transduction mechanism was based on a
proximity change between the sensing element and a methylene blue tag. When target antibodies were
not present, the DNA probe adopted a stem-loop conformation and brought the redox label close to
the gold electrode, enabling a rapid electron transfer rate and generating a significant Faradaic current.
In the presence of target antibodies, the DNA probe unfolded, creating a longer distance between
the tag and the electrode, resulting in a low electron transfer rate and a low Faradaic current. This
platform for antibody detection was insensitive to nonspecific adsorption and enhanced selectivity
because the recognition element was associated with a large-scale conformational change. The change
was activated by a high binding affinity that was produced by specific binding of a target antibody.
This strategy was applied for the detection of anti-DNP, digoxin antibody, and anti-HIV antibody AF5,
and utilized different recognition elements such as small-molecule haptens and polypeptide epitopes,
achieving a nanomolar level of detection within 10 min in whole blood.
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Figure 1. (a) Illustration of the electrochemical “switch” composed of single-strand DNA with linked 
antigens and methylene blue redox label. Introduction of the target antibody opens the loop and 
moves the redox label away from the electrode. (Adapted with permission from Ref. [28]. Copyright 
© 2012 American Chemical Society). (b) Schematic of the “triplex-stem” DNA molecular switch on 
gold electrode. Addition of capture DNA (middle) shows a ferrocene molecule moving away from 
the electrode, and digoxin antibody introduced to the system binds with digoxin on the ends of the 
capture DNA and causes it to be released, converting the triplex system to hairpin DNA with 
ferrocene close to the electrode surface. (Adapted from Ref. [29]. Copyright © 2014 Elsevier B.V.) 

A carbon electrode modified with carboxyl nanotubes was used to detect antibodies of Zika virus 
(ZIKV), Dengue virus (DENV), Circumsporozoite protein (CSP) 210 and CSP 240. Cabral-Miranda et 
al. developed a sensor to distinguish between ZIKV antibodies and DENV antibodies in blood and 

Figure 1. (a) Illustration of the electrochemical “switch” composed of single-strand DNA with linked
antigens and methylene blue redox label. Introduction of the target antibody opens the loop and
moves the redox label away from the electrode. (Adapted with permission from Ref. [28]. Copyright
© 2012 American Chemical Society). (b) Schematic of the “triplex-stem” DNA molecular switch on
gold electrode. Addition of capture DNA (middle) shows a ferrocene molecule moving away from the
electrode, and digoxin antibody introduced to the system binds with digoxin on the ends of the capture
DNA and causes it to be released, converting the triplex system to hairpin DNA with ferrocene close to
the electrode surface. (Adapted from Ref. [29]. Copyright© 2014 Elsevier B.V.)

