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Abstract: Major depressive disorder (MDD) is a debilitating condition, whose high prevalence
and multisymptomatic nature set its standing as a leading contributor to global disability.
To better understand this psychiatric disease, various pathophysiological mechanisms have been
proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and
inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis,
and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding
of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence
has confirmed the association between chronic inflammation and MDD, which is manifested by
increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin
1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have
implicated a related family of cytokines with chemotactic properties, known collectively as chemokines,
in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8–12 kDa)
chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and
macrophage migration, and inflammatory response propagation. The inflammatory chemokines
possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic
chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further
support the role of chemokines as central elements to healthy bodily function, recent studies suggest
that these proteins demonstrate novel, brain-specific mechanisms including the modulation of
neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of
chemokines in patient-derived serum have been detected in individuals diagnosed with major
depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable
heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly
demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders.
The purpose of this review is to summarize the data from contemporary experimental and clinical
studies, and to evaluate available evidence for the role of chemokines in the central nervous system
(CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines
could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating
depressive disorders.
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1. Introduction

Major depressive disorder (MDD) is a highly prevalent condition, and is the third leading cause
of disability worldwide [1]. Despite the availability of numerous anti-depressive treatments, 30%
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of patients diagnosed with MDD fail to respond to anti-depressant therapy, or show only a partial
response [2,3]. Bipolar disorder, which is characterized by recurrent depressive and manic episodes,
is difficult to diagnose [4], and is often misdiagnosed as MDD, particularly during a depressive
episode [5]. Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria for unipolar and
bipolar depression are the same during a major depressive episode [6]. Therefore, there is a need
for novel biomarkers, which could distinguish between these two conditions [5]. This inadequate
response to treatment reflects an incomplete understanding of the actual pathogenesis of depression,
which was initially linked to changes in monoaminergic transmission [7,8]. Subsequent hypotheses
include the disturbance of excitatory and inhibitory signaling in the brain [9,10], hyperactivity of the
hypothalamic-pituitary-adrenal (HPA) axis [11,12], and hindrance upon the healthy progression of
neurogenesis [13,14]. However, increasingly compelling lines of evidence indicate a role of nearly or
completely asymptomatic subclinical systemic inflammation in the pathophysiology of MDD [15–26].
While using the reassessment of immune privilege in the central nervous system [27,28] as a foundation,
complex interactions between the immune system and the brain began to emerge. The immune
system regulates key aspects of brain development, neurogenesis, central nervous system (CNS)
homeostasis, mood, and behavior [29–35]. As such, perturbations of the neuroimmune functions have
been implicated in a number of psychiatric disorders, including MDD [36–39], bipolar disorder [40,41],
schizophrenia [42–45], and autism [46,47].

Recent advances in neuroscience have linked chemotactic cytokines (chemokines) to neurobiological
processes relevant to psychiatric disorders, such as synaptic transmission and plasticity, neurogenesis,
and neuron-glia communication [48–51]. The disruption of any of these functions, by activation of the
inflammatory response system, could be central for the pathogenesis of MDD. Impaired CXCL12/CXCR4
signaling is implicated in abnormal development, proliferation, and migration of neural progenitor
cells [52,53], which is suggestive of their essential roles in mammalian neurogenesis. Furthermore,
the dysregulation of various chemokines, which modulate neuronal activity by means of inducing
signal transduction [54,55] and Ca2+ mobilization [56,57], could also be involved in pathophysiological
processes leading to MDD. To add to the wide breadth of chemokine functionality, these ligands and their
receptors, which are widely expressed in the CNS [58–62], coordinate immune cell recruitment and their
subsequent migration to sites of inflammation. Therefore, this links peripheral and central inflammation.
This phenomenon can be observed in the quantitative increase of chemokine concentrations within the
serum of patients with MDD, relative to homeostatic levels. Moreover, this discrepancy is associated
with the onset and progression of depression in humans [63].

