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Abstract: Spinal bulbar muscular atrophy (SBMA) is a slowly progressive, androgen-dependent
neuromuscular disease in men that is characterized by both muscle and synaptic dysfunction. Because
gene expression in muscle is heterogeneous, with synaptic myonuclei expressing genes that regulate
synaptic function and extrasynaptic myonuclei expressing genes to regulate contractile function,
we used quantitative PCR to compare gene expression in these two domains of muscle from three
different mouse models of SBMA: the “97Q” model that ubiquitously expresses mutant human androgen
receptor (AR), the 113Q knock-in (KI) model that expresses humanized mouse AR with an expanded
glutamine tract, and the “myogenic” model that overexpresses wild-type rat AR only in skeletal
muscle. We were particularly interested in neurotrophic factors because of their role in maintaining
neuromuscular function via effects on both muscle and synaptic function, and their implicated role in
SBMA. We confirmed previous reports of the enriched expression of select genes (e.g., the acetylcholine
receptor) in the synaptic region of muscle, and are the first to report the synaptic enrichment of
others (e.g., glial cell line-derived neurotrophic factor). Interestingly, all three models displayed
comparably dysregulated expression of most genes examined in both the synaptic and extrasynaptic
domains of muscle, with only modest differences between regions and models. These findings of
comprehensive gene dysregulation in muscle support the emerging view that skeletal muscle may be a
prime therapeutic target for restoring function of both muscles and motoneurons in SBMA.
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1. Introduction

Spinal bulbar muscular atrophy (SBMA) is a neuromuscular disease that causes muscle weakness
and atrophy leading to a slow, progressive loss of motor function [1]. SBMA is linked to a
polyglutamine expansion mutation in the androgen receptor (AR) gene [2]. There is currently no
known cure. Men carrying the mutation develop the disease, while women carriers do not, although
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subclinical symptoms such as muscle cramping are common among female carriers. This sex difference
in disease susceptibility is likely related to sex differences in circulating androgens, with male-typical
levels driving the disease [3–7].

SBMA has classically been considered a “motoneuron” disease, but data from genetically
engineered mouse models make it clear that AR acting solely in skeletal muscles can instigate
significant, if not the full spectrum of neuromuscular pathology in SBMA [5,8,9]. Toxic AR in
muscle induces three notable disease outcomes: (1) a profound loss of intrinsic muscle force that
is independent of muscle mass [10,11], (2) impaired retrograde axonal transport in innervating
motoneurons [12,13], and (3) defects in neuromuscular transmission involving impairments in
neurotransmitter release [14,15]. Thus, it is critical to understand which genes in muscle underlie
muscle dysfunction on the one hand, and motoneuron dysfunction on the other.

Published data indicate that gene expression in whole skeletal muscle from mouse models of
SBMA is severely affected, showing large-scale transcriptome dysregulation [16–18]. However, it is
not clear whether this dysregulation is relevant to all regions of the muscle. Skeletal muscle fibers
are very large multinucleated cells in which gene expression differs across the length of the fiber.
Nuclei situated at the synapse—the so-called “soleplate nuclei”, where a motoneuron innervates
the fiber—express genes specialized for the synapse, while myonuclei outside the neuromuscular
junction (NMJ) do not [19]. Because the mechanisms regulating gene expression differ in these two
myodomains, a complete understanding of muscle dysfunction in SBMA requires gauging whether
disease has a differential impact on synaptic versus extrasynaptic regions of muscle. This possibility
seems plausible, because AR itself is preferentially expressed by synaptic myonuclei [20,21]. Here,
we test this hypothesis by examining how disease affects gene expression in the synaptic versus
extrasynaptic regions of muscle in three well-characterized mouse models of SBMA. These models
include the “97Q” model, characterized by ubiquitous expression of a mutant human AR [3], the 113Q
knock-in (KI) model expressing a humanized mouse AR with an expanded glutamine tract [6], and the
“myogenic” model characterized by muscle-specific expression of wild-type (WT) rat AR [5]. SBMA
mice in each model exhibit common disease traits that include an androgen-dependent loss of motor
function in the absence of motoneuronal cell death that is associated with perturbed expression of
neurotrophic factors in muscle, impaired motoneuronal retrograde axonal transport, and synaptic and
muscle electrophysiological dysfunction [12,14,15].

Using quantitative real-time PCR, we examined the expression of a number of genes with known
function. Our primary interest was in the neurotrophic factors, since such factors are implicated
in SBMA and are critical for proper synaptic and muscle function, both of which are profoundly
impaired in models of SBMA [5,6,10,11,14,15,22–28]. While skeletal muscles are well known to express
numerous neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and other related
neurotrophins, it not known whether their expression is regionally regulated across the length of the
fiber, particularly in the context of neuromuscular disease. Of the neurotrophic factors examined, we
were surprised to find that most are comparably expressed in the two different regions of muscle,
and that disease affects such genes in largely the same manner in both muscle domains. This finding
raises the possibility that defects in the expression of neurotrophic factors critically mediate two core
defects in SBMA—loss of muscle contractile strength and synaptic dysfunction. Thus, supplying
neurotrophic factors broadly to muscles has the potential to restore function to both skeletal muscles
and motoneurons affected by SBMA.

