Supplementary Materials

5-Iodo-4-thio-2'-deoxyuridine as a Sensitizer of X-ray Induced Cancer Cell Killing

Samanta Makurat, Paulina Spisz, Witold Kozak, Janusz Rak, Magdalena Zdrowowicz*

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland *magdalena.zdrowowicz@ug.edu.pl

Table of Content

Identification of radiolysis products (Fig. S1-S5)	S3
Transition state structures (Fig. S6-S10)	S8
Additional HPLC analyses of the irradiated ISdU (Fig. S11, S12)	S13
Clonogenic assay (Fig. S13, Table S1)	S15
Synthesis of the studied analog (Scheme S1)	S16
NMR spectra of the obtained analog (Fig. S14, S15)	S17
Mass spectra of the obtained analog (Fig. S16, S17)	S18
Cytometric analysis of histone H2A.X phosphorylation (Fig. S18)	S21
Cytometric analysis of cell death (Figs S19 and S20)	S22

Figure S1. MS/MS spectrum (in negative ionization mode) of SdU and ion identities.

Figure S2. MS/MS spectrum (in negative ionization mode) of IdU and ion identities.

Figure S3. MS/MS spectrum (in negative ionization mode) of ISOdU and ion identities. *Bergman, F., Rahat, M., and Frank, A. (1982) Comparison of the Mass Spectra of 6-Thiotheophyllines and 6-Sulfinyltheophyllines. *Organic Mass Spectrometry* 17, 565–568.

Figure S4. MS/MS spectrum (in negative ionization mode) of dimer ISdU-SdU and ion identities.

Figure S5. MS/MS spectrum (in negative ionization mode) of dimer (ISdU)₂ and ion identities.

Transition state structures

С	0.013906	0.398179	0.051251
Ν	0.021776	0.004232	1.375463
С	1.240801	-0.142343	2.054473
С	2.403247	-0.292014	1.355578
С	2.431042	-0.157289	-0.041996
Ν	1.269460	0.490216	-0.531924
Ι	4.301213	-0.868426	2.609843
S	3.633729	-0.630230	-1.171947
0	-1.019014	0.669179	-0.579790
Н	1.182742	-0.091779	3.138003
Н	1.256007	0.737044	-1.517335
С	-1.242847	-0.196448	2.085252
Н	-2.036891	0.327943	1.555879
Н	-1.490539	-1.261515	2.146464
Н	-1.154567	0.206886	3.097584

Figure S6. Transition state structure for the DEA process ($\Delta G^* = 2.8 \text{ kcal/mol}$).

					0
-0.177704 0.452238 0.175237	S	-0.195294	-0.130700	-0.131170	
-0.066454 0.601291 1.584518	0	-0.295814	-0.249290	2.156775	
1.185103 0.374401 2.102175	H	0.702488	-0.303564	2.188595	
2.339199 0.027309 1.411625	Н	2.904468	0.310923	1.786463	
2.152505 -0.120705 0.034331	0	2.4/8466	-0.296/42	2.413025	
0.944314 0.090055 -0.540341	Н	2.514405	0.151945	3.294310	
2671637 0 421346 2 305822	U Н	2 254284	0.320852	5 630317	
-2.071037 -0.421340 2.393822	н Н	1.015293	0.339832	4 680356	
3.415837 -0.143278 1.964162	0	-0.371543	-0.343576	3.953532	
3.333296 -0.511414 -0.759480	Ĥ	-1.202432	0.157227	4.044070	
-1.960091 0.853465 -0.883316	Н	-0.844398	-3.287130	5.047186	
0.912874 -0.029159 -1.617373	0	-0.972410	-3.049328	4.114979	
1.303771 0.446358 3.111725	Н	-0.760639	-2.083252	4.063276	
4.110690 0.245856 -0.648251	С	-0.804840	1.451766	-0.198852	
3.707310 -1.471760 -0.401764	С	-1.135254	2.167822	-1.390814	
3.039005 -0.593103 -1.804171	Ν	-1.012350	2.132995	0.969188	
-3.432854 -2.481256 2.010026	C	-1.616000	3.447995	-1.277122	
-3.286658 0.019723 1.779472	N	-1.795181	4.067479	-0.079227	
	C	-1.498467	3.421640	1.121593	
	C	-2.318/16	5.442691	0.008861	
	н ц	-2.481319	5 441100	-0.999930	
	л Ц	-3.200390	6.075031	0.500180	
	0	-1.653546	3.945873	2.217877	
	н	-0.790522	1.608105	1.824381	
	I	-0.892562	1.302793	-3.301597	