To further investigate the potential connection between chemokines and depression, chemokine
receptor knockout mice (CCR6 and CCR7) were created and observed to display behavioral phenotypes
similar to psychiatric disorders, including MDD [64].

Altogether, these data provide evidence of the involvement of chemokines in processes underlying
MDD. In this work, we will examine the role of chemokines in healthy and depressed states, as well as
summarize to the best of our knowledge evidence to date for the possible role of chemokines in the
pathogenesis of MDD.

2. Chemokine Superfamily

The chemokine superfamily contains a large number of ligands and receptors, which are classified
into four sub-families (CXC, CC, C, and CX3C) [65], according to the number and spacing of their
two N-terminal, disulfide bonding participating cysteine residues. Chemokines are small (8–12 kDa)
heparin binding proteins, structurally related to cytokines that can induce directed chemotaxis of
immune cells. However, chemokines are additionally involved in the regulation of migration of
immune cells [66,67], blood-brain barrier (BBB) permeability [68], and synaptic pruning processes [69].
In addition to their structural criteria, chemokines can be subdivided into inflammatory chemokines,
which are upregulated under inflammatory conditions, homeostatic chemokines that are responsible
for maintaining homeostasis, and chemokines, which exhibit dual functionality [70].
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The chemokine superfamily has expanded rapidly after the initial identification of secreted platelet
factor 4 (PF4/CXCL4) [71] in 1977. Subsequent studies have identified more than 50 chemokines,
as well as 20 chemokine receptors [72]. The majority of human chemokine genes are clustered on
chromosomes 4 and 17. CXC chemokines can be found at chromosomal location 4q12-21, whereas
most of the CC chemokines are located at 17q11-21 [73]. This suggests a rapid evolution by repeated
gene duplications [74]. All chemokines share a very similar tertiary structure [75], including a highly
flexible N-terminal domain and a long rigid loop, which are essential for interacting with their
respective receptors [76], and a C-terminal α-helix. Typically, a given chemokine can bind to more
than one receptor (Table 1) and, correspondingly, a number of different chemokines can be recognized
by the same receptor [65]. Chemokines are secreted in response to inflammatory cytokines, and
they selectively recruit monocytes, lymphocytes, and neutrophil-inducing chemotaxis by activating
G-protein-coupled receptors (GPCRs) [77].

Table 1. Chemokines and their known receptors. Chemokine receptors, which belong to the superfamily
of GPCRs, can bind to multiple chemokines, and certain chemokines can similarly bind to more than
one receptor. Adapted from Zlotnik and Yoshie 2012 [65].

Subfamily Chemokine Synonyms Receptors

CXC

CXCL1 Growth-related oncogene α (GROα) CXCR1/CXCR2

CXCL2 Growth-related oncogene β (GROβ) CXCR2

CXCL3 Growth-related oncogene γ (GROγ) CXCR2

CXCL4 Platelet factor 4 (PF-4) CXCR3-B

CXCL5 Epithelial cell-derived neutrophil-activating factor 78
(ENA-78) CXCR2

CXCL6 Granulocyte chemoattractant protein (GCP-2) CXCR1/CXCR2

CXCL7 Neutrophil-activating protein (NAP-2) CXCR1/CXCR2

CXCL8 Interleukin-8 (IL-8) CXCR1/CXCR2

CXCL9 Monokine induced by γ-interferon (MIG) CXCR3

CXCL10 γ -interferon-inducible protein 10 (IP-10) CXCR3

CXCL11 Interferon-inducible T cell α -Chemoattractant (I-TAC) CXCR3

CXCL12 Stromal cell-derived factor 1 (SDF-1) CXCR4

CXCL13 B cell-activating chemokine 1 (BCA-1) CXCR5

CXCL14 Breast and kidney chemokine (BRAK) CXCR4

CXCL15 Lungkine -

CXCL16 Scavenger receptor for phosphatidylserine and oxidized
lipoprotein (SR-POX) CXCR6