2. Results

The extensor digitorum longus (EDL) was examined in the myogenic and 97Q mice once they
reached the same performance deficit (<30 s hang time), thus allowing us to relate changes in gene
expression across different models to comparable levels of dysfunction rather than age. To verify
that our dissection successfully separated synaptic and extrasynaptic regions, we measured mRNA
levels for the adult epsilon subunit of the acetylcholine receptor (AChR) Chrne, which is normally
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enriched in the synaptic region of muscle [26]. We indeed found that synaptic samples contained
a significantly higher level of Chrne transcript relative to extrasynaptic regions from the same set
of muscles. Muscles from both healthy control and SBMA mice showed the same pattern of Chrne
enrichment in the synaptic part of muscle (Figure 1). However, Chrne mRNA was appreciably lower in
the synaptic region of diseased muscle relative to WT controls (97Q: −2.02 ± 0.34, p = 0.003; myogenic:
−2.98 ± 0.64, p = 0.004). In contrast, Chrne transcript level was comparable in the extrasynaptic region
of diseased and WT muscle (97Q: 2.02 ± 0.67, p = 0.064; myogenic: −1.27 ± 0.40, p = 0.463), consistent
with earlier published work on these models indicating that diseased muscles are not denervated
in end-stage mice [14,15,29], and that denervation per se does not cause a progressive loss of motor
function in SBMA. Thus, the disease-related downregulation of this transcript, previously reported for
whole muscle [14], reflects a loss specifically in the synaptic region, presumably contributing to the
decline in synaptic strength seen in these models.
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or synaptic region, of the muscle was localized by staining endplates (shown in blue, arrows) for
cholinestrase (indicated by areas marked by dashed outlines). (c) The ratio of synaptic relative to
extrasynaptic levels of Chrne transcripts in samples from WT and diseased muscle indicates that the
synaptic region of the muscle contained as expected significantly higher levels of Chrne mRNA than
the extrasynaptic region, confirming that our dissection method was valid and reliable for identifying
synaptic- versus non-synaptic regions of muscle. Note however that this ratio was markedly smaller
for diseased muscle than their respective WT controls. This reduced ratio reflects a net loss of Chrne
transcript in the synaptic region of muscle rather than a significant increase in transcript levels in the
extrasynaptic domain (see text), contrary to a denervation phenotype. These same samples were used
to examine expression of other genes. Extensor digitorum longus, EDL; levator ani, LA. Fold changes ±
SEM are relative to extrasynaptic samples. Statistical analysis was based on pair-wise fixed reallocation
randomization test: * p < 0.05 for fold change in mRNA in synaptic relative to extrasynaptic.

Our next goal was to examine mRNA expression for the neurotrophins—nerve growth factor
(NGF, Ngf ), brain-derived neurotrophic factor (BDNF, Bdnf ), neurotrophin-4/5 (NT-4, Ntf5), and
neurotrophin-3 (NT-3, Ntf3). As found previously, whole muscle expression of both Bdnf [22] and
Ntf5 [6] were affected by disease and we now show that this indeed occurs in both domains (Figure 2a,c).
Moreover, both neurotrophic factors were expressed uniformly across muscle domains in WT and
diseased mice (Figure 2b,d). Two primer sets were used to examine Bdnf mRNA expression—one
detecting only Bdnf transcript IV [30] and another recognizing a common region in exon IX, hence,
detecting total Bdnf transcript. Levels of both IV and total Bdnf transcripts, as well as Ntf5, were
downregulated in both synaptic and extrasynaptic regions of muscle from both 97Q and myogenic
models. Of the remaining neurotrophins, disease had no effect on Ntf3, but triggered an upregulation
of Ngf in muscle from 97Q mice, but not myogenic mice. Broadly speaking, there does not appear to
be region-specific (synaptic or extrasynaptic) expression of any neurotrophin under healthy conditions
(Figure 2b,d). That we found a statistically significant synaptic enrichment of Ngf may be a spurious
observation, as it was seen in healthy WT mice of only one model, even though both are on a
C57Bl/6J background.

We next determined whether the receptors for the neurotrophins were affected by the disease,
since that too could impair signaling. Previous data indicated that neither Ngfr nor Ntrk2 mRNA
expression was affected by disease in muscle of myogenic and 97Q mice [22]. However, when muscle
region was considered in this study, a disease-related increase in truncated Ntrk2 transcripts was
detected only in the synaptic region of 97Q muscle (Figure 3a). Disease also triggered a significant
upregulation of Ngfr in the extrasynaptic region of 97Q muscle. While neither Ngfr nor Ntrk2 were
affected by disease in the myogenic model, Ntrk3 transcripts were robustly upregulated in both the
synaptic and extrasynaptic regions of muscle in this model (Figure 3c). Disease did not affect full-length
Ntrk2 or Ntrk1 in either region of muscle in either model.