C C N C N C S O O C I

Η

Η

H H

Η

Η

Н

Figure S7. Transition state structure for the ISU to ISOU oxidation reaction (for the reaction without (left) and with (right) explicitly added waters $\Delta G^* = 25.5$ and 15.3 kcal/mol, respectively).

Н

-1.878253 4.034876 -2.150154

С	-0.036982	0.029281	0.069061
Ν	0.004870	-0.043271	1.459725
С	1.128454	-0.050271	2.247506
С	2.349607	0.330873	1.578077
С	2.319038	0.476272	0.223651
Ν	1.185369	0.291614	-0.527364
S	0.924218	-0.305818	3.961033
0	1.385441	-1.706498	3.084702
Ι	4.159741	0.628165	2.623467
С	1.205888	0.425862	-1.994595
0	-1.084693	-0.095877	-0.555826
0	-0.394442	-3.707101	2.752730
0	-1.675957	-4.188626	5.183775
0	-0.455496	-2.674609	7.210660
0	1.018355	-5.921813	1.661731
Η	0.229560	-2.932324	2.863139
Н	-1.002188	-1.879493	7.313749
Н	-0.890557	-3.196958	6.495699
Н	-1.580265	-5.137254	5.369235
Н	-1.219099	-4.040753	4.319602
Н	-1.054560	-3.419063	2.099387
Н	1.528041	-6.301499	2.395399
Η	0.539103	-5.156467	2.052001
Η	2.231026	0.609320	-2.312125
Н	0.841180	-0.495135	-2.451807
Η	0.570047	1.258631	-2.300497
Н	-0.897387	-0.192997	1.905304
Η	3.203926	0.751792	-0.337982

Figure S8. Transition state structure for the ISOU to oxathiirane reaction ($\Delta G^* = 24.5 \text{ kcal/mol}$).

Ν	0.038951	-0.120731	0.249797
С	0.194774	0.120275	1.612533
Ν	1.520560	0.200691	2.027281
С	2.614343	0.051298	1.243821
С	2.407419	-0.182585	-0.145707
С	1.112114	-0.258553	-0.581840
0	-0.744048	0.253458	2.384815
0	3.801190	0.134695	1.750072
S	4.025159	0.426863	3.511642
S	1.754433	-2.138802	6.719824
0	1.374837	-3.851227	6.311803
С	1.483633	-4.280293	5.097038
Ν	1.890225	-3.450859	4.105120
С	2.033547	-3.788929	2.761212
Ν	1.731719	-5.117492	2.471438
С	1.325315	-5.988416	3.439076
С	1.184681	-5.629755	4.753166
0	2.392420	-2.982242	1.915963
Ι	0.555397	-7.000814	6.223421
С	1.865835	-5.538407	1.063552
Ι	4.040798	-0.397649	-1.457026
С	-1.343164	-0.209981	-0.258519
Н	1.621628	-6.596895	0.991991
Н	1.182394	-4.957853	0.442065
Η	2.891053	-5.371725	0.730356
Η	2.108450	-2.484031	4.389454
Н	1.116158	-6.996941	3.102060
Н	-1.307585	-0.414925	-1.326987
Η	-1.869563	-1.015599	0.255112
Η	-1.860735	0.733838	-0.079697
Η	1.712294	0.365578	3.025904
Η	0.873900	-0.436143	-1.624162
Н	6.875719	-3.639530	2.126735
Н	3.779932	-2.149243	1.350127

Figure S9. Transition state structure for the sulfur extrusion to form the final IU product (ΔG^* =

1.8 kcal/mol).