CXCL17 dendritic cell-attracting and monocyte-attracting
chemokine-like protein (DMC) CXCR8

CC

CCL1 I-309 CCR8

CCL2 Monocyte chemoattractant protein 1 (MCP-1) CCR2/CCR9/CCR11

CCL3 Macrophage inflammatory protein 1α (MIP-1α) CCR1/CCR5/CCR9

CCL4 Macrophage inflammatory protein 1β (MIP-1β) CCR1/CCR5/CCR9

CCL5 Regulated on activation of normal T cell-expressed and
secreted (RANTES) entities CCR1/CCR3/CCR4/CCR5

CCL7 Monocyte chemoattractant protein 3 (MCP-3) CCR1/CCR2/CCR3

CCL8 Monocyte chemoattractant protein 2 (MCP-2) CCR2/CCR9/CCR11

CCL11 Eosinophil chemotactic protein (Eotaxin-1) CCR2/CCR3/CCR5
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Table 1. Cont.

Subfamily Chemokine Synonyms Receptors

CCL13 Monocyte chemoattractant protein 4 (MCP-4) CCR2/CCR3/CCR5

CCL14 Hemofiltrate CC chemokine (HCC1) CCR1/CCR5

CCL15 Leukotactin-1, macrophage inflammatory protein 5
(MIP-5) -

CCL16 Liver-expressed chemokine (LEC), monotactin-1
(MTN-1) CCR1/CCR2/CCR5/CCR8

CCL17 Thymus and activation-related chemokine (TARC) CCR4

CCL18 Macrophage inflammatory protein 4 (MIP-4) CCR8

CCL19 Epstein–Barr virus-induced receptor ligand chemokine
(ELC) CCR7

CCL20 Liver-related and activation-related chemokine (LARC) CCR6

CCL21 Secondary lymphoid tissue chemokine (SCL) CCR7

CCL22 Macrophage-derived chemokine (MDC) CCR4

CCL23 Macrophage inflammatory protein 3 (MIP-3) CCR1

CCL24 Eosinophil chemotactic protein 2 (Eotaxin-2) CCR3

CCL25 Thymus lymphoma cell-stimulating factor (TECK) CCR9

CCL26 Macrophage inflammatory protein 4-α (MIP-4-α) CCR3

CCL27 Cutaneous T cell-attracting chemokine (CTACK) CCR10

CCL28 Mucosae-associated epithelial chemokine (MEC) CCR10

C
XCL1 Lymphotactin-α XCR1

XCL2 Lymphotactin-β XCR1

CX3C CX3CL1 Fractalkine CX3CR1

3. Chemokines and Chemokine Receptors in the Brain

Chemokines and their receptors are broadly expressed in the CNS in both physiological and
pathophysiological states [58–60,78]. The glia cells (astrocytes, oligodendrocytes, and microglia),
and neuronal cells constitutively express several chemokines, including CCL2, CCL3, CCL19, CCL21,
CXCL10, and CX3CL1 [58,78–80], as well as others, which can be upregulated in response to pathological
conditions. Endothelial cells of the BBB may, under severe inflammatory conditions, likewise produce
several chemokines such as CCL2 [68], CCL4 and CCL5 [81], which bind CCR1, CCR2, and CCR5 [82]
chemokine receptors that are expressed by circulating mononuclear cells.

In addition to their traditional role in immune surveillance and immune cell chemotaxis,
chemokines and chemokine receptors residing in the brain are also involved in the homeostatic
maintenance of the CNS through either autocrine or paracrine activity [83]. Different expression
patterns of various chemokines during embryonic and postnatal development is suggestive of their
essential role for typical brain development. For example, CXCL12 and its receptors CXCR4/CXCR7
are involved in the proliferation and migration of neural progenitor cells (NPC). They are distinctively
expressed in both the developing and the adult brain [61,84]. On the other hand, the CX3CL1 chemokine
(fractalkine) and its receptor CX3CR1, which are constitutively present in the CNS, act to modulate
inflammatory responses of microglia by suppressing its neurotoxicity [85] by reducing levels of the
tumor necrosis factor α (TNF-α) and nitric oxide (NO) [86]. Other chemokines such as CXCL1 and
CXCL8 exert neuro-modulatory effect on the synapsis of cerebellar neurons [87].