We discovered that Ntrk3 was enriched in the synaptic region of the EDL (Figure 3b,d). The disease
eliminated this enrichment but only in the myogenic model. We also found an enrichment of Ngfr in
the synaptic regions of the EDL muscle (Figure 3b,d), in line with a trend previously reported for the
diaphragm [26]. Finally, the synaptic expression of full-length Ntrk2 was reduced by disease in muscle
from myogenic but not 97Q mice (Figure 3d).
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Figure 2. Neurotrophin mRNA expression in synaptic and extrasynaptic regions of skeletal muscle
is largely comparably affected by disease. (a,c) Ngf was upregulated in the 97Q model but not in the
myogenic model, possibly reflecting specific effects of a polyglutamine expanded AR expressed only
in the 97Q model. On the other hand, Bdnf IV and IX variants were downregulated in both the 97Q
and myogenic models, as we have previously reported. Ntf5 was also downregulated in both models,
aligning with previous findings in the knock-in model. Notably, Ntf3 was not affected by disease in
either model, indicating that disease affects most, but not all, of the neurotrophins expressed in skeletal
muscle. (b,d) There were no consistent differences in neurotrophin mRNA expression between synaptic
and extrasynaptic regions for either WT or diseased muscle from the two models examined. Fold
changes ± SEM are relative to wild-type (a,c,e) or extrasynaptic (b,d,f) samples; Statistical analysis
was based on pair-wise fixed reallocation randomization test: * p < 0.05.

To explore whether other neurotrophic factors are affected by disease, we chose to examine Cntf,
which has been implicated in amyotrophic lateral sclerosis [31] and androgen-dependent motoneuron
survival [32]. We also examined Igf1 and Gdnf expression, each linked to SBMA [6,23,24]. Diseased
97Q, but not myogenic mice, showed an upregulation of Cntf transcripts in both regions of muscle
(Figure 4a,c). Igf1 transcripts (variant IGF-1eB) showed no effects of disease in either disease model.
On the other hand, Gdnf mRNA was robustly downregulated by disease only in the synaptic region of
muscle from 97Q, but not myogenic mice.

In comparing synaptic to extrasynaptic regions (Figure 4b,d), we found that Cntf mRNA levels
were significantly, and consistently enriched in the synaptic region compared to the extrasynaptic
region in both WT and diseased muscle of both models. This synaptic enrichment is likely due to
Cntf mRNA expression by terminal Schwann cells [33]. Finally, Gdnf mRNA was also enriched in the
synaptic region of both healthy and diseased muscle.
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Figure 3. Disease has regionally specific effects on neurotrophin receptor expression. (a,c) Ngfr,
truncated Ntrk2, and Ntrk3 showed effects of disease, although the effects depended on the specific
model. Disease upregulated truncated Ntrk2 only in the synaptic region of muscle from 97Q but
not myogenic mice. Disease robustly upregulated Ntrk3 in both regions of muscle from myogenic
but not 97Q mice. (b,d) In wild-type control muscle, Ngfr and Ntrk3 were preferentially expressed
in the synaptic region. Disease eliminated the synaptic enrichment of Ngfr in the 97Q model and
of Ntrk3 in the myogenic model. In sum, expression of neurotrophin receptors in muscle is also
susceptible to the toxic effects of a disease-causing androgen receptor, and likely contribute to the
pathophysiology of synaptic and muscle dysfunction in SBMA. Fold changes ± SEM are relative
to wild-type (a,c) or extrasynaptic (b,d) samples; Statistical analysis was based on pair-wise fixed
reallocation randomization test: * p < 0.05.

We also examined other genes implicated in synaptic structure and function, including Musk, Lrp4,
Chrng, Rtn4, Mmp9, and Scn4a (Figure 5a,c,e). Musk mRNA was upregulated in both models, while the
gene encoding its binding partner Lrp4 was upregulated in the 97Q model, but downregulated in the
myogenic model. We also found that Rtn4 (encoding Nogo-A, an inhibitory signal for axonal sprouting)
transcripts were reduced in myogenic and 97Q mice, hinting at the muscle’s attempt to re-establish
strong synapses. Levels of Chrng mRNA, encoding AChR gamma subunit, were upregulated, but only
in the 97Q model. Mmp9 mRNA levels were not affected in these two models. Scn4a encoding the
adult isoform of the alpha subunit of the voltage-gated sodium channel was significantly reduced in
muscle from both 97Q and myogenic mice (Figure 5), confirming previous reports [14]. We found this
reduction in both synaptic and extrasynaptic regions. Finally, disease eliminated a synaptic enrichment
of Musk in muscle in both models, suggesting a possible mechanism leading to the dispersal of AChR
(Figure 5b,d), which could account for previously reported fragmentation of endplates in diseased
muscles [29].
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neurotrophins (Figure 2), expression of Cntf and Gdnf mRNA was enriched in the synaptic region of
WT muscle, with disease having eliminated the synaptic enrichment of Gdnf in the 97Q model. Effects
only in the 97Q model may reflect differences in the disease allele expressed (human disease allele AR
in the 97Q model versus overexpression of WT rat AR in the myogenic model), and suggests that both
Cntf and Gdnf may also contribute to neuromuscular dysfunction in SBMA patients. Fold changes ±
SEM are relative to wild-type (a,c) or extrasynaptic (b,d) samples; Statistical analysis was based on
pair-wise fixed reallocation randomization test: * p < 0.05.

We next examined expression of the same genes in a knock-in (KI) mouse model which expresses
a polyglutamine expanded AR in its endogenous site driven by endogenous promoters [6]. The goal
was to determine whether comparable gene dysregulation occurs in an SBMA model which has greater
face validity than either transgenic model. We used the androgen-sensitive levator ani (LA) muscle
(Figure 1b); ARs are highly expressed in this muscle relative to limb muscles such as the EDL [20,21],
thus allowing the detection of pathology that might otherwise go undetected in this overall milder,
earlier-staged model. Nonetheless, the LA is an excellent muscle to compare to the EDL, as the
fiber-type between the two is virtually identical.

