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Abstract: In humans, Zika virus and viral RNA have been detected in semen up to 2.2 months and
6 months post infection (pi), respectively. Although the contribution of sexual transmission to the
spread of ZIKV is too low to sustain an outbreak, it can increase the risk of infection and the epidemic
size as well as prolong the duration of an outbreak. In this study, we explored the potential of antivirals
to serve as an effective strategy to prevent sexual transmission. Male AG129 mice infected with a
ZIKV isolate from Suriname were treated with the nucleoside analog, 7-deaza-2’-C-methyladenosine
(7DMA), that was previously shown to be efficacious in reducing ZIKV viremia and delaying
ZIKV-induced disease in mice. Following treatment, viral RNA and infectious virus titers were
consistently reduced in the male reproductive organs compared to vehicle-treated mice. This reduction
of ZIKV loads in the testis was confirmed by the detection of lower levels of ZIKV antigens. Our data
illustrate the value of this mouse model to validate the efficacy of new potential ZIKV drugs at the
level of the male reproductive system.
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1. Introduction

Zika virus (ZIKV) is a re-emerging, arthropod-borne virus (arbovirus), belonging to the family
of Flaviviridae. After being isolated from a human for the first time in 1952, only sporadic cases of
human ZIKV infections were reported and there were no reports on transmission outside Africa or
Southeast Asia [1]. The first recorded ZIKV outbreak occurred in 2007 on Yap Island, Federated
States of Micronesia, where 73% of the residents became infected [1]. No further transmission was
identified in the Pacific until October 2013, when an outbreak occurred in French Polynesia, followed
by the emergence of ZIKV on other Pacific islands [2]. In May 2015, ZIKV autochthonous cases were
identified for the first time in the Americas [3]. By January 2018, the number of cumulative Zika
cases in the Americas exceeded 800,000 [4], demonstrating that flaviviruses can cause explosive and
large outbreaks.

Prior to the outbreak in French Polynesia, ZIKV infections were mainly reported to be asymptomatic
or to result in a febrile self-limiting disease, characterized by mild fever, headache, rash, arthralgia,
myalgia, and conjunctivitis [5]. However, during the French Polynesia outbreak, an unusual increase
in Guillain-Barré syndrome (GBS, an autoimmune disease causing acute or subacute flaccid paralysis)
was reported that coincided both temporally and spatially with a peak in the incidence of ZIKV
infections [6,7]. Moreover, during the ZIKV outbreak in the Americas, an increased incidence of
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microcephaly among newborns was observed [8]. Subsequent retrospective studies revealed a similar,
unusual increase in microcephaly cases during the 2013-2014 outbreak in French Polynesia [9]. By 2016,
the accumulating evidence supporting a link between ZIKV infection in pregnant women and congenital
neurological abnormalities led the WHO to declare ZIKV a Public Health Emergency of International
Concern [10-12].

ZIKV is predominantly transmitted to humans through the bite of Aedes mosquitoes, primarily
Ae. aegypti and secondarily Ae. albopictus [13]. However, recent studies showed that ZIKV can also
be sexually transmitted between humans, with male to female transmission being the most common.
Infectious virus has been detected in semen for up to 69 days post infection (pi) [14]. Mathematical
models predict that the contribution of sexual transmission to the spread of ZIKV is 3-4.8% [15,16].
The low contribution (~1%) of sexually transmitted ZIKV cases to the overall epidemiology was
confirmed in recent reviews [17,18]. These models also suggest that, although the contribution of sexual
transmission is too low to sustain an outbreak, it can increase the risk of infection and epidemic size as
well as prolong the duration of an outbreak. Therefore, prevention and control measures should not
only focus on mosquito-borne transmission, but also on the sexual transmission route [14,16]. To avoid
sexual transmission, both symptomatic and asymptomatic male patients and travelers returning from
areas with a high risk of ZIKV infection are recommended to practice safe sex for at least six months [19].
Furthermore, infected female partners or women returning from an endemic area should wait at least
eight weeks before considering pregnancy [19].

Due to the unavailability of antivirals and vaccines against ZIKV infections, patients are currently
being treated symptomatically and mosquito-borne transmission is prevented by applying individual
personal protective measures and vector control strategies. We previously reported on the establishment
of a robust AG129 mouse model of ZIKV infection with involvement of the male reproductive tract that
was validated to evaluate the efficacy of candidate antivirals in inhibiting ZIKV replication [20]. Here,
we describe the utility of this model to evaluate the use of antiviral molecules as a strategy against
sexual transmission of ZIKV by reducing the viral load in male reproductive organs.

