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Abstract: The liver is the central organ of glycolipid metabolism, which regulates the metabolism
of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions.
Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism.
Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to
control hepatic metabolism in response to different physiological states. Through inducing acetylation
of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors
in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition,
glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of
nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on
glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally,
we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
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1. Introduction

Health problems associated with obesity, type 2 diabetes (T2DM), and nonalcoholic fatty liver
disease (NAFLD) are becoming more arresting by the day [1–3]. Abnormal physiological control could
destroy metabolic balance and would eventually give rise to these chronic acquired diseases [4,5].
Overnutrition or malnutrition have been revealed to be linked to chronic inflammation and may result
in disorders of energy balance in the body [6,7]. As the hub of metabolism, the liver has an abundant
blood supply, and its unique morphological structure makes its metabolism extremely active [8]. It is
also closely related to various tissues and organs in the metabolism of glucose, lipids, protein, vitamins,
and hormones, etc. Consequently, the liver is responsible for maintaining somatic harmony. It does
so by precisely controlling the metabolism of glucose and lipids [9]. Hepatic metabolic disorders
are strongly linked to the existence of liver diseases. Perpetual obesity and overnutrition inflict
inflammation in the liver and invite many metabolic disorders and diseases. These effects eventually
contribute to the appearance and metastasis of liver cancer, which is currently the leading cause of
death from liver disease [10,11].

A growing body of studies have uncovered that some transcription factors play significant
roles in controlling liver energy metabolism. After undergoing post-translational modifications
(PTMs), the activity and stability of these transcription factors will be altered, thereby affecting their
biological functions in the liver [12]. During the past decades, many researchers have indicated that
acetylation had become a critical post-translational modification in cell regulation, particularly by
modifying histones and nuclear transcriptional factors. Lysine acetylation is an evolutionarily, highly
conserved post-translational modification mechanism. Histone acetylation under the control of lysine
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acetyltransferases (KATs) and histone deacetylases (HDACs), and the dynamic balance of these two
activities, is the linchpin in maintaining homeostasis [13,14].

Recent mass spectrometry has unmasked that almost all metabolism enzymes are acetylated,
indicating that acetylation has a broad regulatory effect on cellular metabolism. Furthermore, acetylation
also participates in various biological processes, such as energy metabolism, signal transduction,
and oxidative stress, by altering the protein–protein interactions, protein stability, catalytic activity,
and subcellular localization of metabolic enzymes [15,16]. Regulation of metabolic pathways by
acetylation is important for the occurrence and development of metabolic-related diseases such as
obesity, cardiovascular disease, diabetes, and tumorigenesis [17,18]. Predictably, as a vital metabolic
organ, most metabolic processes in the liver are subjected to acetylation, such as glycolipid metabolism
and urea cycles. The acetyltransferase and deacetylase enzymes are affected by the by nutritional
levels, so they can quickly respond to the liver energy balance.

Metabolism of nutrients in the liver is under the control of glucagon and insulin. This is
the reason the interaction between insulin and glucagon is able to maintain the body’s energy
balance [19]. Glucagon is a polypeptide synthesized and secreted by pancreatic alpha cells. The primary
physiological role of glucagon is to fight insulin and induce hepatic glucose production, thereby
maintaining glucose balance in the liver. Previous research has demonstrated that most liver metabolic
diseases are concomitant with an increase in plasma glucagon concentration [20–23]. Recently,
some researchers have shown that glucagon regulates liver metabolism by controlling acetylation of
energy-sensing factors. Energy-sensing factors are capable of making the corresponding transformation
according to different energy levels of the body to maintain energy balance [24]. For example,
in the fasting state, glucagon regulates the expression of forkhead box o1 (FOXO1) and cyclic AMP
(cAMP)-response element binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) by
inducing acetylation, thereby increasing the expression of gluconeogenesis-related genes to regulate
glucose metabolism [25–28]. Glucagon additionally induces the acetylation of sterol regulatory element
binding protein-1c (SREBP-1c) and cAMP-responsive element binding protein H (CREBH) to regulate
lipid metabolism [29–32]. Additionally, in the pathological state of the liver, glucagon-induced
acetylation of energy-sensing factors such as signal transducer and activator of transcription–3 (STAT3)
provide a potential treatment strategy for liver disease [33] (Table 1). This review primarily focuses on
how glucagon controls hepatic metabolism by altering the acetylation status of energy-sensing factors.



Int. J. Mol. Sci. 2019, 20, 1885 3 of 20

Table 1. Overview of the regulation of different targets related to hepatic metabolism via
glucagon-induced acetylation in different physiological states.