We again verified the synaptic enrichment of Chrne, with WT mice showing 10.1 ± 2.8 fold
upregulation (p = 0.001) and diseased mice showing 7.8 ± 4.6 upregulation (p = 0.001) compared to
the extrasynaptic region. In our assessment of the expression of neurotrophins and their receptors,
we found that, like the 97Q model, Ngf was upregulated by disease in KI mice, but only in the synaptic
region (Figure 6a). That this was not found in the myogenic mice possibly reflects the fact that the
97Q and KI models both express an expanded polyglutamine tract in AR that the myogenic model
does not. Bdnf was also affected by disease in the KI model, but surprisingly it was upregulated
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(rather than downregulated) in KI muscle. Since the KI model exhibits relatively less severe pathology,
this upregulation may reflect an earlier stage in the disease process. On the other hand, Ntf5 mRNA
levels were significantly downregulated by disease, as in the 97Q and myogenic mice, but only in
the extrasynaptic region of KI muscle. Finally, Ntf3 expression was not affected, mimicking results
in muscle from 97Q and myogenic mice. For neurotrophin receptors, muscle from KI mice showed
upregulation of truncated Ntrk2 only in the synaptic region (Figure 6c), as was the case for the 97Q
model. The full-length Ntrk2 was not perturbed by disease when compared to WT muscle, but KI mice
did exhibit a synaptic enrichment that was not present in WT mice suggesting that disease did affect
this variant as well (Figure 6d).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW    8  of  21 
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Figure 5. Disease affects genes implicated in synaptic stability and function. (a,c) With few exceptions,
synaptic-related genes are affected by disease in one or both disease models. Changes include a marked
increase in Musk, which encodes a receptor tyrosine kinase for the AChR-stabilizing agrin, and Chrng,
encoding the neonatal subunit of the AChR. Disease also affects Lrp4 in both models although in
divergent directions—being increased in the 97Q model while decreased in myogenic model. Other
significant and consistent changes in transcript levels include a downregulation of Rtn4, encoding an
inhibitory signal for axonal sprouting, and Scn4a, encoding the sodium voltage-gated channel alpha
subunit 4, the adult isoform which controls the influx of sodium into muscle cells. (b,d) Notably, the
synaptic enrichment of Musk is also lost with disease. Thus, the challenges of disease seem to trigger
an adaptive response to maintain and/or rescue neuromuscular synaptic function by reverting back
to a permissive environment for axon sprouting (by downregulating Rtn4) and by increasing AChR
expression and recruiting and stabilizing these newly made AChRs at the synapse (by upregulating
Musk and Chrng). These data underscore the general theme that many genes important for synaptic
stability are dysregulated in muscles of SBMA mice, possibly explaining the characteristic deficit in
synaptic strength. Fold changes ± SEM are shown relative to wild-type (a,c) or extrasynaptic (b,d)
samples; Statistical analysis was based on pair-wise fixed reallocation randomization test: * p < 0.05.
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Figure 6. Disease affects many of the same genes in the fast twitch levator ani (LA) muscle from
knock-in (KI) mice. (a) Neurotrophin (Ngf, Bdnf, and Ntf5) expression was disrupted by disease, largely
comparable to what was seen for the fast twitch EDL of diseased 97Q and myogenic males. One notable
difference was an upregulation of Bdnf induced by disease rather than the expected downregulation,



Int. J. Mol. Sci. 2019, 20, 1314 10 of 19

as seen for the other two models. That Bdnf message is upregulated in muscle from diseased KI males
may be a characteristic trait of early-stage disease. (b) Neurotrophin expression was not synaptically
enhanced in muscle from KI males, largely mimicking what was seen in the other two models. (c) An
upregulation of the truncated TrkB receptor transcript was also observed only in the synaptic region,
paralleling results for the 97Q model. (d) Interestingly, the wild-type LA did not show a synaptic
enrichment of either Ngfr or Ntrk3 as was observed for the EDL of the other two models. Disease
disrupted this uniform expression in the LA, such that Ntrk2 mRNA became synaptically enriched.
(e) Of the other neurotrophic factors examined, Cntf was the only one dysregulated by disease, a novel
finding implicating Schwann cells in SBMA. A downregulation of Igf1 and Gdnf was not detected
as previously reported for KI mice, possibly due to the fewer number of CAGs carried by this later
generation of KI mice. (f) Cntf was synaptically enriched in the LA, as in the EDL. (g) Musk and
Lrp4 transcripts were also dysregulated, comparable to results from the myogenic and 97Q models.
However, these changes involved both regions, an unexpected finding given the established role of
Musk and Lrp4 in synaptic function. Mmp9 was also affected in muscle from KI mice. (h) That it
was also synaptically enriched in both WT and diseased LA may reflect a specific trait of this muscle,
since this synaptic enrichment was not evident in the EDL. Fold changes ± SEM are shown relative to
wild-type (a,c,e,g) or extrasynaptic (b,d,f,h) samples; Statistical analysis was based on pair-wise fixed
reallocation randomization test: * p < 0.05.