2. Results

We previously demonstrated the ability of 7-deaza-2’-C-methyladenosine (7DMA) to delay
ZIKV-induced disease in AG129 mice when administered at the time of or two days prior to infection [20].
Here, we evaluated the antiviral efficacy of 7DMA on ZIKV loads in the male reproductive organs
(i.e., testis and epididymis). Male AG129 mice (6-12 weeks of age) were infected intraperitoneally
with 10* PFU of ZIKV SL1602 (Suriname isolate). Starting from the day of infection (i.e., day 0), mice
were treated once daily with 50 mg/kg/dose of 7DMA or vehicle via oral gavage for 7 consecutive
days (Figure 1a). At day 3, 7, and 10 pi, mice were sacrificed and viral RNA was extracted from
plasma, testis, and epididymis. Infectious virus titers from the testis were determined by means of
end-point titrations. The viremia in vehicle-treated mice significantly decreased from day 3 to day 10
pi (Figure 1b), which is in accordance with the normal progression of a ZIKV infection in mice [20,21].
The viral RNA load in the reproductive organs of vehicle-treated mice increased from day 3 to day 10 pi
(Figure 1c—e), consistent with previous reports [22]. Compared to vehicle-treated mice, the viral RNA
load in the plasma and reproductive organs of 7DMA-treated mice was consistently reduced at day 3
and day 7 pi (Figure 1b—e). At day 7 pi, almost 70% of the 7TDMA-treated mice had undetectable levels
of infectious virus in their testis compared to none of the vehicle-treated mice (Figure 1le), indicating
that a single daily dose of 7DMA is efficacious in inhibiting ZIKV replication in the testis of male mice.
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Figure 1. 7DMA treatment reduces ZIKV replication in male reproductive organs. Male AG129 mice
(6-12 weeks of age) were inoculated intraperitoneally with 10% PFU of ZIKV (SL1602, Suriname isolate).
(a) Schematic representation of the study design. Starting from the day of infection (i.e., day 0), mice
were treated once daily with 50 mg/kg/dose of 7DMA or vehicle via oral gavage for 7 consecutive days.
The inhibitory effect of 7DMA on ZIKV replication in plasma (b), the testis (¢,e), and the epididymis
(d) is compared between vehicle-treated mice (black, n = 8, 17, and 6) and mice treated with 7DMA
(white, n = 8,13, and 8) at day 3, 7, and 10 pi, respectively. Data are presented as medians and statistical
analysis was performed using the Mann-Whitney U test, * = p < 0.008, ** = p < 0.0006 (Graphpad
software). GE; genome equivalents. The dotted line represents the limit of detection. Data from day

7 pi are from two independently performed experiments.

At day 10 pi, levels of viral RNA in plasma and epididymal tissue in 7DMA-treated mice did

not differ significantly from those in vehicle-treated mice (Figure 1b,d). In contrast, levels of viral
RNA and infectious virus in testicular tissue were significantly lower in 7TDMA-treated mice than in
vehicle-treated mice (Figure 1c,e). This is corroborated by the reduced expression of ZIKV antigens in
the testis of 7DMA-treated mice at day 10 pi (Figure 2¢,d; top panels in each quadrant) compared to
the testis of vehicle-treated mice, which abundantly expressed ZIKV antigens (Figure 2b). However,
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7DMA was not able to completely block the expression of ZIKV antigens in the testis of all treated
mice, as shown in Figure 2d (compared to Figure 2c), demonstrating the relative weak potency of
7DMA. Irrespective of the treatment regimen, signs of increased inflammation (i.e., inflammatory cell
infiltration) as a result of ZIKV infection were absent at day 10 pi in the testis of all ZIKV-infected mice,
as is evident from the hematoxylin and eosin (H&E) stained sections (Figure 2, bottom panels in each
quadrant). Together, these findings demonstrate that an antiviral, such as 7DMA, is able to maintain a
reduced testicular viral load beyond the end of treatment. However, the antiviral potency of 7DMA is
not sufficient to also maintain reduced viral levels in the epididymis (and presumably semen) at a
later time point pi. Future antiviral drug candidates should be sufficiently potent in inhibiting viral
replication in the testis and epididymis of infected mice, both early and late during a ZIKV infection.