Physiological/
Pathological State Enzyme Acetylation/

Deacetylation Targets Effect Metabolic Response Reference

Fasting state P300 Acetylation
CRTC2 Stimulatory Gluconeogenesis↑ [25,34]

FOXO1 Stimulatory Gluconeogenesis↑ [26,35]

Fasting state Ets-1 Acetylation FOXO1 Inhibitory Gluconeogenesis↓ [36]

Fasting state SIRT6 and
GCN5

Acetylation and
Deacetylation PGC1-α Inhibitory Gluconeogenesis↓ [37–39]

Fasting state / Acetylation GP Inhibitory Gluconeogenesis↓ [40]

Prolonged fasting
state

SIRT1 Deacetylation
CRTC2 Inhibitory Gluconeogenesis↓ [25]

FOXO1 Stimulatory Gluconeogenesis↑ [25]

Fasting state class IIa
HDACs Deacetylation FOXOs Stimulatory Gluconeogenesis↑ [41]

Fasting state SIRT3 Deacetylation
LCAD Stimulatory FFA oxidation↑

FFA accumulation↓ [42]

/ Stimulatory FFA oxidation↑
FFA synthesis↓ [43]

Fasting state SIRT1 Deacetylation PPAR-α Stimulatory FFA oxidation↑ [44,45]

Foxa2 Inhibitory FFA oxidation↑ [46,47]

Fasting state PCAF Acetylation CREBH Stimulatory FFA synthesis↓ [31,48]

Prolonged fasting
state SIRT1 Deacetylation CREBH Stimulatory FFA synthesis↓ [31]

Fasting state SIRT1 Deacetylation SREBP-1c Inhibitory FFA synthesis↓ [29]

Fasting state SIRT3 and
SIRT5 Deacetylation CPS1 and

OTC Stimulatory Ureagenesis↑ [49,50]

NAFLD SIRT1 Deacetylation NF-κB Inhibitory Inflammation↓ [51,52]

Hepatic fibrosis SIRT1 Deacetylation STAT3 Inhibitory Inflammation↓ [53,54]

Hepatic fibrosis SIRT1 Deacetylation TGF-β Inhibitory Inflammation↓ [55,56]

Liver cancer PCAF Acetylation PGK1 Stimulatory
Glycolysis↑

Cancer cell proliferation
and tumorigenesis↑

[57]

Liver cancer PCAF Acetylation PKM2 Inhibitory Tumor growth and cell
proliferation↑ [58,59]

Liver cancer GCN5 Acetylation PGC-1α Inhibitory Glycolysis↑ [60]

Liver cancer SIRT1 Deacetylation PGC-1α Stimulatory Glycolysis↓ [61]

Liver cancer P300 Acetylation FOXO1 Inhibitory Glycolysis↑
Cancer cell growth↑ [62,63]

2. Glucagon-Mediated Glucose Homeostasis in the Liver

As an essential nutrient of the body, glucose is the primary source of energy for many cells and is
dependent on blood for transportation. Therefore, maintaining blood glucose balance is significant for
ensuring the nutritional supply and normal metabolic activities of various tissues and organs. The liver
is the main organ that critically maintains blood glucose balance. It takes up glucose through glycogen
production and releases glucose through gluconeogenesis [64]. During fasting or caloric restriction (CR),
the liver maintains energy supply by enhancing glycogenolysis and gluconeogenesis [65]. Meanwhile,
glucagon stimulates transcription of the gluconeogenesis gene through various ways in the fasting
state, one of which is acetylation of energy-sensing factors (Figure 1A).
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Figure 1. Glucagon-induced acetylation of energy-sensing factors in control of hepatic glycolipid
metabolism. (a) Blue arrow: Glucagon initiates the transcription of downstream G6Pase and PEPCK1
by inducing acetylation of CRTC2 and FOXO1 and reducing acetylation of PGC-1α and GP, which leads
to elevating gluconeogenesis.
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Red arrow: Glucagon-induced deacetylation of CRTC2 and FOXO have different roles in glucose
metabolism. (b) Blue arrow: Glucagon-induced acetylation of CREBH and SREBP-c1 inhibit the
hepatic lipids synthesis. Red arrow: Glucagon-induced acetylation of PPAR-α and Foxa2 increase
fatty acid oxidation. (G6Pase: Glucose-6-phosphatase; CRTC2: CREB regulated transcription
coactivator 2; FOXO1: Forkhead box O1; PEPCK1: Phosphoenolpyruvate carboxykinase; GP: Glycogen
phosphorylase; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1α; PPAR-α:
Peroxisome proliferator-activated receptor-α; SREBP-1c: Sterol regulatory-element-binding protein-1c;
CREBH: cAMP-responsive element-binding protein H).