Other neurotrophic factors were also affected in the KI model, in alignment with our findings in
the other two models. Cntf was upregulated in KI muscle as it was in 97Q muscle, but the effect was
significant only in the extrasynaptic region (Figure 6e). That this effect was not found in the myogenic
model suggests it is mediated by mutant, polyglutamine-expanded AR which is present in the KI and
97Q models. Cntf was also enriched synaptically (Figure 6f), as found previously (Figure 4). Neither
Igf1 nor Gdnf were affected by disease in the KI model. The null Gdnf finding may reflect a loss of CAG
repeats over generations, or muscle-specific changes as mice from earlier in the lineage did express
lower Gdnf transcript levels than controls in hindlimb muscle [6].

Muscle from KI mice also showed an enhanced expression of Igf1 in the synaptic region of the
muscle, while muscle from the other models did not, possibly reflecting a specific feature of the LA not
shared by the EDL. While this difference was only significant for diseased muscle, the magnitude of
the effect was similar in WT muscle, suggesting that the failure to detect a significant difference in WT
muscle (p = 0.076) reflects a type II error.

Muscle from the KI model also exhibited some dysregulation in the expression of synaptic-related
genes (Figure 6g). For example, like the other two models, Musk levels were upregulated. Lrp4
was also upregulated, mimicking the pattern seen in 97Q mice. Interestingly, Mmp9 levels were
increased by disease uniquely in the KI model in both the synaptic and extrasynaptic regions. In sum,
this humanized mouse model of SBMA also indicates that disease disrupts muscle expression of genes
that play key roles in muscle and synaptic function.

3. Discussion

We evaluated for the first time whether disease triggered by toxic AR affects gene expression
differently in the synaptic versus the extrasynaptic regions of skeletal muscle. Intrigued by recent
findings that AR in muscle has the capacity to drive significant dysfunction in both muscle and
motoneurons in mouse models of SBMA [10–14], we asked whether gene expression in diseased
muscle was impaired in a region-specific manner. This question was also prompted by the fact that
myonuclei across the length of the muscle express different genes; specifically, myonuclei at the
NMJ express synapse-specific genes that other myonuclei do not [19], demonstrating that different
mechanisms control gene expression in these two parts of muscle. We addressed this question by
examining gene expression in synaptic and extrasynaptic muscle from three different SBMA mouse
models: the 97Q, the myogenic, and a KI model, with the goal of identifying core attributes of disease
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that could translate to patients with SBMA. Our analysis focused on neurotrophic factors for two
reasons: (1) they have a well-established role in modulating both pre-synaptic motoneuronal function
and post-synaptic muscle function [34–36], and (2) they are implicated in the etiology of neuromuscular
disease, including SBMA [6,22]. Our findings aligned with other reports that disease does indeed
affect the expression of multiple neurotrophic factors in skeletal muscle, including the neurotrophins
and their receptors, as well as CNTF and GDNF, with disease generally affecting the expression of
such genes comparably across the two muscle regions (Table 1). These findings revive the idea that
neurotrophic factors may have therapeutic value for restoring function that could potentially benefit
both diseased muscles and the motoneurons that innervate them. We also found that disease affected
other key genes controlling synaptic stability and function, including effects on Musk and Lrp4, both of
which help stabilize AChR in the muscle membrane. Other genes were discovered to show enhanced
expression in the synaptic region of skeletal muscle, in addition to replicating earlier findings of genes
already known to show synapse-enriched expression in muscle [26,37–39]. In most cases, this synaptic
enrichment was preserved in the face of disease. Our cross-model comparisons converged on several
genes affected by disease, most notably, the neurotrophins BDNF and NT-4. Because they showed
comparable and robust dysregulation across models, they may represent bona fide pathophysiological
mechanisms underlying SBMA in patients.

We found that BDNF/NT-4—TrkB signaling, a pathway that is important in neuromuscular
transmission and muscle function [27,28,40], was quite susceptible to the effects of disease caused by
a toxic AR. As previously reported, we found that Bdnf transcripts were robustly downregulated in
muscle from both myogenic and 97Q mice. We now show that these changes do not depend on region
of muscle; Bdnf was similarly affected by disease in both synaptic and extrasynaptic domains. We
also found that Bdnf expression was affected in muscle of KI mice. However, in this model, the level
of Bdnf message increased. As BDNF expression in muscle can have a time-dependent response to
other trauma such as denervation, involving first an upregulation followed by a downregulation of
expression [41–44], it is possible that the bidirectional effect of disease across models relates to the
stage of disease, with KI muscle representing an earlier stage of disease than muscle from diseased
97Q and myogenic males. Supporting this idea is the fact that KI males tend to die early due to urinary
tract blockage and uremia [6], with defects in neurotransmission reflecting primarily the early stages
of disease [15]. End-stage myogenic or 97Q males, on the other hand, tend to exhibit more severe
neuromuscular dysfunction involving more mechanisms, presumably reflecting the combined effect
of both primary and secondary mechanisms of disease [15]. In sum, Bdnf expression in muscle was
perturbed in all three models suggesting that its role in SBMA merits further attention.