Similarly, Wei et al. also developed a strategy to quantify antibody in serum using a DNA
molecular switch (Figure 1b) [29]. The recognition element was the “capture” DNA complex with two
digoxin targets on either end of a single strand DNA sequence. The electrochemical signal of ferrocene
based on its position to the electrode served as the transduction element. The sensing element was a
thiol-modified hairpin DNA structure labeled with ferrocene bound to an electrode. Incubation of the
capture DNA allowed the six cytosine bases to interact with the complementary sequence located in the
hairpin DNA structure, forming the “triplex-stem” DNA structure. The formation of the triplex-stem
DNA separated the ferrocene on the hairpin DNA structure away from the electrode, reducing the
electrochemical signal. Digoxin antibody bound to the digoxin in the capture DNA sequence released
the capture DNA, leaving only the hairpin DNA on the electrode and returning the ferrocene closer to
the electrode. This method demonstrated a detection range of 1.0–500 pg/mL and a lower detection
limit of 0.4 pg/mL (5.8 fM). Dection of digoxin antibodies in blood serum was achived with 91.6%
to 105% recovery rate. Selectivity of the sensor was also demonstrated with less than 15% recovery
effiency of antibodies other than target digoxin.
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A carbon electrode modified with carboxyl nanotubes was used to detect antibodies of Zika virus
(ZIKV), Dengue virus (DENV), Circumsporozoite protein (CSP) 210 and CSP 240. Cabral-Miranda et al.
developed a sensor to distinguish between ZIKV antibodies and DENV antibodies in blood and saliva
after the recent outbreak of ZIKV (Figure 2a) [30], and the cross-reactivity between the antibodies.
The recognition elements were the envelope protein domain III (EDIII) and non-structural protein 1
(NS1) proteins from residues 299–407a of ZIKV. Electrochemical impedance spectroscopy (EIS) was
the transduction mechanism measuring the resistance within the biosensor through a K3Fe(CN)6 and
K4Fe(CN)6 redox solution. A three-electrode system of carbon electrodes with silver connections
served as the sensing element of the biosensor. The proteins were immobilized to an activated surface
of the carbon working electrode. In pure sera, this sensor detected antibodies at a lower limit of 53
fg/mL and 17 fg/mL for the EDIII and NS1 based sensors, respectively. The sensors were able to
selectively recognize antibodies against the two proteins in both human sera and saliva. When testing
for cross-reactivity, the ZIKV antibodies did recognize the biosensor, but the DENV antibodies did not.
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Figure 2. (a) Schematic of the fabrication of the Zika virus (ZIKV) antibody-detecting biosensor
by activation of carboxylic acid ends (II), and incubation with NS1 and EDIII protein (IV1 and IV2,
respectively). (Adapted from Ref. [30]. Copyright© 2018 Elsevier B.V.) (b) Schematic of the fabrication
of the circumsporozoite (CSP) antibody detecting biosensor. Carboxylic acid ends are activated (B),
aminated by the addition of ethylenediamine (C), incubated with CSP protein 210-247 (D), and bound
to Anti-CSP 210 or 247 (E). (Adapted from Ref. [31]. Copyright© 2017 Elsevier B.V.)

Cardoso et al. also investigated an immobilization method for the biosensor in the detection of
the CSP antibodies during infection in malaria diagnosis (Figure 2b) [31]. The recognition element
was a peptide with antigen regions CSP 210–247, which was immobilized onto the carbon nanotube
(CNT) surface after modifications to activate and aminate the carboxylic surface. The addition of the
antigen onto the electrode and CNT increased the charge-transfer resistance of the overall system. The
electrochemical responses were measured through EIS. A carboxylated carbon nanotube monolayer
was used to coat the carbon electrode surface of the biosensor, increasing the electrical properties of
the layer. Both CSP 210 and CSP 247 antibodies were tested individually and also in combination in
mouse sera, showing selective detection of Anti-CSP 210–247. The detection limit of this biosensor was
in the range of 50 fg/mL. This strategy indicated a potential early detection method for diseases by
creating a single sensor covering a group of antibodies of the same or different disease.

These strategies demonstrate the selective detection of selected antibodies. The conformational
changes in DNA create more selective sites enhancing the detection. Furthermore, the use of DNA
bypasses the need to use additional labeling and is highly associated to the target in contaminant-rich
specimens such as serum. Finally, distinct protein sequences create the ability to detect individual
antibodies between similar families of viruses. The applications targeted here, flaviviruses and malaria
are a small sample, but indicate the value that such a selective detection process can provide as
point-of-care systems for tracking a disease.
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2.2. Simplified Detection Strategy

A point-of-care system is necessary in resource-limited areas. Thus, simplicity for both
the biosensor fabrication and the detection procedures is critical [32]. It is critical to create a
reagent-free electrochemical platform which is easy to operate. A novel sensing platform based on the
antibody-catalyzed water oxidation pathway (ACWOP) sensing platform was created as a simplified
detection method (Figure 3a) [33]. Because single antibodies naturally catalyzed the production of
hydrogen peroxide (H2O2) in the presence of water and a singlet oxygen (O2*), this strategy enables
antibody quantification through the detection of H2O2. The recognition element consisted of haptens
bound to poly(oligoethylene glycolmethacrylate) (POEGMA) polymer brushes. The transduction
mechanism was based on the redox response of resorufin (7-hydroxy-3H-phenoxazin-3-one). The
sensing element was a glassy carbon working electrode in a three-electrode system. The platform
used DNP haptens to detect anti-DNP, and was capable of detecting H2O2 at concentration as low as
0.33 nM. Additional tests indicated that the device could detect less than 3 pg antibodies in a 10 µL
sample (2 pM). This strategy allowed for the direct detection of antibodies, via H2O2, regardless of
the specificity of the antibody, eliminating the need for specially prepared secondary reagents, and
reducing the complexity of the preparation process.