2.1. Glucagon-Induced Acetylation Regulates Hepatic Gluconeogenesis during the Fasting State

During fasting and CR, the liver provides glucose to tissues and organs through glycogenolysis
and gluconeogenesis to ensure healthy metabolism of the body [66]. The gluconeogenesis process is
regulated by nutrient levels and various hormones [67]. Several transcription factors and coactivators
are engaged in this process after being acetylated by glucagon induction. Glucagon promotes
dephosphorylation of the Ser89 site of p300 via the cAMP-dependent protein kinase (PKA) pathway,
thereby increasing p300 activity [25]. p300 has histone acetyltransferase activity, where it transfers an
acetyl group to the lysine residue, which enhances the activity of CRTC2 by acetylating the Lys628 site
of CRTC2 [25,68,69]. As the switch protein for blood glucose regulation in humans, CRTC2 is sensitive
to hormones and glucose levels, mainly expressed in the liver and kidney [70]. Therefore, glucagon
initiates the transcription of downstream glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate
carboxykinase (PEPCK1) by acetylating CRTC2 via p300, such that it enhances gluconeogenesis to
maintain energy balance [25,34,71]. Additionally, Anne and colleagues showed that mRNA and protein
levels of FOXO1 were elevated prominently in mice livers after fasting [25]. FOXO1 can also promote
transcription of gluconeogenic enzyme genes such as G6Pase and PEPCK1, which in turn leads to
elevating gluconeogenesis [28,68]. Remarkably, silence of coactivator p300 leads to a decrease in mRNA
and protein levels of FOXO1. In addition, suppression of histone acetyltransferase activity of p300
prominently reduces mRNA and protein levels of FOXO1 in the liver of fasting mice and fasting blood
glucose levels [26,35]. Accordingly, we conclude that glucagon might elevate the FOXO1 gene and
CRTC2 expression in the fasting state via p300, and the expression of FOXO1 and CRTC2 would further
increase gluconeogenesis. A recent study also revealed that Ets1-mediated acetylation of FOXO1
responds to glucagon signaling to regulate gluconeogenesis in the fasting state [36]. During fasting,
glucagon down-regulates the activity of Ets1 via the mitogen-activated protein kinase kinase (MEK)
extracellular signal-regulated kinase (ERK) pathway [36,72]. FOXO1 is acetylated by Ets1 and leads to
its incapacity of binding to gluconeogenic promoters. Therefore, glucagon inhibits the process of Ets1
acetylation of FOXO1 to increase gluconeogenesis.

A recent finding illustrates that glucagon plays a significant role in control of the process
where general control nonrepressed protein 5 (GCN5) acetylates peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α) in the fasting state [73,74]. As one regulator of
gluconeogenesis, PGC-1α effectively stimulates hepatic gluconeogenesis by increasing the expression
of gluconeogenic genes such as PEPCK and G6Pase [37]. GCN5 can acetylate PGC-1α and decrease
its activity, such that PGC-1α cannot bind to the promoter of its target gene, which leads to decrease
of gluconeogenesis [74]. Surprisingly, as one of the deacetylases, sirtuin 6 (SIRT6) increases PGC-1α
acetylation and downgrades hepatic glucose production (HGP). The reason is that SIRT6 increases the
degree of acetylation of PGC-1α through the deacetylation and activation of GCN5 [38]. In the fasting
state, glucagon down-regulates the expression of SIRT6 by phosphorylation, resulting in inhibition of
GCN5 activity [38,39]. Glucagon reduces the degree of acetylation of PGC1-α by restraining GCN5,
thereby transmitting the signal of cellular energy status to PGC-1α, accordingly increasing the output
of cellular energy by increasing the expression of gluconeogenesis genes. In summary, this finding
reveals an interesting phenomenon in which glucagon is able to participate in the acetylation process
of the energy-sensing factors PGC-1α by regulating the SIRT6.
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Additionally, glucagon lessens glycogen phosphorylase acetylation to promote hepatic glycogen
phosphorylase (GP) activity. GP acts as a catalytic rate-limiting enzyme in the glycogenolysis process
and plays an essential role in preserving glucose homeostasis [75,76]. Zhang et al. unmasked that
the activity of GP was reduced after being modified by acetylation. Afterward, they recorded the
acetylation levels of GP expressed in hepatocytes after treatment with glucagon, and the results
revealed that GP acetylation was decreased by glucagon induction. Finally, their research unmasked
that glucagon induced the decreasing acetylation of GP and led to higher GP activity, resulting in
increased production of glucose by glycogenolysis [40]. However, it is unclear which enzymes are
involved in this process, and the precise mechanism by which glucagon regulates GP acetylation
remains to be elucidated.

2.2. Glucagon-Induced Deacetylation Regulates Hepatic Gluconeogenesis during the Fasting State

Glucagon also regulates glucose balance by inducing deacetylation of energy-sense factors.
Sirtuins are a class of NAD+-dependent deacetylases, and their functions are closely related to cellular
metabolism [77]. There are seven recognized members of the human sirtuin family, which can interact
with p53, FOXO1/PGC-1α, Nuclear factor kappa B (NF-κB), and other proteins to regulate cellular
stress response, metabolism, aging, and apoptosis [30]. In the past few decades, research on biological
functions of the sirtuin family has made considerable progress. In this progress, sirtuin 1 (SIRT1)
was studied wildly in many aspects. SIRT1 deacetylates histones and many important transcription
factors to act as an energy-sensing factor in hepatic energy metabolism [78–80]. Lilia et al. provided
in vivo evidence that glucagon increases SIRT1 expression through CREB activation in the fasting state.
In response to CR, glucagon promotes energy production through PKA-mediated activation of the
CREB, and CREB is capable of binding to the SIRT1 promoter to increase its transcription [81].