Another TrkB ligand, encoded by Ntf5 (NT-4), was downregulated in all models while transcript
level for the truncated, but not the full-length TrkB receptor (encoded by Ntrk2) was upregulated in the
97Q and KI models and only in the synaptic region. One interpretation of these data is that elevated
levels of truncated TrkB is a response to an ever-diminishing supply of muscle-derived BDNF and/or
NT-4, attempting to maintain a constant supply of such factors to the motor terminals. However,
the cost may be to further reduce both synaptic and muscle function, since both are enhanced in
TrkB.T1 knockout mice [45]. Moreover, overexpression of TrkB.T1 results in NMJ fragmentation [46],
comparable to what junctions look like in SBMA models [29].

Our findings of increased levels of Musk and Chrng transcripts replicate previously published
data on whole muscle [14,47]. Musk encodes a tyrosine kinase receptor for agrin, an AChR clustering
factor, whereas Chrng encodes the neonatal gamma subunit that forms the channel in the AChR.
To our surprise, expression of both mRNA species was comparably dysregulated in synaptic and
extrasynaptic regions of muscle, despite their apparent specific roles in synaptic function. Levels of
Scn4a, encoding the sodium voltage-gated channel alpha subunit 4, were also perturbed in the 97Q and
myogenic models, showing a net loss in Scn4a as previously shown [14]. We did not, however, find
the expected deficit in Scn4a in muscle of KI males in this study, perhaps because of the shorter CAG
repeat of the KI mice used in this study compared to the original [6], causing lower overall AR toxicity.
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Table 1. Cross model comparison of disease-affected genes from this study. * indicates differential effects of disease on synaptic and extrasynaptic regions. # indicates
directional difference from other models.

Chrne Ngf Bdnf
(IV)

Bdnf
(IX) Ntf5 Ntf3 Ngfr Ntrk1 Ntrk2

(Truncated)
Ntrk2
(Full) Ntrk3 Cntf Igf1 Gdnf Musk Lrp4 Chrng Rtna Mmp9 Scn4a

97Q 4 4 4 4 4 4 * 4 4 4 * 4 4 4 4 4

Myogenic 4 4 4 4 4 4 4 # 4 4

KI 4 4 # 4 # 4 4 4 4 4 4
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Of the remaining genes examined, we saw changes in all three models for only Lrp4, which, like
Musk, encodes a protein that promotes AChR clustering. The dysregulation of these genes may explain
the fragmented morphology of diseased NMJs in SBMA models [29]. MuSK is activated by Lrp4
following the binding of agrin to Lrp4 [48,49]. It is possible that there is an ongoing interplay with
MuSK/Lrp4 and the TrkB signaling pathways due to their similar roles in synaptic stabilization. At
the molecular level, both MuSK and Trk receptors are receptor tyrosine kinases. Indeed, replacement
of MuSK with a chimeric MuSK/Trk (using the intracellular kinase domain of TrkA) is capable of
restoring function and rescuing MuSK−/− pups from perinatal lethality [50]. In myotube cultures,
however, BDNF and NT-4 inhibited agrin-induced AChR clustering [51]. It is worth noting that Lrp4
was downregulated in the myogenic model but upregulated in the others. Although it is difficult to
understand the significance of these divergent responses in Lrp4 across the three models, these data
underscore the general theme that many genes important for synaptic stability are dysregulated in
muscles of SBMA mice (Figures 5 and 6), which could underlie the deficits in synaptic strength [14],
a core attribute of disease in all three models.

The loss of the neurotrophin NGF has been linked to muscular dystrophy [52,53]. For example,
treatment with NGF improves regeneration of dystrophic muscle cells [54]. Moreover, after denervation
or tetrodotoxin-induced nerve blockage, Ngf transcripts increase in rat muscle [55]. That we also saw
an upregulation of Ngf mRNA levels in two SBMA models (Figures 2 and 6) suggests that disease
causes NMJs to fall below threshold, effectively becoming functionally denervated [14], even in the
absence of overt structural denervation [29]. That we did not see changes in Ngf expression in the
myogenic model suggests that this disease-related change may stem from toxic AR acting neuronally.

Terminal Schwann cells (TSCs) are critical for proper neuromuscular transmission [56]. As TSCs
express Ntrk3 and Cntf [33,38], we attribute the synaptic enrichment of these genes to TSCs.
An interesting pattern unfolded when examining effects of disease on expression of Ntrk3 and
Cntf. Myogenic mice showed a robust disease-related upregulation of Ntrk3 in both synaptic and
extrasynaptic regions of muscle, while the 97Q and KI mice showed upregulation of Cntf by disease.
Thus, it is possible that TSCs are involved in SBMA pathophysiology, but perhaps through different
pathways depending on the instigating genetic/molecular trigger. One potentially critical distinction
between these models is that both the KI and 97Q models express an expanded AR while the myogenic
model does not. It would be worthwhile to examine further the potential role of TSCs in SBMA,
especially given the link between TSCs and other neuromuscular diseases, such as amyotrophic lateral
sclerosis [57]. While TSC morphology largely resists the effects of disease, their function may be
profoundly affected [29].