A redox probe is commonly used to enable changes on the biosensor electrode surfaces for
quantification of antibodies with electrochemical analytical techniques [34–37]. Thus, quantum dots
(QDs) were utilized for the detection of antibodies (Figure 3b) [38]. For this design, the recognition
element was enzyme-based and this platform was modeled with tissue transglutaminase (tTG) for
the detection of anti-tTG IgG antibodies. The transduction element consisted of an acid attack on
the quantum dots. This platform was modeled with dSe/ZnS QDs and hydrochloric acid for the acid
attack. Electrochemical detection of Cd2+ released from the QDs was directly correlated to the antibody
concentration. This procedure was performed on a sensor surface formed by eight three-electrode
electrochemical cells with carbon-based working and counter electrodes. Normally, the bioassay and
the subsequent acid attack were performed outside of the detection platform. However, the acid attack
and the detection were performed directly on the screen-printed electrodes for this platform. This
strategy uses QDs as a simple approach for the detection of antibodies.

Many current biosensor platforms rely on externally labeled biomolecules in order to process a
transducing signal [39–43]. A non-label platform was developed to simplify the detection process
for pathogens like hantaviruses (Figure 3c) [44]. The recognition element was a target specific
antigen—HNp. The sensor surface was prepared with functionalized self-assembled monolayers
(SAM) on a standard three-electrode system with a gold working electrode. Afterwards, hantavirus
Araucaria nucleoprotein (HNp) was immobilized to the sensor through an EDC/NHS reaction for
specific detection of anti-hantavirus antibodies, forming a Au-MPA-HNp complex. This model was a
simple detection platform created for anti-hantavirus detection and was able detect target antibodies
at nanomolar levels within 3 hr. With a rapid and simplified detection system, this platform offers
potential to qualify hantavirus detection for point-of-care use in the future. In Figure 1, O2* is a
singlet oxygen.

These strategies emphasize the simplicity of detection. Current standards are complex and require
not only more time, but also more resources. The antibody-catalyzed water oxidation pathway-based
platform demonstrates a simplified sensing approach. The QD platform demonstrates an improvement
on similar sensing platforms that were previously developed. The hantavirus platform demonstrates
the appeal of a non-label method for the transduction mechanism.
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2.3. Anti-Fouling Detection Strategy

An electrode is commonly used as a sensing element for signal transduction. Therefore, the natural
affinity of metal electrodes with biomolecules can lead to a fouling issue, affecting the performance of
the biosensor in sensitivity, detection limit, and accuracy [24,25,27,45]. Thus, it is critical to minimize the
fouling effects. Using the antifouling characteristic of cysteamine-modified graphene oxide interface, a
recent study demonstrated a highly sensitive method for auto-antibody detection in undiluted human
serum (Figure 4a) [46]. The recognition element was α-Syn antigen covalently attached to the graphene
oxide carboxylic groups. The transduction method measured the impedance change induced by the
target antibody with non-faradaic EIS analyses. The sensor surface was prepared by immersing a
cysteamine-modified gold electrode in a graphene oxide solution. The electrode surface possessed
non-fouling characteristics due to its highly hydrophilic nature and the hydroxyl, epoxy and carboxyl
groups in graphene oxide enhancing the detection of the target antibodies. This detection processed a
low detection limit of 1.2 pM and a high selectivity in undiluted human serum.

A graphenyl surface was also used to improve the antibody detection (Figure 4b) [47]. A
highly sensitive biosensing platform was developed to detect glutamic acid decarboxylase antibodies
(GADA). The recognition element was GAD antigens linking onto the carboxylated-graphene modified
gold surface. The transduction was the current signal change measured with ferricyanide reagent.
Compared with a self-assembled monolayer with MPA, the carboxylated-graphene modified surface
possessed a lower detection limit and a wider dynamic range for antibody detection. To eliminate the
matrix effect, A/G protein modified magnetic beads were employed to isolate GADA antibodies from
human serum due to the binding sites on A/G protein. With the presence of GADA antibodies bound
to the A/G magnetic beads, the GAD antigens on the biosensor attached to the graphenyl surface
captured the antibodies leading to insulation on the electrode resulting in lower redox current of the
ferri/ferrocyanide probe. The detection limit was in the pico-molar range.