Figure 2. Testicular levels of ZIKV antigens are reduced after 7TDMA treatment as visualized by
histopathological staining. Inoculation and treatment of AG129 mice was performed as described in
Figure 3. The presence of ZIKV antigens (top panels in each quadrant) and inflammation (bottom
panels in each quadrant) in the testis at day 10 pi is compared between mock-infected mice (a) and
ZIKV-infected mice treated with vehicle (b) or 7DMA (c,d). The top two panels in each quadrant
show antibody staining for the ZIKV envelope protein. The bottom two panels in each quadrant show
hematoxylin and eosin staining. Panels on the left in each quadrant show a complete cross section of
the testis. Panels on the right of each quadrant show a close up of the complete cross section of the
same quadrant. The scale bars are 1000 um and 200 um for cross sections and close ups, respectively.

Next, we evaluated the antiviral efficacy of 7DMA when treatment was initiated at a later time
point pi. To this end, male AG129 mice (6-10 weeks of age) were inoculated intraperitonially with 10*
PFU of ZIKV SL1602. Animals received the first dose of 7DMA (n = 5 and 8) or vehicle (n = 7) either
one hour prior to infection or at day 3 pi (Figure 3a). Mice were treated once daily with 50 mg/kg/dose
of 7DMA or vehicle via oral gavage until day 7 pi. At day 7 pi, viral RNA levels in plasma and
reproductive organs were significantly reduced in mice that received early 7DMA treatment compared
to vehicle-treated mice (Figure 3b—e). Similarly, infectious virus titers in the testis were significantly
lower compared to those in vehicle-treated mice (Figure 3e). In contrast, levels of ZIKV RNA and
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infectious virus in mice from the delayed treatment group did not differ significantly from those in
vehicle-treated mice (Figure 3b—e). These results indicate that early treatment with 7DMA is required
for effective inhibition of ZIKV replication in the male reproductive system.
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Figure 3. Early 7DMA treatment is required to efficiently inhibit ZIKV replication in male reproductive
organs. (a) Schematic representation of the study design. Male AG129 mice (6-10 weeks of age) were
inoculated intraperitoneally with 10* PFU of ZIKV. The inhibitory effect of 7DMA on ZIKV replication
in plasma (b), the testis (c,e), and the epididymis (d) at day 7 pi is compared between vehicle-treated
mice (black, #n = 7) and mice treated with 7DMA starting either at the day of infection (white, n = 5) or
at day 3 pi (grey, n = 7). Data are presented as medians and statistical analysis was performed using
the Mann-Whitney U test, * = p < 0.05, ** = p < 0.006 (Graphpad software). GE; genome equivalents.

The dotted line represents the limit of detection.

3. Discussion

ZIKV generally does not replicate nor cause disease in wild-type mice, hence models to study ZIKV
pathogenesis of the male reproductive tract and sexual transmission typically involve immunodeficient
mice, such as A129, Ifnarl =~ (both lacking IFN-&/f3 receptors), and AG129 mice (lacking IFN-/3 and
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IFN-y receptors) [14]. Infection of male AG129 mice with the ZIKV isolate SL1602 from Suriname
resulted in high viral RNA levels in testicular and epididymal tissues at day 3 pi [23]. Viral RNA
levels in the testis and epididymis increased even further until the end of the study at day 10 pi.
Similarly, increasing levels of infectious ZIKV in the testis from day 3 (4.5logg TCID50/100 mg tissue;
median) until day 10 pi (6.91og;9 TCID50/100 mg tissue; median) were observed. This is in line with
previous studies, in which increasingly high levels of viral RNA and infectious virus were observed
in the testis of immunocompromised mice (Ifnar”~ or A129 mice) using contemporary ZIKV isolates
(strain H/PF/2013 from French-Polynesia or strain FSS13025 from Cambodia) [22,24]. In contrast to
previous studies, we did not observe any signs of testicular atrophy. We observed the mice for 10
days, which may have been too short a period to detect tissue damage since others reported distinct
testicular damage much later after infection, i.e., day 21 and day 15-30 pi [25-27]. Other reasons may
be differences in the mouse species used (AG129 mice versus Ifnar”" or wild-type mice that were
treated with an interferon antibody) and/or the ZIKV strain [25-27].