A limitation inherent to the approach in this study is that our samples did not contain solely
muscle cells. Importantly, the synaptic samples undoubtedly contained TSCs, which could explain
the enrichment of Cntf in this region. This nonetheless endows us with confidence that our harvest
of the synaptic region was precise. In fact, by isolating and examining only muscle fibers, we might
actually miss important changes that occur in other cell types within the muscle that contribute to
the neuromuscular dysfunction associated with SBMA. Thus, when interpreting our results, which
largely do not show distinct effects of disease across regions, we take it to mean that SBMA muscles are
broadly affected. This pattern suggests that AR acts throughout the muscle to impair muscle function
directly, and presynaptic motoneuronal function indirectly [5,6,9], and that many of the mechanisms
involved may well be the same.

Our studies offer the power of a systematic, cross-model approach to understanding gene
dysregulation in SBMA muscle. Studies that focus on a single model may be a factor contributing to the
poor success rate of clinical trials [58]. Commonalities seen across three quite different mouse models
of SBMA lend confidence to the idea that the identified targets are likely relevant to SBMA patients.
Moreover, by examining genes regulated in a similar manner between severely affected 97Q and
myogenic models, but not in the less affected KI model, we may gain insight into the molecular and
cellular sequelae underlying aspects of disease progression and disease specificity caused by enhanced
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levels of AR protein, whereas similarities between the 97Q and KI models not shared by the myogenic
model may shed light on the toxicity caused by the expanded polyglutamine tract. Regardless of the
exact patterns of dysregulation, and their potential pathophysiological significance, we have shown
that the majority of genes in the neurotrophin family (including both ligands and receptors) are affected
by disease in SBMA skeletal muscle. An important next step will be to characterize how such changes
at the mRNA level affect function, both regarding the specific protein products and how they interact
to influence neuromuscular function. Neurotrophic factors, and possibly neurotrophins specifically,
may be at the center of such disease-related changes.

4. Materials and Methods

4.1. Animals

Mouse colonies were held on a 12 h:12 h light:dark cycle, group housed, and provided food
and water ad libitum. All animal procedures were approved and performed in compliance with
Michigan State University’s (approval# 11/16-198-00, 30 November 2016) and University of Michigan’s
(approval# PRO00008133, 24 January 2018) Institutional Animal Care and Use Committees in
accordance with the standards in the NIH Guide for the Care and Use of Laboratory Animals. Sample
sizes are listed in Table 2.

Table 2. Sample sizes (n) by model and muscle region, n = number of animals.

Wild-Type SBMA

97Q

Synaptic 5 6 (5 for Gdnf ; 4 for Rtn4 and Ntrk1)
Extrasynaptic 5 6 (4 for Gdnf, Rtn4, and Ntrk1)

Myogenic

Synaptic 6 7
Extrasynaptic 7 8

Knock-in

Synaptic 7 6
Extrasynaptic 7 6 (5 for Ntrk1)

4.2. AR97Q Model

Transgenic male mice ubiquitously overexpressing a full length human AR with a 97 glutamine
repeat and WT age-matched controls (age, mean ± SEM (range): 111.7 ± 10.1 (63–149) days) from the
same colony were maintained on a C57Bl/6J genetic background. Mice were genotyped using PCR
at weaning as previously described [3]. Muscle was harvested once the mice became symptomatic,
showing reduced ability to perform on motor assays, as previously described [22].

4.3. Myogenic Model

Transgenic male mice overexpressing rat WT AR exclusively in skeletal muscle fibers and WT
age-matched controls (age, mean ± SEM (range): 112.1 ± 3.9 (80–125) days) from the same colony
were maintained on a C57Bl/6J genetic background. Mice were genotyped using PCR at weaning
as previously described [5]. Transgenic and WT males were exposed prenatally to the anti-androgen
flutamide (5 mg flutamide/0.1 mL propylene glycol at the nape of the neck on gestational days
15–20 [59]), to block the apparently toxic effects of prenatal endogenous androgens on postnatal
survival. Muscle was harvested from symptomatic adults, which show reduced ability to perform on
motor assays, as previously described [12,22].
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4.4. AR113Q Knock-In (KI) Model

KI male mice expressing an expanded CAG allele (92–96 CAG repeat, determined for 4 of the 7 KI
mice used in this study) in the first exon of the human AR gene and age-matched WT controls (age,
mean ± SEM (range): 117.4 ± 4.5 (112–137, except one 65-day old WT)) from the same colony were
maintained on a C57Bl/6J background [6].

4.5. Muscle Dissection

Skeletal muscle was dissected from mice anesthetized with isoflurane and immediately placed
into ice-cold PBS. Muscles were rapidly pinned in a Sylgard-coated dish. The muscle was then divided
into synaptic and extrasynaptic regions based on considerable prior experience recording synaptic
transmission in these muscles [14,15], and collected in pre-chilled microcentrifuge tubes and stored at
−80 ◦C. Our dissection was also based on experience with recording synaptic transmission in these
muscles [14]. Care was taken to avoid collecting connective tissue and tendons. All tools were cleaned
with RNase Zap (Ambion, Thermo Fisher Scientific Waltham, MA, USA) between animal harvests.
The extensor digitorum longus (EDL) was harvested for the myogenic and 97Q models, while the
androgen-sensitive levator ani (LA) was collected for the AR113Q KI model. The effects of disease are
more readily detected in the LA than in other skeletal muscles [6], likely due to the much higher level
of AR expression in this muscle [20,21]. Both the EDL and LA muscles are fast twitch muscles [60–64],
controlling for the possible differential effects of disease introduced by different fiber-types.