Consequently, the chemokine system, which plays an important role in neurogenesis, neuron-glia
communication, synaptic transmission, and plasticity under physiological and pathophysiological
conditions, might participate in the pathogenesis of depression. Evidence in support of this claim is
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that alterations to all of the previously mentioned processes are consistently implicated in various
psychiatric disorders including MDD [11,88].

4. Regulation of Neurogenesis and Neuronal Plasticity by Chemokines

The process of neurogenesis, by which new neurons are continuously generated in discrete brain
regions of many vertebrate species including humans, is particularly prominent in the dentate gyrus
of the hippocampus [89,90]. Initial studies in patients with recurrent major depression, which have
shown stress-induced loss of the hippocampal volume, suggested association of hippocampal atrophy
with depression [91,92]. Furthermore, the decrease in hippocampal volume was correlated with
the total duration of the depressive episodes [93]. Further studies have established a link between
reduced adult hippocampal neurogenesis with the pathophysiology of several psychiatric disorders,
including anxiety and depression [78,90,94,95]. Therapeutic interventions, such as electro-convulsive
and anti-depressive therapy [96,97], are, on the other hand, able to promote recovery from depression,
in part by enhancing hippocampal neurogenesis.

Chemokines play an important role in the regulation of neuronal development and plasticity,
proliferation, migration, and neural progenitor cell (NPC) differentiation [98,99]. Because of the
significant redundancy in chemokine receptor-ligand interactions, most of the chemokine or chemokine
receptor knockout animals are viable and show no apparent neural phenotype [100]. The only exception
to this is the knockout mice from either CXCL12 or its receptor CXCR4, which are not viable and
exhibit cerebellum malformation. This is suggestive of their essential role in the migration of the
NPCs [101]. NPCs derived from the hippocampus and the subventricular zone (SVZ) express various
chemokine receptors on their surface [102], which are important for the regulation of proliferation and
differentiation of these cells. The CX3CL1 chemokine, which is abundantly present on mature neurons
and astrocytes, and its receptor CX3CR1 that is mostly expressed on microglia cells [103], are additionally
involved in the regulation of neurogenesis and neuroplasticity. The CX3CL1 chemokine regulates
microglial synaptic pruning of mature neurons [104], modulates several neurotransmitter systems [105],
and regulates the activation state of microglia [85]. Therefore, this influences the development and
plasticity of the CNS. Exogenous application of the CX3CL1 chemokine further enhanced in vivo
neurogenesis in aged rats by modulating the microglia phenotype [106]. Other chemokines such as
CCL2, CCL21, and CXCL9, promote neuronal differentiation, whereas CCL2, CXCL1, and CXCL9
favor oligodendrocyte differentiation [107]. Further support for the association of adult hippocampal
neurogenesis and MDD arise from the studies, which demonstrated that various chronic anti-depressive
treatments stimulate hippocampal neurogenesis [108]. However, recent evidence suggests that the
alterations in adult hippocampal neurogenesis are not solely responsible for the development of
depression [109].

Altogether, chemokines play a significant role in both neurogenesis and neuronal plasticity, which
are essential for proper brain functioning, and any disturbance in any of these functions could lead to a
depressed state.