As mentioned above, glucagon increases the activity of CRTC2 through p300 to increase
gluconeogenesis in the fasting state. In fact, short-term fasting can increase CRTC2–p300 interaction
in the liver, while long-term fasting destroys it through SIRT1. During prolonged fasting, glucagon
impels SIRT1 to deacetylate CRTC2 and promotes CRTC2 ubiquitin-dependent degradation with
constitutively photomorphogenic 1 (COP1). Meanwhile, SIRT1-mediated deacetylation increases the
activity of FOXO1 to promote expression of the glycogen production program [25]. Additionally,
studies have shown that SIRT1 activators reduce gluconeogenesis in insulin-resistant animals.
Paradoxically, it also increases the activity of FOXO1, and the increase of FOXO1 will lead to
increased gluconeogenesis [82–84]. During this time, upregulation of FOXO1 activity by SIRT1
appears to be critical for maintaining energy balance. Interestingly, activation of CRTC2 by glucagon
is abolished by deacetylation of CRTC2 by SIRT1 in prolonged fasting, and SIRT1 has a positive
regulatory effect on SIRT6, all of which will inhibit the production of glucose [85–87]. It seems
contradictory that SIRT1 can both promote and inhibit gluconeogenesis. In fact, several studies about
the function of SIRT1 in the liver metabolism have found that SIRT1 plays a diametrically opposite
role hepatic glucose metabolism during different physiological periods. Also, the notion has been put
forward that prolonged stimulation of SIRT1 expression might tone down the gluconeogenic program
through deacetylation and inhibition of CRTC2, thereby favoring energy-sparing processes such as
ketogenesis [25,84,88–90]. This result reflects that glucagon-induced deacetylation through SIRT1 has
different regulatory effects on glucose production in different fasting stages.

HDACs, a class of proteases that deacetylate histone, contribute to chromosome structural
modification and regulation of gene expression [91]. HDACs regulate the expression of crucial
gluconeogenesis enzymes by controlling the activity of the forkhead transcription factor (FOXO) family,
thereby regulating gluconeogenesis. For example, HDAC1 induces the expression of hepatocyte
nuclear factor 4α (HNF4α), leading to the dephosphorylation of FOXO1 into the nucleus of hepatocytes,
which in turn prompts the expression of staple enzymes in the liver and increases glycogenesis.
Recent studies have found that class IIa HDACs were also involved in the regulation of FOXO family
activity to regulate hepatic gluconeogenesis [41]. In the fasting state, glucagon rapidly dephosphorylates
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class IIa HDACs and transfers it from the cytoplasm to the nucleus, thereby recruiting HDAC3 to
form a complex and promoting deacetylation of FOXOs. This enhances its transcriptional activity
and induces transcription of the key enzymes promoting gluconeogenesis. Additionally, HDACs
are also involved in the gluconeogenesis process regulated by signal transducers and STAT3 [33].
The deacetylation of STAT3 by HDACs promotes transcription of STAT3 hepatic glycogenase in the
hepatocytes of obese and diabetic patients. Accordingly, HDACs play an essential role in regulating
hepatic glucose production.

3. Glucagon-Mediated Lipid Homeostasis in the Liver during the Fasting State

Lipids represent a necessary source of energy, particularly for the purposes of long-term storage.
Lipids also protect the internal organs with skin, bones, and muscles, prevent the body temperature
from spreading, and help the absorption of fat-soluble vitamins in food. Lipid metabolism is regulated
by genetics, neurohumoral fluids, hormones, enzymes, and organs such as the liver. When these
factors are abnormal, it brings about lipid metabolism disorders and pathophysiological changes in
related organs such as hyperlipoproteinemia, lipid storage disease and its clinical syndrome, obesity,
ketoacidosis, fatty liver, and neonatal scleredema [92]. As the central organ of lipid metabolism,
the liver responds to nutrient and hormonal signals by regulating fatty acid oxidation and lipogenesis.
It can synthesize lipoproteins, which is beneficial to lipid transport, fatty acid oxidation, and ketone
body formation [93]. In the fasting state, the sugar supply is insufficient and glucagon secretion is
increased, thus altering the acetylation state of the lipid metabolism enzyme, resulting in accelerated
fat decomposition and increased ketone body formation (Figure 1B).

3.1. Glucagon-Induced Acetylation Enhances Fatty Acid Oxidation

When glycogen in the liver is depleted, the liver enhances oxidation of fatty acids to maintain the
energy supply [94]. Fatty acid oxidation can not only provide a large amount of required energy, it is
also the primary pathway for fatty acid decomposition and transformation in the body. The length
fatty acid chains needed by the human body are different, and they are transformed by fatty acid
oxidation. Therefore, chain fatty acids are turned into a suitable length for metabolism in the body [95].
Based on findings from many researchers, we summarize that glucagon can change the activity of
fatty acid metabolism enzymes by acetylation in the liver, which is the most active organ for fatty acid
oxidation, thereby enhancing fatty acid oxidation and increasing ketone body production.