4.6. Quantitative Reverse-Transcription PCR

Muscles were mechanically homogenized with a PRO200 Homogenizer (Pro Scientific) in TRIzol
reagent (Ambion). RNA was extracted according to manufacturer directions, with samples treated with
DNase I (Invitrogen, Thermo Fisher Scientific Waltham, MA, USA). Following extraction, RNA was
quantified on a spectrophotometer (DU 530, Beckman Coulter, Brea, CA, USA) by measuring 260 nm
absorbance values and reverse transcribed using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Carlsbad, CA, USA) with the following thermocycle settings: 25 ◦C for 10 min,
37 ◦C for 2 h, 85 ◦C for 5 min. Each sample for the quantitative real-time PCR assay included 2.5 ng
of cDNA, primers, and Power SYBR Green PCR Master Mix (Applied Biosystems). Thermocycle for
the quantitative step on the ABI PRISM 7000 Sequence Detection System was as follows: 50 ◦C for 2
min, 95 ◦C for 10 min, and 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. A dissociation curve was
determined for each well to confirm that only one gene was being amplified. Each sample was run in
triplicate. Samples without reverse transcriptase during the cDNA conversion were also assessed to
ensure that there was no DNA contamination. Optimal concentrations and amplification efficiencies
were calculated for each primer set. Primers, concentrations, and efficiencies are listed in Table 3.
Rn18s was used as the control and diluted 100-fold due to its higher expression. Finally, we verified
that Rn18s expression did not differ between any comparisons made.

Table 3. Primer sequences and concentrations used for genes examined.

Gene Forward Reverse Calculated
Efficiency

Concentration
(nM)

Rn18s (18S) GGACCAGAGCGAAAGCATTTG GCCAGTCGGCATCGTTTATG 1.90 100
Chrne (AChR epsilon) CTCTGCCAGAACCTGGGTG TGTGCTCTCAGCCACAAAGT 2.15 200

Ngf AGCTTTCTATACTGGCCGCA TACGCCGATCAAAAACGCAG 1.92 600
Bdnf (exon IV) CTCCGCCATGCAATTTCCAC CGAGTCTTTGGTGGCCGATA 1.74 200
Bdnf (exon IX) ACCATCCTTTTCCTTACTATGGTT ATTCACGCTCTCCAGAGTCC 1.98 200

Ntf5 (NT-4) TGAGCTGGCAGTATGCGAC CAGCGCGTCTCGAAGAAGT 2.03 600
Ntf3 (NT-3) TGGAGCCCCCTCCCTTATAC AATGGCTGAGGACTTGTCGG 2.23 100
Ngfr (p75) CGTGACCATCTCAGGCCTTT GGTGCCCCTGTTACCTTCTC 2.01 200

Ntrk1 (TrkA) ATATCTAGCCAGCCTGCACTTTGT TGCTCATGCCAAAGTCTCCA 2.15 600
Ntrk2 (TrkB truncated) CCATTGCCCTCTGCTAACCA GAGATCTGAGGTGCTCTCGC 2.08 600
Ntrk2 (TrkB full length) GGCAACTTCGGGAAAGGAGA GTAAACCCCTCACCGCCTAC 2.25 400

Ntrk3 (TrkC) ATGGAGCTCTACACGGGACT GGTGAGCCGGTTACTTGACA 2.40 600
Cntf TTTCACCCCGACTGAAGGTG TTCTGTTCCAGAAGCGCCAT 2.10 200
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Table 3. Cont.

Gene Forward Reverse Calculated
Efficiency

Concentration
(nM)

Igf1 (IGF-1eb) CCCGTCCCTATCGACAAACAA TGGGAGGCTCCTCCTACATT 2.00 100
Gdnf GCCACCATTAAAAGACTGAAAAGG GCCTGCCGATTCCTCTCTCT 1.91 600
Musk GCTGTTTGACACCCGCTACA CTCCCACTCCATTGTTGGCTA 1.97 400
Lrp4 GCATTGGTACTGCGATGGTG CATAGGCGCACTGGAACTCT 1.94 100

Chrng (AChR gamma) GGTTGGTGATGGGTATGGTCA TGACATCAGGAAAGGCAGAGC 2.06 200
Rtn4 (Nogo-A) ACTTACGTTGGTGCCTTGTTC TGATCTATCTGCGCCTGATGC 1.67 200

Mmp9 GCCGACTTTTGTGGTCTTCC CTTCTCTCCCATCATCTGGGC 2.01 200
Scn4a (NaV1.4) TGGGGGTCAACTTGTTTGCT TCGAATCTCTCGGAGGTGGT 2.09 100

4.7. Statistical Analysis

The Relative Expression Software Tool (REST) was used to assess statistical significance and fold
change of genes [65]. Specifically, this software uses the non-parametric Pair-Wise Fixed Reallocation
Randomisation Test to account for amplification efficiencies when determining fold change. It measures
relative expression of a target gene between two experimental groups following the normalization of
the target gene to a reference gene (Rn18s).

Our experimental groups consisted of the SBMA mouse models and their WT controls taken from
each respective colony. For each model, we asked the same two questions: (1) are there regional
differences in gene expression (synaptic versus extrasynaptic), and (2) does disease affect gene
expression comparably in the two regions?
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