We did not engage in identifying the target cells of ZIKV replication in the testis/reproductive
male tract since studies on this topic have already been published [25-27]. A study on the persistence
of ZIKV in seminal fluids of male AG129 mice revealed the presence of infectious ZIKV in the ejaculates
from day 7 to day 21 pi [28]. The highest viral titer per ejaculate (5.6log;o PFU) was observed at day
8 pi. During the two week window of infectivity, sexual transmission from ZIKV-infected male mice
to uninfected females was observed, with transmission occurring in 50% of all mating events [28].
Another study demonstrated the permissiveness of male murine germ cells of both wild-type and
Ifnarl™~ mice to infection with various ZIKV isolates [29]. The hypothesis that germ cells are potential
target cells of ZIKV replication was confirmed using an ex vivo model of primary human testicular
tissue [29]. However, reports on sexual transmission via vasectomized men suggest that the virus does
not only reside in germ cells [30,31]. Indeed, active ZIKV replication was observed in human prostate
cells [32], indicating that the prostate and seminal vesicles may serve as potential ZIKV reservoirs,
which can facilitate sexual transmission.

An alternative way to prevent or lower the risk of ZIKV sexual transmission is through antiviral
treatment. We thus focused on establishing an in vivo model to evaluate the efficacy of antiviral
molecules to lower or even fully inhibit ZIKV replication in the reproductive tract of male mice.
We previously reported on the ability of the viral polymerase inhibitor, 7DMA, to delay virus-induced
disease in AG129 mice infected with the prototype ZIKV MR766 strain [20]. In the present study, the
inhibitory potential of 7TDMA was tested against a ZIKV strain from Suriname at the level of the male
reproductive tract. Significantly lower levels of viral RNA and infectious virus were observed in the
testis of mice that were treated with 7DMA starting at the day of infection compared to vehicle-treated
mice, although some mice were less responsive to the antiviral treatment. This is likely due to
interindividual differences in the susceptibility to ZIKV infection and/or differential pharmacological
responses to 7DMA.. Interestingly, reduced levels of virus were observed in the testis, but not in the
epididymis, of 7DMA-treated mice until three days after termination of antiviral treatment. These
observations were corroborated by lower expression levels of ZIKV antigens in the testicular tissue.
Delayed start of treatment did not have a significant inhibitory effect on the levels of viral RNA
and infectious virus. Although 7DMA was unable to completely suppress ZIKV replication in male
reproductive tissues, due to the relatively weak potency of the compound [20], the data presented here
validate our model as a tool to examine the antiviral competence of new candidate drugs targeted
at preventing ZIKV sexual transmission. It also demonstrates that antiviral treatment can help to
maintain a lower viral load in the male reproductive tract, which could aid in the prevention of
sexual transmission.
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4. Materials and Methods

4.1. Cells, Virus, and Compounds

C6/36 mosquito cell cultures (ATCC CRL-1660) were maintained in Leibovitz’s L-15 medium
supplemented with 10% fetal bovine serum (FBS), 1% (1x) non-essential amino acids (NEAA), 10 mM
HEPES buffer, 100 units/mL penicillin, and 100 pug/mL streptomycin (Penicillin-Steptomycin) at 28 °C
without CO;. Vero E6 cell cultures (Vero C1008; ATCC CRL-1586) were maintained in MEM Rega-3
medium supplemented with 10% FBS, 2 mM L-glutamine, and 0.075% sodium bicarbonate. For cell
culture assays that involved virus or virus infected material, the concentration of FBS in the medium
was reduced to 2% (2% medium). All tissue culture media and supplements were obtained from Gibco,
Thermo Fisher Scientific (Merelbeke, Belgium).

ZIKV (SL1602, Suriname isolate) was obtained from Prof. Martijn van Hemert, Leiden University
Medical Center, Leiden, The Netherlands. Lyophilized virus was reconstituted in 2% MEM Rega-3
medium and virus stocks were generated on C6/36 mosquito cell cultures as described before [20].
The aforementioned cell types tested negative for mycoplasma.

7-deaza-2’-C-methyl-p-adenosine (/DMA) was purchased from Carbosynth (Berkshire, UK).