5. Chemokines and Neurotransmission in the Adult CNS

Chemokines and their respective receptors, which are constitutively expressed in glial cells and
neurons [59,110–112], are responsible for homeostatic maintenance of the developed brain. Recent
data suggest that chemokines present a unique class of neurotransmitters and neuromodulators that
regulate cell survival and synaptic transmission [103,113]. For example, patch-clamp experiments
performed in Purkinje neurons demonstrated an increase in spontaneous GABAergic activity upon the
application of CXCL12 [56]. Application of CXCL12 in rat hypothalamic slices similarly caused an
increase of GABA release from melanin-concentrating hormone neurons [114]. According to subcellular
studies, chemokines are detected in presynaptic nerve terminals, where they co-localize with various
neurotransmitters, and are released ensuing membrane depolarization [115–117]. CX3CL1, which
co-localize with serotonin in neurons of the dorsal raphe nucleus, may indirectly inhibit serotonin
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neurotransmission by upregulating the sensitivity of serotonin dorsal raphe nucleus neurons to GABA
inputs [50]. Furthermore, results from electrophysiological studies suggest that CCL2, CCL5, CCL22,
CXCL12, CXCL8, and CX3CL1 chemokines can modulate the electrical activity in cortical, cerebral,
hippocampal, and hypothalamic neurons [59,105,118–121].

Overall, the data presented in this case suggest a significant role of chemokines in
neurotransmission and modulation of neurotransmitter release, which are increasingly being implicated
in the pathogenesis of MDD.

6. Pre-Clinical Evidence Linking Changes in the Chemokine Network to Depressive Behavior

Animal models of psychiatric disease are a potent tool to investigate possible causes and
treatments for human diseases. However, they face a number of challenges given the lack of
objective diagnostic tests, biomarkers, and low predictive power [122]. Early animal-utilizing
studies of depression investigated stress-response paradigms [123], and would often involve the
subjugation of models to mild, unpredictable stressors that were either acute or chronic in application.
The response, which is reasoned to be analogous to stress-induced depression in humans, involves the
dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, as well as the neuroendocrine and
neurotransmitter systems [124]. Findings indicate that immobilization and painful stress experiments
demonstrated increased expression of CXCL1 chemokine in various regions of the CNS [125,126].
On the other hand, in a mouse model of depressive behavior based on chronic variable stress,
no significant differences in expression of the CCL2 chemokine in hippocampus were found [127].
In prenatally stressed rats, as a further animal model of depressive behavior, levels of CCL2, and
CXCL12 chemokines were upregulated in the hippocampus and prefrontal cortex, which is suggestive
of excessive microglial activation [128]. Moreover, chronic anti-depressant treatment has been shown
to revert those changes [129].

An alternative attempt to model depression-like behavior in animals involves inducing
sickness-like behavior by administering inflammatory cytokines or lipopolysaccharide (LPS), which
mimic the depressive symptoms induced by treatment of human patients with interferons [130].
CXCL1, CXCL10, and CCL5 were up-regulated in mice in which the depressive-like behavior was
induced by application of Interferon α [131]. Rats treated with CXCL1 chemokines have shown a
dose-dependent reduction in both spontaneous open field activity and burrowing behavior [132].
Peripheral administration of LPS have further induced the expression of CXCL1 and CCL2 in the
prefrontal cortex, hypothalamus, and plasma of rats exposed to chronic, intermittent, cold stress [133].
Animals lacking CX3CR1 receptors experienced an increased duration of sickness-like behavior
on the tail suspension test after peripheral LPS challenge [134], which additionally implicates the
role of the chemokine system in sickness-like behavior. Virus-induced sickness-like behavior can
additionally cause impaired learning and cognitive dysfunction by mechanisms that remain poorly
understood. However, recent studies performed in mice have suggested a key role of an innate immune
system of the brain in mediating the behavioral effects of viral infection [135,136]. Virus associated
activation of a subpopulation of circulating monocytes expressing the CX3CR1 receptor causes release
of TNF-α, which induces dendritic spine loss and motor learning impairment [135]. The exact
mechanism by which monocytes modulate synaptic activity is not known, but there is evidence to
suggest it is microglia-independent [137]. Brain endothelial cells, which serve as a natural barrier
to interferon-induced sickness behavior, could also play an important role for the communication
between the central nervous and immune systems [136].

