Supplementary data for "Specificity of the Metallothionein-1 Response by Cadmium-Exposed Human Urothelial Cells"

Rhiannon V. McNeill, Andrew S. Mason, Mark E. Hodson, James W.F. Catto, Jennifer Southgate.

Supplementary Table S1: Transepithelial electrical resistance (TEER) readings from different NHU cell lines used for experiments. Each reading is an average of three technical replicates. A TEER reading >0.5 k Ω .cm² is considered to reflect a functional urothelial barrier.

	Cell Line	Figure	Tir	ne Point	TEER ((kΩ.cm²)		
					Control		Cadmium		
	Y1456	1B, Suppl.		12h		3.54		4.88	
			24h		3.58		3.96		
			48h		4.63		2.14		
				72h	3	.78	4.0)9	
	Y1493	Suppl.	24h		2.00		2.65		
			48h		3.20		2.99		
				72h		2.27		2.30	
	Y1426	6 4C, Suppl.		72h		3.33		4.43	
C	Time (h) dCl ₂ (10 μM)	Ladder	12 -	24 -	48 -	12 +	24 +	48 +	
	MT-1A	1	-	-	-		E		
	MT-1B	-				-	- 27		
	MT-1E	-	-		=	-		-	
	MT-1F			ιά.	in.	_	-	-	
	MT-1G	\equiv	-						
	MT-1H	=						1	
	MT-1M					-			
	MT-1X	11	-	-			Τ.		
	MT-2A	111	-	-		-	-		
	MT-3				-				

Supplementary Figure 1. RT-PCR showing MT isoform transcription in proliferating NHU cells exposed to cadmium (experimental replicate from Figure 2B). Nondifferentiated NHU cells were exposed to 10 μ M CdCl₂ for up to 48 h. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 2. RT-PCR showing MT isoform transcription in proliferating NHU cells exposed to cadmium (experimental replicate from Figure 2B). Nondifferentiated NHU cells were exposed to 10 μ M CdCl₂ for up to 12 h. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 3. RT-PCR showing MT isoform transcription in cadmium-exposed differentiated NHU cell sheets that demonstrated a functional barrier (experimental replicate from Figure 2C). NHU cells were differentiated and exposed to 10 μ M CdCl₂ for up to 72 h. Differentiation was confirmed using TEER readings and expression of KRT13. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 4. RT-PCR showing MT isoform transcription in cadmium-exposed differentiated NHU cell sheets that demonstrated a functional barrier (experimental replicate from Figure 2C). NHU cells were differentiated and exposed to $10 \,\mu$ M CdCl₂ for up to 72 h. Differentiation was confirmed using TEER readings and expression of ZO-1. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 5. RT-PCR showing the effects of ROS on MT isoform transcription in NHU cells (experimental replicate from Figure 3C). The chemical sulforaphane (C₆H₁₁NOS₂) was used to induce ROS, having been titrated to a concentration that mimicked the levels of cadmium-induced ROS. Nondifferentiated NHU cells were treated with either 10 μ M CdCl₂ or 5 μ M C₆H₁₁NOS₂ for 12 h. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 6. RT-PCR showing the effects of essential metal exposure on MT-1 isoform transcription in NHU cells (experimental replicate from Figure 3C). Nondifferentiated NHU cells were exposed to either 10 μ M CdCl₂, 10 μ M CuSO₄, 10 μ M FeSO₄, or 10 μ M ZnCl₂ for 12 h. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.

Supplementary Figure 7. RT-PCR showing the effects of exposure to the carcinogenic metals arsenite and nickel on MT-1 isoform transcription in NHU cells (experimental replicate from Figure 3C). Nondifferentiated NHU cells were exposed to a range of concentrations of arsenite ($0.25-2 \mu M$; NaAsO2) and nickel ($25-200 \mu M$; NiCl₂) for 12 h. The total cDNA input was 1 μg and PCR reaction products were removed after 25 cycles.

Supplementary Figure 8. Western blots showing MT-1A and MT-1M protein expression in nondifferentiated NHU cells exposed to cadmium (experimental replicate from Figure 4A). Nondifferentiated NHU cells (n = 3) were exposed to 10 μ M CdCl₂ for 72 h and protein expression of (A) MT-1A and (B) MT-1M determined using novel, isoform-specific antibodies. β -actin protein expression was used as a loading control.

Supplementary Figure 9. Western blots demonstrating MT-1A and 1M protein expression in differentiated NHU cells with functional barriers that were exposed to cadmium (experimental replicate from Figure 4B). NHU cells were stimulated to differentiate and form a functional barrier, before exposure to 10 μ M CdCl₂. (A) MT-1A protein expression was assessed at multiple time-points to ensure exposure time was adequate for protein translation in differentiated NHU cells. (B) Western blots showing MT-1A and MT-1M protein expression and (C) MT-1A protein expression in differentiated NHU cells exposed to cadmium for 72 h. β -actin protein expression was used as a loading control.

Supplementary Figure 10. Western blot showing the specificity of cadmium-induced MT-1A and MT-1M isoform protein expression in NHU cells (experimental replicate from Figure 4C). Nondifferentiated NHU cells were exposed to a range of potential inducers for 72 h. Candidate inducers were cadmium (10 µM CdCl₂), copper (10 µM CuSO₄), iron (10 µM FeSO₄), zinc (10 µM ZnCl₂), arsenite (2 µM NaAsO₂), nickel (200 µM NiCl₂), and sulforaphane (5 µM C₆H₁₁NOS₂). Cadmium in combination with ascorbic acid (25 µg/mL C₆H₈O₆) was also included, to support the RT-PCR data demonstrating that inhibition of cadmium-induced ROS did not inhibit cadmium-induced MT expression (Figure 3C). β-actin protein expression was used as a loading control.

Supplementary Figure 11. Effect of cadmium exposure on zinc transporter-1 (SLC30A1) transcription (experimental replicate from Figure 5B). RT-PCR of SLC30A1 gene transcription in nondifferentiated NHU cells exposed to $10 \ \mu$ M CdCl₂ for 3 or 7 days. Note that medium was changed at time T = 0 and that for 3 day exposure there was no renewal of the cadmium by medium change over the period. For 7 day exposure, cadmium-containing medium was renewed on day 4. The total cDNA input was 1 μ g and PCR reaction products were removed after 25 cycles.