Int. J. Mol. Sci. 2020, 21, 134 7 of 17

A magnetic core-shell Fe3O4 nanoparticles-based electrochemical biosensor was developed
addressing the fouling issue (Figure 4c) [48]. The recognition element was brucella outer membrane
protein 31 (OMP31). Electrochemical signals were measured using DPV with Ru(NH3)6

3+/KCl solution
as the transduction mechanism. The sensor surface was prepared by adding Fe3O4–gold nanoparticles
with polyethylene glycol and hyaluronic acid to a glassy carbon electrode. The limit of detection
of the biosensor was 0.36 fg/mL. Testing of the sensor in blank serum, helper phage, and cow milk
indicated less than 3.05%, 1.0%, and 1.27%, respectively, of non-specific protein adsorption by the
modified Fe3O4–Au–PEG–HA nanoparticles. With the high sensitivity detection at concentrations
significantly below typical blood serum antibody levels, this strategy showed potential as an early
diagnostic method.
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Figure 4. (a) Schematic illustration of the sensing platform. Cysteamine-modified gold interface is
immersed in graphene oxide and then activated to form amide bonds with α-Syn antigens (Adapted
with permission from Ref. [46] Copyright 2015 American Chemical Society). (b) Comparative analysis
between graphenyl surface and mercapto-monolayer surface. (Adapted with permission from Ref. [47].
Copyright 2018 American Chemical Society.) (c) Top: schematic of electrochemical sensor for detection
of brucellosis antibody on magnetic glassy carbon electrode. Bottom: schematic for formation of
magnetic core-shell Fe3O4 nanoparticles modified with polyethylene glycol and hyaluronic acid.
(Adapted from Ref. [48]. Copyright© 2018 Elsevier B.V.)

The strategies shown resolve the fouling effect, preventing non-specific adsorption on the electrode
surface. The first strategy reduced fouling effect on the electrode by modifying the graphenyl surface.
The second strategy used the matrix effect through protein A/G linked MAG beads. Additionally,
modifications to the biosensors using magnetic core shell Fe3O4 effectively prevented non-specific
interactions with other elements of the medium while retaining selectivity with the target antibodies.
The advances made in preventing non-specific adsorption to the electrode allow accessible testing in
the presence of other biomolecules.
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2.4. Rapid Detection Strategy

Clinical diagnosis with a rapid turnaround time enhances the time-efficiency of the healthcare
workflow [14,49]. An effective method to detect HIV antibodies in complex biological samples based
on steric hindrance was recently developed (Figure 5a) [50]. The recognition element was the epitope
of gp41 attached to a peptide nucleic acid (PNA) sequence. The transduction method involved the
current signal of the methylene blue tag induced by the efficiency of hybridization through the steric
hindrance effect depending on the presence or absence of the antibodies. A 3D nanostructured gold
was deposited on an indium tin oxide (ITO) electrode. The peptide, epitope of gp41, was attached to
the PNA sequence hybridized to a 32-base-long DNA signaling strand forming a sensing complex. The
epitope was bound to the target antibodies leading to changes in hybridization between the signal DNA
strand and the capture DNA strand on the electrode through the steric hindrance effect. The redox
label, methylene blue, was conjugated to one end of the signaling DNA strand. With the presence of
antibodies on the peptide-PNA-DNA sensing complex, the steric hindrance effect reduced the number
of redox labels bound to the electrode resulting in a reduced current signal. The detection limit was
nanomolar and the readout signal was ten times larger than those of the other electrochemical sensors
in less than ten minutes.
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Figure 5. (a) With the presence of target antibodies, the hybridization of the redox-labeled PNA-peptide
complex to the capture DNA bound to the electrode is reduced; the current signal is measured with
the presence (black line) or absence (blue line) of the target antibodies (adapted with permission from
Ref. [50] Copyright 2019 American Chemical Society). (b) Schematic of the electrochemical sensor for
detection of IgE. Carbon or gold electrode (A) is covered with a chitosan film through combination
of glutaraldehyde and hoIgG3 (B). Test serum is added to capture human IgE (C), and goat anti-IgE
labeled with alkaline phosphatase is added to enable the reaction with hydroquinone (D). (Adapted
from Ref. [51]. Copyright© 2017 Elsevier B.V.)