Stress has been shown to play an important role in the etiology of neuropsychiatric diseases,
including depression [138], and a number of animal studies have identified that exposure to stress
greatly increases the risk of developing depression [139]. However, most of the stressors applied
were artificial, and, thus, are not a representational model of stress exposure in humans, which is
mostly social in nature [140]. Lately, alternative animal models of depression have begun to focus on
psychosocial stress, particularly on a paradigm based on social defeat [141]. Repeated social defeat
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(RSD) in mice causes an exposure-dependent increase of CXCL1 and CXCL2 levels in the brain, which is
indicative of higher leukocyte recruitment in the brain vasculature [142]. Animals repeatedly exposed
to social defeat show decreased volume and cell proliferation in the hippocampus and prefrontal
cortex, which can be reverted by an anti-depressant treatment [123], bearing similar resemblance to
the human studies. Altogether, various animal models of depressive-like behavior have provided
evidence for the involvement of a chemokine network in the pathophysiology of major depression.

7. Involvement of Chemokines in the Pathophysiology of MDD—Clinical Studies

Several studies in humans and animal models have linked elevated levels of chemokines with the
depressive behavioral symptoms, particularly increased levels of circulating inflammatory chemokines.
The majority of the published clinical studies included the CCL2 and CXCL8 chemokines, and were
based on the detection of the chemokine expression in blood or cerebrospinal fluid [48,73]. CCL2, which
belongs to the group of the inflammatory chemokines, has been implicated in the chemotactic migration
of peripheral monocytes to the brain [143]. Significantly higher concentrations of CCL2 in the serum of
depressed patients compared to controls were described in numerous studies [23,144,145]. Moreover,
antidepressant drug treatment effectively reduced peripheral levels of the CCL2 chemokine [146].
Although a considerable number of publications, including recent meta-analyses [15,48,63,147],
have reported an increased CCL2 expression in patients diagnosed with MDD, studies involving
MDD patients with suicidal ideation have surprisingly shown unchanged or reduced levels of the
chemokine [148,149]. Considering a similar correlative elevation of CCL2 levels reported in patients
diagnosed with bipolar disorder [150], more research is needed in order to effectively use elevated
serum CCL2 levels as a marker of MDD.

CXCL8 levels in blood samples from a total of 40 studies involving 3788 participants were
significantly elevated in depressed subjects when compared to controls reported in a recent
comprehensive meta-analysis performed by Leighton et al. [15]. However, these results were obtained
only after exclusion of a subgroup with physical illness. Significant differences that were observed in
CXCL8 chemokine levels only after restricting the analysis to healthy subjects, suggest that inflammatory
changes of underlying physical disease could mask the changes in chemokine levels in depressed
patients [15]. Plasma levels of CCL3, also known as macrophage inflammatory protein-1α (MIP-1α),
were similarly increased in depressed patients compared to healthy control subjects [15,23,151,152].
A significant increase of blood levels were also shown for further chemokines including CCL11, CXCL4,
and CXCL7 [15]. Inflammation can also play an important role in the etiology of bipolar disorder,
which has been suggested by several studies [153–155], in which patients with bipolar disorder showed
increased levels of CCL11 and CXCL10 in the plasma. On the other hand, plasma levels of another
chemokine from the CC group, CCL4, decreased in depressed patients in several studies [15,148,156].
Many other chemokines examined, such as CCL5, CCL7, CXCL9, and CXCL10, showed no significant
differences [15].