For example, glucagon raises the expression of sirtuin 3 (SIRT3) by enhancing the activity of
PGC1-α in the fasting state [49,96,97]. SIRT3 is also an important member of the mammalian sirtuin
family protein and plays a vital role in controlling metabolic activities [98,99]. Anderson et al.
demonstrated that SIRT3 could regulate long-chain acyl-CoA dehydrogenase (LCAD) in the liver
of mice through its deacetylation activity, increase LCAD levels, and enhance fatty acid oxidation.
Thereby, it would reduce triglycerides and the accumulation of fatty acid oxidation intermediates
affecting the metabolic syndrome [42]. LCAD is a crucial mitochondrial fatty acid oxidation enzyme.
The defects of LCAD lead to fatty acid oxidation disorders and the accumulation of free fatty acids [100].
These results suggest that glucagon regulates LCAD by regulating SIRT3 and reduces the accumulation
of free fatty acids (FFA). Additionally, Tong et al. found that accumulation of lipids was decreased by
SIRT3-mediated motivation of the AMP-activated protein kinase (AMPK) in hepatocytes. The decrease
in cellular energy storage results in reduction of the ATP/ADP ratio and an increase in the AMP/ATP
ratio, while activation of AMPK promotes ATP synthesis, accordingly decreasing fatty acid synthesis
and increasing fatty acid oxidation. This result suggests that glucagon may increase the oxidation of
fatty acids through the activation of the SIRT3-AMPK signaling pathway [43]. And we can infer that
glucagon-induced acetylation of energy-sensing factors by SIRT3 acts as a metabolic sensor in response
to changes in cellular energy status.

The inhibitory effect of SIRT1 on gluconeogenesis might be an energy-saving means of the body,
which would be reflected in lipid metabolism. With the extension of fasting time, glucose supply
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is insufficient and the body turns to lipid metabolism for energy supply. Under prolonged fasting
conditions, the energy source is shifted from glucose metabolism to lipid metabolism in response to
the insufficient supply of glucose [101]. Undoubtedly, this series of transformations is regulated by
glucagon as the primary hormone that maintains energy balance during fasting. With the effect of
glucagon, SIRT1 certainly regulates peroxisome proliferator-activated receptor-α (PPAR-α) to control
hepatic lipid metabolism. PPAR-α is a nuclear receptor that is primarily located in organs with active
lipid metabolisms, such as the liver [102]. The activation of PPAR-α promotes the utilization and
catabolism of fatty acids by upregulating genes involved in fatty acid metabolism [103–105]. Therefore,
as a lipid-sensing factor, activated PPAR-α modifies gene expression of proteins highly involved in
the regulation of fatty acid metabolism, such as adipocyte fatty acid-binding protein (AFABP), fatty
acid transporter (FATP), and lipoprotein lipase (LPL) [106–109]. Other research has found that the
hepatocyte-specific deletion of SIRT1 undermined the activity of PPAR-α, which decreased fatty acid
oxidation and led to development of hepatic steatosis and inflammation [110,111].

Furthermore, Ferdinand et al. revealed that glucagon-induced acetylation of Foxa2 was in control
of lipid metabolism in response to fasting conditions [44]. The cofactors p300 and SIRT1, respectively,
regulate Foxa2 acetylation and deacetylation at the Lys259 site [44]. During fasting, glucagon inhibits
the activity of salt-inducible kinase 2 (SIK2) by activating adenylate cyclase (AC), thereby SIK2
decreases p300 activity [25]. Through this approach, glucagon improves the activity of p300 and
further promotes the acetylation of Foxa2. Acetylation of Foxa2 increases the expression of genes
involved in β-oxidation, such as carnitine palmitoyltransferase 1A (CPT1A) or medium-chain acyl-CoA
dehydrogenase (MCAD) [45,46]. But SIRT1 can inactivate Foxa2 by deacetylation and thereby decrease
the activity of Foxa2, which reflects a contradiction of SIRT1 in fatty acid metabolism [44,47]. The reason
might be that SIRT1 improves the activity of PPAR-α by inhibiting Foxa2 because PPAR-α and Foxa2
competitively bind to the same promoter [112]. In addition, the concept that fasting increases SIRT1
activity has been oppugned [90,113]. Therefore, it deserves more attention to explore the different
functions of SIRT1 and figure out its roles in the same metabolic process, which is helpful to clarify
the metabolic mechanism. These results reflect that glucagon maintains the energy supply through
different pathways under different nutritional conditions.

3.2. Glucagon-Induced Acetylation Inhibits Lipogenesis in the Liver

Lipogenesis in the liver is significant for the formation of very-low-density lipoprotein (VLDL) and
the delivery of energy to other tissues, and this process is tightly regulated by hormones and nutritional
status [114]. In the fasting state, because of an elevated glucagon concentration and activation of the
intracellular cyclic adenosine monophosphate pathway, the acetylation status of lipid synthesis-related
transcription factors is altered, resulting in low levels of de novo lipogenesis (DNL) [115]. In the fasting
state, glucagon-mediated p300-CBP-associated factor (PCAF) acetylation and SIRT1 deacetylation
pathways are involved in the acetylation of cAMP-responsive element-binding protein H (CREBH) to
regulate hepatic lipogenesis [31]. As an energy-sensing factor for hepatic lipid metabolism, CREBH
activates the expression of genes involved in the lipogenesis [116]. After glucagon stimulation, CREBH
is acetylated by PCAF at the Lys294 site, which is necessary to interact with PPARα [31]. It has also been
observed that the interaction of CREBH and PPARα synergistically increases fibroblast growth factor
21 (FGF21), leading to inhibition of lipogenesis in the fasting state [48]. Interestingly, after prolonged
fasting, SIRT1 will in turn enhance the interaction of CREBH and PPARα [31]. This is compatible
with the conclusion that SIRT1 plays distinct roles in different periods of fasting. In summary,
this finding reveals that glucagon induces acetylation of CREBH to modulate lipid homeostasis in a
time-dependent way.