Rapid detection is also important for allergic reaction screening. Passive antibody therapy is an
effective treatment as an antivenom. Prado et al. investigated an electrochemical sensor that detected
the reactive IgE antibodies responsible for the allergic reaction rapidly (Figure 5b) [51]. The recognition
element was goat anti-human IgE antibody with alkaline phosphatase. Cyclic voltammetry (CV)
quantified the current changes through the redox reaction of hydroquinone by the alkaline phosphatase
as the transduction mechanism. The sensor surface was prepared by crosslinking horse IgG3 (hoIgG3)
to a chitosan film on the gold or carbon electrode using glutaraldehyde. The limit of detection for this
sensor was 0.5 pg/mL. This strategy provided a rapid screening to determine potential patient allergies
to passive antibody therapy before administering any other treatment.

Organic thin-film transistor (OTFT) was also developed for rapid antibody detection.
(Figure 6a) [52]. This device also quantified the binding affinity between the antibody and the
antigen. A modified pentacene-based organic thin-film transistor (OTFT) was used as a real-time
and selective immuno-detection platform for antibody detection. The sensing element was a
bottom-contact OTFT with a dielectric layer, source-drain gold electrodes, and a pentacene layer. A



Int. J. Mol. Sci. 2020, 21, 134 9 of 17

perfluor-1,3-dimethylcyclohexan (PFDMCH) layer was used to passivate the OTFT surface and a maleic
anhydride (MA) layer was used to chemically functionalize the OTFT surface. The ppMA layer was
activated with EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide)
on which a catcher probe was covalently attached as the recognition element. The transduction
mechanism was a titration flow system crossing the surface of the sensor using a flow cell. As the target
antibody concentration changed, the current output of the flow cell shifted accordingly. This platform
detected antiBSA using BSA as the catcher probe and detected antibody at nanomolar levels. This
OTFT platform was effective for antibody detection, and also for the quantification of bonding strength
and charge discrimination capabilities. Comparing with electrochemical devices for quantification
of biomolecular binding affinity [53], the direct transduction of binding affinity to electrical signal
through OTFT demonstrated a potential universal platform for biophysical property analysis.
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Figure 6. (a) (i) Organic molecule chemical structures. (ii) Schematic of the fabrication process of an
Organic Thin Film Transistor (OTFT) with source-drain gold electrode, dielectric layer, and pentacene
layer for passivation and functionalization of the OTFT surface. (iii) Schematic of the sensor to selectively
detect anti-BSA. (Adapted with permission from Ref. [52]. Copyright © 2014 American Chemical
Society.) (b) Schematic of the expressed HCV core protein bound to HCV-core IgG antibody, with
electrochemical detection of the anti-HCV-core IgG antibody through the reaction of p-aminophenyl
phosphate (pAPP) with alkaline phosphatase (ALP). (Adapted from Ref. [54]. Copyright © 2016
Elsevier B.V.)

These strategies used various methods to reduce the turnaround time for antibody detection.
Enhanced steric hindrance with a 3D nanostructured electrode was applied to rapid HIV antibody
detection. The use of biosensor detection for antibody therapy screening is another potential application
for rapid detection sensors, as shown by creating sensors for detection in human serum of the reactive
antibody IgE. Additionally, thr OTFT platform illustrates the potential and the rapid nature of a
real-time biosensing platform.