During depressive episodes, biochemical measurements indicate an increased level of the
microglia-enriched protein, translocator protein 18 kDa (TSPO), which is elucidated by the correlative
increase of binding by TSPO-specific ligands [157]. It is still a matter of debate whether an
increased TSPO ligand binding in depression is due to the proliferation of microglial cells or
infiltration of circulating macrophages, which also express high amounts of TSPO protein through the
blood-brain-barrier (BBB). Our recent published data show higher levels of CCL22, macrophage-derived
chemokine (MDC) in the blood of the MDD patients who responded to anti-depressive therapy [158].
Therefore, this suggests that chemotaxis and infiltration of monocytes, as well as recruiting T-helper 2
cells (Th2) and T-regulatory cells through the BBB, could play a significant role in the pathophysiology
of MDD. A link between macrophages and depression was initially proposed in 1991 [159], where
excessive activity of macrophages has been suggested as a key factor in the etiology of this illness.
Recent studies in various models of CNS injury and neurodegenerative diseases have highlighted the
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essential role of infiltrating monocyte-derived macrophages for the CNS repair process by resolving
inflammation [160].

Typical pharmacological treatment of MDD can also decrease peripheral inflammation, as
demonstrated by the reduction in levels of CCL2 [146]. However, other approaches are necessary in
order to improve treatment outcome. Targeting immune-related pathways, which are altered in MDD
and in bipolar disorder, could constitute a novel therapeutic mechanism for the treatment of both
MDD and BD [161,162]. CCL11, which has been associated with many psychiatric disorders and its
CCR3 receptor, may have represented attractive targets for treating both MDD and BD [163]. Moreover,
the use of nonsteroidal anti-inflammatory drugs, including celecoxib, as an adjunctive treatment
in MDD patients, and minocycline demonstrate a significant anti-depressive effect [164,165]. Even
electroconvulsive therapy, which is one of the most effective treatment options for treatment-resistant
depression, modulates peripheral immune activation [166]. In order to provide an accurate diagnosis,
and to monitor treatment response in MDD and BD patients, novel biomarkers are urgently needed.
Biobanks with well-defined phenotype of MDD and BD patients [167–169] were established with a
goal to expedite development of novel diagnostic and therapeutic compounds.

According to the available clinical studies reviewed in this work, it is clear that chemokines play
an important role in regulating neurobiological processes relevant to psychiatric disorders, and that
dysregulation of various chemokines could play an important role in the pathophysiology of MDD.

8. Conclusions

Elucidating the neurobiological basis of depression and the development of more effective
pharmacological treatments are the principal challenges, and one of the main goals of modern medicine.
Less than a third of MDD patients adequately respond to the initial antidepressant treatment, and over
35% of depressed patients fail to respond to different antidepressants altogether [170]. Considering
that the majority of commonly prescribed anti-depressants act primarily by increasing or modulating
monoamine neurotransmission [171], there is a need for novel therapeutic agents. Identification of
specific biomarkers of depression, which could be used to predict a response to anti-depressive drugs,
and develop new treatment options would help reduce the burden of depression.

An increasing body of evidence, reviewed in this study, demonstrates an important role for
chemokines in the biology of depression. However, the majority of the studies were performed on
peripheral blood samples, and had a cross-sectional design. In order to fully comprehend the changes
that occur in depression, longitudinal studies with treated MDD patients will be necessary. An additional
limitation of the majority of human studies published thus far is that the patho-physiological changes
detected in the periphery might not reliably indicate changes in the CNS. Furthermore, many of
the investigations utilized a small subset of chemokines, which limits our total understanding of
inflammatory processes in vivo.

In summary, the data reviewed in this manuscript demonstrates the important role of chemokines
in pathophysiology of MDD. Chemokines and their receptors, which are widely expressed in the CNS,
could become novel diagnostic markers or therapeutic targets for MDD. However, additional research
in larger populations, which should also include longitudinal studies, is necessary.

9. Methods

We performed literature searches through Pubmed and Google Scholar databases for articles
published before September 2018. The search terms (chemokines OR cytokines OR neuroinflammation
OR inflammation) AND (Depression OR Depressive Disorder OR Major Depressive Disorder) were
used. Obtained references were additionally inspected and all relevant publications were included.
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