In addition, glucagon has a significant regulatory effect on the activity of SREBP-1c through
SIRT1-mediated acetylation modification. The transcription factor SREBP-1c works essentially on
impacting transcription of hepatic genes such as glucokinase and fatty acid synthase. So, SREBP-1c
positively regulates lipid synthesis by affecting the expression of the above genes [117,118]. In the
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fasting state, glucagon promotes the expression of SIRT1, and SIRT1 can respectively deacetylate
SREBP-1c at Lys-289 and Lys-309. Deacetylation of SREBP-1c by SIRT1 decreases SREBP-1c activity and
its association with lipogenic gene promoters [29]. In vivo experiments have also demonstrated that
overexpression of SIRT1 reduces the stability of SREBP-1c, resulting in reduced lipid synthesis [119].
Besides, the function of SIRT1 in deacetylating the energy-sensing factor PGC-1α has been proved in
fasting [84,120,121]. SIRT1-mediated deacetylation of PGC-1α increases its activity, which decreases
lipid synthesis in response to glucagon [122–124]. These results indicate that glucagon precisely
controls lipid synthesis by regulating the acetylation status of different energy-sensing factors.

4. Glucagon-Mediated Protein Homeostasis in the Liver

In health, the liver orchestrates the metabolism of proteins and amino acids. After proteins
in food are broken down into amino acids (AAs) through the gastrointestinal tract, synthesis and
metabolism of proteins in the body are re-executed mainly in the liver. The liver circulates urea to
counter toxic ammonia produced in protein metabolism, thereby relieving the toxicity of ammonia.
Thus, the urea cycle is the primary way for organisms to discharge nitrogen-containing metabolic
waste [125–127]. During prolonged fasting, hepatic gluconeogenesis promotes carbon flux from AAs
into central metabolism, when AAs become an important source of energy [127–129]. Under this
condition, excessive ammonia is converted into urea to relieve ammonia poisoning [130,131]. As a
hormone secreted mainly in the fasting state, glucagon maintains the metabolic balance of the body
during CR by stimulating PGC1-α [120,132]. Research has shown that glucagon activates SIRT3 and
sirtuin 5 (SIRT5) in the fasting state, which increases the activity of carbamoyl phosphate synthetase
1 (CPS1) and ornithine transcarbamylase (OTC) involved in ureagenesis. In this way, glucagon
positively regulates ureagenesis by activating SIRT3 and SIRT5. SIRT3 and SIRT5 provide essential
post-translational modification for a number of critical metabolic pathways [133–135]. Recent studies
report that SIRT3 and SIRT5 promote ureagenesis in the fasting state [127,136]. During fasting, glucagon
secretion stimulates the expression of PGC1-α in hepatocytes and alanine as a nitrogen source for
urea production. PGC-1α enhances hepatic ureagenesis via promoting SIRT3 and SIRT5-mediated
deacetylation of CPS1 and OTC [49,50]. This mechanism indicates that glucagon-induced acetylation
of energy-sensing factors can also maintain metabolic homeostasis through ammonia detoxification
during fasting, reflecting the diversity of glucagon biological functions.

5. Glucagon-Mediated Acetylation in Liver Disease

Hepatocytes are target cells of many hepatotoxic substances such as viruses, alcohol metabolites,
and bile acids [137–139]. Therefore, the liver is vulnerable to attack by these hepatotoxic substances that
contribute to liver metabolic syndrome [140]. It is well established that glucagon brings about elevation
in plasma c-AMP and stimulates glycolipid metabolism in the liver. Undoubtedly, impairment of
the liver will affect c-AMP biosynthesis, which is encouraged by glucagon, leading to compromised
hepatic sensitivity to glucagon [141]. Multiple research studies have proven that metabolic disorders
accompany an increase in plasma glucagon concentration [20,142]. We have introduced the critical
role of glucagon-induced acetylation in liver metabolism. Further in-depth studies on its regulatory
mechanisms and functions will contribute to improving hepatic metabolic diseases including NAFLD,
hepatic fibrosis, and cancer.