2.5. Low-Cost Detection Strategy

Inexpensive antibody detection is a focus for electrochemical-based biosensors. A low-cost
electrochemical assay for the detection of anti-hepatitis C virus (HCV) was developed using hydrolysis
reaction [54]. This strategy used genetically engineered yeast bio-bricks that display HCV core protein
concatenated to gold-binding peptide (GBP) for a biosensor (Figure 6b). The sensing element was a
screen-printed gold electrode with immobilized HCV core protein/GBP located on the surface of the
yeast cell and mouse anti-HCV-core IgG antibody bound to the HCV core protein. The recognition
element was a rabbit anti-mouse IgG antibody with alkaline phosphatase. The transduction mechanism
was the electrochemical signals generated in the conversion of p-aminophenyl phosphate (pAPP) to
p-aminophenol (pAP), measured through CV utilizing a potentiostat connected through the audio
port of a smartphone. This strategy used surface-expressed proteins on renewable bio-bricks in
electrochemical sensing in conjunction with the readily accessible and available smartphone to capture
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readings, potentially creating a more affordable point of care diagnostics. The reduced cost of antibody
detection in the strategy is achieved through the use of reusable detection platforms and accessible
detection devices.

3. Optical Detection

Optical-based biosensors are also widely developed for antibody detection [13,55]. High-sensitivity
quantification through optical imaging are achieved within seconds [56,57] Moreover, optical imaging
is more suitable for the application of in-vivo sensing [58,59], owing to its direct signal translation
process. Herein, we review recent developments of optical sensing strategies, demonstrating a great
potential for antibodies screening or detection system.

3.1. Rapid Detection Strategy

Using the base-pairing chemistry of DNA, optical-based biosensors allow for accurate and rapid
antibody detection. Recent research demonstrated a sensitive, and highly specific method to detect
antibodies (Figure 7a) [60]. The recognition element was the epitope or corresponding antigen to
the antibody of interest. The transduction method was the target antibody-induced generation of a
fluorescent signal. A programmable DNA nano-switch was designed with three individual strands
of nucleic acids: the first strand was a stem loop structure consisting of a pair of fluorophores and
quencher with a 15-base-long toehold region; the second strand was a recognition element conjugated
ssDNA complementary to the toehold region of the first strand, forming a reporter module duplex;
and the third strand with the same recognition element was hybridized to the loop region of the first
strand. The sequence design of the first strand and second strand allowed hybridization only in close
proximity sterically. With the presence of the antibody, the reporter duplex and strand 3 were bound to
the antibody scaffold, initiating the strand displacement reaction with the release of the fluorescence
signal. The detection limit of this strategy was at the nanomolar level. The turnaround time of this
platform was around 15 min.
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Figure 7. (a) With the presence of the target antibody, the reporter module and input strand are in close
proximity with each other which brings up the efficiency of hybridization. The binding of the recognition
elements and the target antibodies leads to the release of the signal from the fluorescence/quencher pair.
The signal gain is recorded with different concentrations. (Adapted with permission from Ref. [60]
Copyright 2018 American Chemical Society.) (b) The binding of the target antibody to the recognition
elements on two single-stranded tails opens the stem-loop structure, leading to the release of the
fluorescence signal (adapted from Ref. [61], copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim).

Similarly, a rapid and programmable platform for antibody detection using a DNA-based beacon
was developed (Figure 7b) [61]. The recognition elements were small molecules, polypeptides, and
epitopes corresponding to different target antibodies. The transduction element was the emission of
the fluorophore/quencher pair on the DNA stem-loop structure induced by the target antibody. The
two single strands of DNA each contained one recognition element based on the design of the structure.
This platform detected one or two bivalent molecules, and even as the logic gates for the detection of
two multivalent molecules. For example, it detected antiDig antibodies with digoxigenin (Dig) on
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each side of the strand. It also detected monovalent TATA binding protein (TBP) with hairpin DNA
corresponding to the TBP sequence. Moreover, by changing the design of the recognition element
to Dig and DNP on two strands, this sensor detected both the presence of anti-Dig and anti-DNP
antibodies. With the presence of the targets, the fluorescence signal was generated by the opening of
the stem-loop structures induced by the hybridization of the target to the recognition element. The
detection limit reached nanomolar concentrations and the detection time was lowered to 2 min.

These methods are built on the construction of DNA hairpin structures and conformational changes
induced signaling mechanism, and they allowed for rapid detection. Due to the selective and rapid
antibody-antigen binding process, target antibodies were optically detected using fluorescence/quencher
pairs in less than 10 min. Shortening of detection times using structure-switching design in antibody
detection satisfies the need for rapid detection of disease in point-of-care systems.