0.704828	-0.090491	0.129023
0.730519	-0.640752	1.386166
1.887102	-1.387896	1.760062
2.885736	-1.505424	0.859181
2.883402	-0.966279	-0.404719
1.731275	-0.237303	-0.747661
-0.897354	-0.374571	2.705987
2.109598	-2.155362	3.283585
3.814874	-1.100422	-1.198451
1.681920	0.357082	-2.093756
4.427568	-2.727158	2.308867
4.744001	-4.117361	2.193048
3.711148	-4.861877	1.329693
6.136720	-4.172919	1.520683
4.818005	-4.724656	3.602953
-0.140257	0.489131	-0.225291
2.514461	1.051345	-2.218898
1.756259	-0.431169	-2.844895
0.737768	0.887739	-2.208004
5.142385	-5.770343	3.560955
5.528855	-4.166392	4.221227
3.836332	-4.687142	4.086363
3.970129	-5.923138	1.248082
2.713697	-4.786573	1.774593
3.671642	-4.446117	0.316993
6.461171	-5.214057	1.411738
6.103741	-3.714775	0.526948
	0.704828 0.730519 1.887102 2.885736 2.883402 1.731275 -0.897354 2.109598 3.814874 1.681920 4.427568 4.744001 3.711148 6.136720 4.818005 -0.140257 2.514461 1.756259 0.737768 5.142385 5.528855 3.836332 3.970129 2.713697 3.671642 6.461171 6.103741	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Figure S10. Transition state structure for the reaction of the *t*-BuO[•] radical with ISU ($\Delta G^* = 0.6$ kcal/mol).

Additional HPLC analyses of irradiated ISdU

Figure S11. HPLC traces for irradiated (black) and non-irradiated (red) ISdU solution without *t*-BuOH in aerobic conditions.

Figure S12. HPLC traces for the dimers formed in aerobic (green) and anaerobic (red) conditions.

Clonogenic assay

Figure S13. Stained colonies obtained from clonogenic assay.

Dose [Gv]	Plating efficiencies [%]			
D050 [05]	0 mM ISdU	10 mM ISdU	100 mM ISdU	
0	26.31±0.09	23.81±0.09	21.31±0.09	
0.5	20.63±0.18	16.13	12.75±0.35	
1	17.94±0.27	13.06±0.09	8.69±0.27	
2	9.75±0.18	6.56±0.27	4.31±0.27	
3	4.81±0.27	2.81±0.27	1.44±0.09	

Table S1. Plating efficiencies [%] for the MCF-7 cells obtained from clonogenic assay.

Synthesis of the studied analog

Scheme S1. Synthetic route for ISdU.

NMR spectra of the studied analog

Figure S14. ¹H NMR spectrum of ISdU.

Figure S15. ¹³C NMR spectrum of ISdU.

Mass spectra of the obtained analog

Figure S16. MS spectrum (in negative ionization mode) of ISdU.

Figure S17. MS/MS spectrum (in negative ionization mode) of ISdU and ion identities.

Figure S18. Cytometric analysis of histone H2A.X phosphorylation.

Cytometric analysis of cell death

MCF-7 cells were grown in RPMI supplemented with 10% FBS and antibiotics at a concentration of 100 U·mL⁻¹. Cells were treated with ISdU at a concentration of 10^{-4} and incubated (37°C, 5% CO₂) for 48 h. After this time, the plates with cells were irradiated (Cellrad X-ray cabinet, Faxitron X-ray Corporation) with the dose of 2 Gy and incubated for 1 h. Then, the cells were dissociated with Accutase solution, stained and analyzed by flow cytometry (Guava easyCyteTM) according to the manufacturer's protocol (FlowCollectTM MitoDamage Kit, Merck).

Figure S19. Cytometric analysis of cell death – dot plots provide comparison of 7-AAD (cell death) vs. Annexin V (late apoptosis).

Figure S20. Cytometric analysis of cell death – dot plots provide comparison of MitoSense Dye (early apoptosis) vs. Annexin V (late apoptosis).