5.1. Glucagon-Mediated Acetylation in Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Fibrosis

Recently, NAFLD has been recognized to be one of the most common liver metabolic diseases in the
world. NAFLD is thought to be a manifestation of metabolic syndrome in the liver, involving a series
of disorders ranging from steatosis to steatohepatitis, with inflammation, liver damage, hepatocyte
ballooning, glucose homeostasis, insulin resistance, and hepatic fibrosis [143–145]. Hepatic fibrosis is a
pathological process characterized by the proliferation of extracellular matrix (ECM) after liver injury.
Chronic hepatitis is accompanied by the progressive deposit of hepatic fibrosis, which may lead to
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cirrhosis. Patients with NAFLD and advanced hepatic fibrosis are at the highest risk for progressing to
end-stage liver disease [146–148].

Recent investigations suggested that SIRT1, a critical metabolic regulator, and its enzymatic
activity may be regulated by cellular energy, significantly improving disease progression in animal
models of NAFLD [149–152]. It has been observed that the liver becomes insensitive to glucagon
as a result of hepatic steatosis in NAFLD patients, which further promotes glucagon secretion [141].
However, in this state, the biological effect of glucagon is weakened, and the impact of glucagon
on SIRT1 is also impaired, while SIRT1 can inhibit hepatic steatosis and inflammatory responses
to hepatic metabolic disorders. Additionally, SIRT1 can reduce the level of oxygen consumption,
which is correlative with NAFLD [153,154]. Conversely, hepatocyte-specific knockout of SIRT1 can
cause significant hepatic steatosis and aggravate liver inflammatory responses. As a result, SIRT1
can deacetylate and modify STAT3, which will lead to STAT3 phosphorylation and lessen the activity
of STAT3 [53,54]. STAT3 can regulate many target genes related to antiviral protection, hepatitis,
and liver remodeling, and plays an essential role in liver fibrosis [54,155,156]. Additionally, glucagon
can promote SIRT1 inhibition of liver inflammation, and inflammation is the most critical factor leading
to the progression of liver fibrosis [157–159]. On the one hand, SIRT1 can down-regulate NF-κB
activity and reduce inflammation [51,52]. On the other hand, SIRT1 can participate in fibrosis by
regulating the transforming growth factor β (TGF-β) signaling pathway, which is very important
in liver fibrosis [55,56]. These findings suggest that SIRT1 not only plays a crucial role in liver
lipid metabolism-related diseases, such as NAFLD, but also plays a vital role in the development of
liver fibrosis.

5.2. Glucagon-Mediated Acetylation in Tumorigenesis and Hepatocarcinogenesis

Pathological changes in liver metabolism and physiological states will eventually lead to
tumorigenesis and liver cancer. Hepatocellular carcinoma (HCC) is one of the end-stage liver diseases,
and it has become the third leading cause of cancer mortality worldwide [160]. As a multi-factor,
complex disease, the relationship between metabolic abnormalities and HCC has gradually been
valued by researchers in recent years. Abnormal glycolipid metabolism is considered a potential risk
factor for the development of HCC [161]. Cancer cells preferably generate lactate by the glycolysis
pathway, even in aerobic conditions, to meet their demands of rapid growth and proliferation, known
as aerobic glycolysis [162]. The main physiological functions of glucagon include the regulation of
glycolipid metabolism and the inhibition of glycolysis, so there might be some association between
tumorigenesis and HCC. High nuclear acetylation levels have also been observed in cancer cells for
the increased activity of acetyltransferase [17,18]. Here, we review and discuss recent advances to
elucidate how glucagon-induced acetylation of different energy-sensing factors has different effects on
hepatocarcinogenesis and tumor growth.

As mentioned above, glucagon can improve PCAF activity, and mounting evidence has revealed
different effects of PCAF on HCC over the last few years. Overexpression of PCAF induces HCC
cell apoptosis and autophagy, which is harmful for cancer cell proliferation [163]. In addition, PCAF
induces acetylation of the K1323 site of PGK1, which in turn enhances the activity of deacetylase
Sirtuin 7 (SIRT7) on K1323 and promotes cancer cell proliferation [57]. Pyruvate kinase M2 (PKM2) is
acetylated at the K305 site by PCAF, which in turn leads to degradation of PKM2 [58,59]. PKM2 is
expressed in different tissues and organs in which all large amounts of nucleic acids are synthesized,
especially in tumor cells. Therefore, a high expression of PKM2 is accompanied by a variety of
tumors, and this phenomenon is not caused by PKM2 splicing changes [164]. Ectopic expression
of PCAF increases acetylation of PKM2, at K305 and decreases PKM2 activity. A decrease in the
activity of PKM2 results in the accumulation of glycolytic intermediates upstream, such as fructose-1,
6-bisphosphate (FBP), and G6Pase [165,166]. So, the function of glycolysis is shifted from producing
ATP to accumulating intermediate metabolites, providing raw materials for the synthesis of various
biomacromolecules, thereby allowing tumor growth and cell proliferation.
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Glucagon-induced acetylation of PGC-1α and FOXO controls the expression of glycolytic genes.
GCN5 acetylates PGC-1α and inhibits its transcriptional activity. The deacetylation of PGC-1α by
SIRT1 in turn improves its activity, both of which modulate the balance of gluconeogenic and glycolytic
genesis in hepatocytes [60,61]. FOXO transcription factors have been implicated in the upregulation
of gluconeogenic genes and downregulation of glycolytic genes, playing a crucial role in tumor
suppression [167]. Recent studies revealed the crucial role of FOXO acetylation in tumor suppression;
activating FOXO will downregulate glycolytic genes. Glucagon-induced acetylation of FOXO by p300
inhibits its transcriptional and biological activities. In this regard, acetylation of FOXO could heighten
glycolysis activity and promote cancer cell growth [62,63]. In summary, these findings may reveal that
glucagon-induced acetylation of different energy-sensing factors has diverse effects on tumorigenesis
and hepatocarcinogenesis, and also provides potential strategies for the treatment of liver cancer.