3.2. Sensitive Detection Strategy

High sensitivity of biosensor is needed for antibody detection. Gold-coated nanoparticles were
used to enhance its sensitivity in antibody detection (Figure 8a) [62]. A modified optical fiber long period
grating (LPG) linked onto gold-coated biosensors was developed recently. The sensing element was an
LPG biosensor using three layers of poly(allylamine hydrochloride)/gold-coated silica nanoparticles.
The recognition element was a chemically functionalized layer on the nanoparticles that directly bound
to the antibodies. Furthermore, the functionalized nanoparticle layer was attached a hapten. In one
case, the nanoparticles were decorated with amine groups to attach the hapten biotin for streptavidin
detection. The platform also utilized EDC/NHS enabling the covalent binding of anti-IgM to activate
esters. To quantify the antibody population, the transduction element was characterized by changes
in refractive index of the LPG, creating shifts in the wavelength of light traveling through the sensor.
The changes quantified the antibody detected based on their direct proportional relationship to the
antibody adsorption.
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Figure 8. (a) Top: Illustration of the fabrication process for a long period grating (LPG) biosensor
through the addition of three layers of poly-allylamine hydrochloride (PAH) and silica nanoparticles,
functionalized with gold nanoparticles. Bottom: gold nanoparticle structure that can bind biotin.
(Adapted from Ref. [62]. Copyright© 2018 Elsevier B.V.) (b) Illustration of antibody detection using
Au-nanoparticles using optical and electrochemical methods. (Adapted with permission from Ref. [63].
Copyright 2017 American Chemical Society.)

A peroxidase-mimetic nanomaterials-based sensor was demonstrated recently (Figure 8b) [63].
The recognition element was the antigen attached to the carbon electrode. The transduction
method was colorimetric and an electrochemical signal change induced by the oxidation reaction of
TMBH2O2 catalyzed by the IgG/-NPFe2O3NC. Gold-loaded superparamagnetic ferric oxide nanotubes
(NPFe2O3NC) were used for a molecular sensor based on its enhanced peroxidase-like activity and
highly paramagnetic feature. After the target antibodies bound to the antigens on the carbon electrode,
the α-IgG attached NPFe2O3NC was captured by the antibodies. The catalyzed oxidation reaction of



Int. J. Mol. Sci. 2020, 21, 134 12 of 17

TMB solution in the presence of H2O2 produced a blue-colored transfer complex which turned into a
yellow-colored product with the addition of a reaction stopping solution. Both absorbance and the
current signal quantified the concentration of target antibodies. The use of NPFe2O3NC provided a
sensitive detection method with a detection limit of 0.08 U/mL.

These strategies illustrate the use of novel nano-scale materials to enhance the sensitivity of
biosensors. The LPG platform is highly modifiable with the gold nanoparticles, while simultaneously
offering sensitive detection through its wavelength-based transduction mechanism. Furthermore, the
large surface of gold-loaded nano-porous ferric oxide nano-cube and the presence of gold nanoparticles
in the NPNC platform enhance the TMB/H2O2 reaction, resulting in higher sensitivity of this detection
strategy. Increased biosensor sensitivity in antibody detection can alleviate current challenges presented
due to the small amount of target antibodies in blood/serum samples in the early stages of diseases.