4.2. In Vivo Evaluation of 7DMA Against ZIKV Replication in AG129 Mice

All experiments were performed with the approval and under the guidelines of the Ethical
Committee of the University of Leuven (P087-2014). Male AG129 mice (deficient in both interferon
(IFN)-ot/3 and IFN-y receptors) of 6-12 weeks of age were treated once daily with either 50 mg/kg/day
of 7DMA resuspended in 0.4% sodium carboxymethylcellulose (CMC-Na) or vehicle (0.4% CMC-Na)
via oral gavage. One hour following the first treatment, all mice were infected intraperitoneally (ip)
with 10* PFU of ZIKV SL1602 in 200 uL. Mice were treated with the 7ZDMA or vehicle for 7 consecutive
days. Mice were observed daily for body weight change and the development of virus-induced disease.
In the case of >20% body weight loss and/or severe illness, mice were euthanized using Doléthal
(Vétoquinol, Aartselaar, Belgium). Mice were sacrificed at day 7 or day 10 pi. Blood was collected by
cardiac puncture and tissues (testis and epididymis) were collected after transcardial perfusion using
PBS and immediately placed on dry ice. Tissues were stored at —80 °C until further evaluation.

4.3. Tissue RNA Isolation and Quantitative Reverse Polymerase Chain Reaction (qRT-PCR)

Sections of whole tissue were transferred to 2 mL Precellys tubes containing 2.8 mm zirconium
oxide beads (Bertin Instruments, Montigny-le-Bretonneux, France). Subsequently, RLT lysis buffer
(RNeasy Mini Kit, Qiagen, Antwerp, Belgium) was added at a ratio of 100 puL of buffer per 5 mg of
tissue. Tissue homogenates were prepared using an automated homogenizer (Precellys24, Bertin
Instruments). Homogenates were cleared by centrifugation and total RNA was extracted from
the supernatant using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s protocol.
The NucleoSpin RNA kit (Macherey-Nagel, Eupen, Belgium) was used to isolate viral RNA
from serum samples. For both kits, RNA was eluted in 50 uL of RNase-free water. During
gRT-PCR, the ZIKV E protein encoding region (nucleotides 1193-1269) was amplified using
the primers, 5'-CCGCTGCCCAACACAAG-3’ (forward) and 5'-CCACTAACGTTCTTTTGCAGAC
AT-3’ (reverse), and a Double-Quenched Probe 5’ -6-FAM/AGCCTACCT/ZEN/TGACAAGCAATCA
GACACTCAA/3'IABKFQ (Integrated DNA Technologies, IDT, Leuven, Belgium). Viral copy numbers
were quantified using serial dilutions of a viral RNA template that was isolated from the ZIKV stock
that was also used to inoculate the mice.

4.4. Virus End-Point Titration by Cell Culture Infectious Dose 50% (TCID50) Assay

To determine infectious viral titers from tissue, tissue homogenates were prepared in 2% medium.
To this end, sections of whole tissue were transferred to 2 mL Precellys tubes containing 2.8 mm
zirconium oxide beads and 2% medium was added at a ratio of 100 uL of medium per 5 mg of
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tissue. Tissue homogenates were prepared using an automated homogenizer and were cleared by
centrifugation. The infectious viral titers in tissues were subsequently determined by a TCID50 assay
on Vero E6 cells. To this end, Vero E6 cells were seeded at a density of 10* cells/well in a 96-well plate
in 100 pL of 2% medium and allowed to adhere overnight. The following day, 2% medium was added
to all wells to a total volume of 180 uL. In total, 20 uL of homogenate supernatant was added to the
first well to a final dilution of 1/10. Then, 20 uL was systematically transferred to the subsequent well
to obtain a 10-fold serial dilution. Following 7 days of incubation at 37 °C, CPE was determined by
microscopic evaluation. TCID50 values were calculated using the Reed and Muench method [33].
The limit of detection is determined by the minimal amount of positive wells in the first dilution
required to obtain a TCID50 value using the Reed and Muench method.

4.5. Histopathology

Testes were collected and placed on dry ice before storage at —80 °C. Frozen testes were
embedded in KP cryocompound, cut into 5 um sections, and fixed in acetone. Sections were
stained with hematoxylin-eosin (H&E) to detect signs of inflammation and tissue damage. In addition,
sections were stained with the anti-Flavivirus Group Antigen Antibody, clone D1-4G2-4-15 (Millipore,
Overijse, Belgium), to detect the ZIKV-encoded envelope (E) protein. The primary antibody
binding was visualized using the BOND polymer refine detection kit (Leica, Diegem, Belgium),
according to the manufacturer’s protocol. In brief, primary antibody staining was followed by
incubation with post-primary rabbit anti-mouse IgG antibodies and secondary goat anti-rabbit
IgG antibodies conjugated with horseradish peroxidase (HRP). HRP staining was performed with
3,3’-diaminobenzidine tetrahydrochloride hydratediaminobenzidine (DAB, brown staining).
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