6. Concluding Discussion and Perspective

In-depth studies on glucagon biology and pharmacology will help to further understand various
modes in control of metabolism and provide potential therapeutic strategies for liver metabolic diseases.
Researchers are aware that glucagon plays an unparalleled role in hepatic pathophysiology. Therefore,
we reviewed glucagon-induced acetylation of energy factors in the control of hepatic metabolism,
aiming to provide a treatment reference for liver metabolism diseases.

Acetylation is a type of PTM in the nucleus, cytoplasm, mitochondria, and other organelles.
Acetylation of energy-sensing factors is a significant regulator in hepatic metabolism. The number
of nutrients in the environment and the changes in the types of nutrients can alter the direction of
metabolism and the transformation between various metabolic pathways by affecting glucagon-induced
acetylation of energy-sensing factors. Lysine acetylation modification of energy-sensing factors
coordinates the interaction of various metabolic pathways well, and plays a fine role in the metabolic
network of the organism.

The discovery of glucagon-mediated acetylation of energy-sensing factors in control of liver
metabolism opened new avenues of research into the biology and pharmacology of glucagon.
Meanwhile, there are several important questions that need to be resolved, which are crucial for
assessing whether glucagon-induced acetylation of different energy-sensing factors is a potential
strategy for treating liver metabolism diseases:

1. The mechanisms by which glucagon regulates metabolic disorders remain unclear and require
more relevant research.

2. It is still poorly understood how acetylation dynamically regulates the metabolic state of different
cells and tissues and interacts with specific signaling pathways in response to changes of
external environment.

3. Further understanding of the function and regulation of acetyltransferase and deacetylase will
help to show how acetylation integrates different metabolic fluxes within cells and coordinates
the entire metabolic network to meet the metabolic needs of cells.

4. Metabolic-related diseases have strong individual differences. Physiological and pathological
changes in the acetylation state of different energy-sensing factors and their importance in
the development of liver metabolism diseases still needs to be studied in depth, which not
only contributes to detection and diagnosis of diseases, but also provides ideas for the further
development of tissue-specific and metabolic pathway-specific drugs.
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Abbreviations

AA Amino acids
AC Adenylate cyclase
AFABP Adipocyte fatty acid binding protein
AMPK AMP-activated protein kinase
cAMP Cyclic AMP
CMA Chaperone-mediated autophagy
COP1 Constitutively photomorphogenic 1
CPS1 Carbamoyl phosphate synthetase 1
CPT1A Carnitine palmitoyltransferase 1A
CR Caloric restriction
CREB cAMP response-element-binding protein
CREBH cAMP responsive element-binding protein H
CRTC2 CREB regulated transcription coactivator 2
DNL De novo lipogenesis
ECM Extracellular matrix
FATP Fatty acid transporter
FBP Fructose-1, 6-bisphosphate
FFA Free fatty acids
FGF21 Fibroblast growth factor 21
FOXO1 Forkhead box O1
G6Pase Glucose-6-phosphatase
GCN5 General control nonrepressed protein 5
GP Glycogen phosphorylase
HCC Hepatocellular carcinoma
HDACs Histone deacetylases
HGP Hepatic glucose production
HNF-4α Hepatocyte nuclear factor 4α
KATs Lysine acetyltransferases
LCAD Long-chain acyl-CoA dehydrogenase
LPL Lipoprotein lipase
MCAD Medium-chain acyl-CoA dehydrogenase
MEK/ERK Mitogen-activated protein kinase kinase-extracellular signal-regulated kinase
NAFLD Nonalcoholic fatty liver disease
NF-κB Nuclear factor kappa B
OTC Ornithine transcarbamylase
PCAF P300-CBP associated factor
PEPCK1 Phosphoenolpyruvate carboxykinase
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1α
PKA Protein kinase A
PKM2 Pyruvate kinase M2
PPAR Peroxisome proliferator-activated receptor
PPAR-α Peroxisome proliferators-activated receptor-α
PTMs Post-translational modifications
SIK2 Salt-inducible kinase 2
SIRT1 Sirtuin 1
SIRT3 Sirtuin 3
SIRT5 Sirtuin 5
SIRT6 Sirtuin 6
SIRT7 Sirtuin 7
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SREBP-1c Sterol regulatory-element-binding protein-1c
STAT3 Signal transducer and activator of transcription-3
T2DM Type 2 diabetes
TGF-β Transforming growth factor β
VLDL Very-low-density lipoprotein
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