3.3. Low-Cost Detection Strategy

The cost of antibody detection by optical biosensors is lowered through employing inexpensive
material in the detection system. Microfluidic paper-based analytical devices (µPADs) employing
bioluminescence resonance energy transfer (BRET) switches were developed for antibody detection
(Figure 9a) [64]. The recognition element consisted of LUMinescent AntiBody Sensing proteins
(LUMABS) on BRET sensors/switches. The transduction mechanism was a bioluminescent signal with
a hue-based readout. The sensing element was a multilayered 3D-µPAD. This approach enabled a
simplified fabrication process because the combination of inexpensive material and lowered precision
still offered proper functionality. In the absence of target antibodies, the BRET switch was in a green
light-emitting “closed” state. In the presence of target antibodies, the binding triggered conformational
changes in the switch enabling a blue light-emitting “open” state. The signal was then collected
and quantified using a digital camera. This platform detected antiHIV1, anti-HA, and anti-DEN1 at
nanomolar levels and was effective as a simplified antibody detection platform. The combined use of
µPADs and BRET switches simplified the fabrication process and simultaneously enabled the detection
of three different antibodies.
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Figure 9. (a) Top: schematic of green light-emitting luminescent antibody-sensing proteins (LUMABS)
in the absence of target antibody and blue light-emitting LUMABS in the presence of antibody. Middle:
schematic of a microfluidic paper-based analytical device. Bottom: schematic of detection of three
separate antibodies using a single device. (Adapted from Ref. [64]. Copyright© 2018, The Authors,
published by Wiley-VCH Verlag GmbH & Co. KGaA.) (b) Top: schematic of the SnS2 quantum dots and
Ag nanoflowers ternary structure on the glassy electrode and subsequent signal off and on mechanism.
Bottom: Proposed ECL mechanism of the system. (Adapted with permission from Ref. [65]. Copyright
2018 American Chemical Society.)

Quantum dot (QD) is a novel material for optical detection [21]. However, using quantum dots
as electrochemiluminescence (ECL) emitters for biosensing applications is restricted by the use of
toxic or rare materials. This strategy uses tin disulfide, a fullerene-like n-type semiconductor, as a
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nanomaterial for ECL biosensors (Figure 9b) [65]. The recognition element was an amino-modified
assistant probe (AP) crosslinked with chitosan. The transduction mechanism occurred through the
reaction between the S2O8

2− solution and the tin disulfide quantum dots (SnS2 QDs). The sensing
element was a ternary system of SnS2 QDs with silver nanoflowers (AgNFs) immobilized onto glassy
carbon electrodes. The sensor was in an “on” state when the sensor containing the crosslinked AP
produced a strong ECL signal, and moved to an “off” state when DNA strands modified with Fc were
bound to the sensor. Anti-CMV pp65 introduced to a multi-functionalized oligonucleotide-CMV pp65
peptide conjugate capture probe initiated a series of processes that created a large quantity of mimic
target (MT) sequences. When the MT was captured by the AP, the modified DNA-Fc was released from
the surface of the electrode, reverting the sensor back to the “on” state. This ECL biosensor achieved
an antibody detection limit of 0.33 fM and used a more accessible and safer material for quantum
dots biosensors.

These strategies describe the widened applications along with low-cost sensing platforms. The
µPADs platform provided a low-cost alternative for disease detection through the use of inexpensive
materials in the form of a paper-based system and inexpensive quantification methods in the form of a
digital camera. Furthermore, a quantum dot sensor provided an alternative to standard costly quantum
dots by utilizing abundant and lower cost tin disulfide as potential material for the sensors. This
approach can lead to the development of more affordable and accessible biosensors for point-of-care
systems, which may be important in low-resource areas.

4. Conclusions

Electrochemical and optical biosensing strategies show great potential for the development
of antibody-detection platform technologies. Both electrochemical and optical detection platforms
are attractive for future antibody detection due to factors such as rapid readout, cost-effectiveness,
sensitivity, selectivity, and portability. Despite biosensing strategies having been demonstrated
for antibody detection, there is still an unmet need for the development of antibody detection.
An integration of current biosensor platforms into routine clinical usage still requires significant
advancement in future research. To constuct a universal detection strategy, we need to integrate
electrochemical and optical transduction mechanisms with the merits of different biosensing strategies.
We believe that establishing the clinical protocols for sample processing is critical to generalized
sample analysis. Furthermore, the integration of detection systems is limited and will require further
development. Therefore, research on the integration of sensing elements, recognition elements and
transduction elements into a preservable biosensor product requires more scientific and technological
efforts to lead to a portable point-of-care system which is widely applicable globally. Moreover, advances
in multiplex, in-vivo biosensing strategies remain limited. Once the technical challenges, such as
advancements in biocompatible materials and in-vivo transduction of multiple signals are resolved,
next-generation biosensing platforms can become a widespread standard for clinical point-of-care
screening and detection systems.
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