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Abstract: The developing cardiovascular system of zebrafish is a sensitive target for many
environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated
biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative
stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several
redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced
by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and
circulatory failure, and a concentration-dependent reduction of cardiac output and body length at
80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be
both positively and negatively modulated by different compounds; co-treatment with α-tocopherol
(vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas
co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126
effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of
PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant
genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role
of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results
give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative
potential of environmental pollutants.
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1. Introduction

Congenital heart defects (CHD) constitute the largest group of congenital anomalies [1]. Although
the etiology of the majority of CHD remains unknown, it is likely to be multifactorial, with roles for both
genetic and environmental causes. There are several epidemiological studies linking maternal exposure
to environmental pollutants with occurrence of a wide range of CHD [2] and experimental studies
demonstrate that the developing cardiovascular system is a sensitive target of many environmental
pollutants, including dioxins, dioxin-like polychlorinated biphenils (DLCs), and some pesticides [3].
Moreover, accumulating evidence indicates that exposure to environmental chemicals contribute to
cardiovascular disease risk, incidence, and severity [4].
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Fish are among the most sensitive vertebrates to DLC-induced teratogenicity [5]. Although fish
are more sensitive to these effects than mammals are, the developmental effects observed are similar to
other vertebrates (mammals and birds) and phenotypically resemble some birth defects in humans [6].
The hallmark endpoints after DLC exposure in fish consists of circulatory failure, edema, craniofacial
malformation, and growth retardation leading to lethality [7,8]. 3,3’,4,4’,5-Pentachlorobiphenyl
(PCB126) is the most representative coplanar congener of dioxin-like PCBs and has similar structure
and biological effects to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). PCB-mediated dysfunction in the
vascular endothelium has been linked to increased oxidative stress mediated through the activation of
a cytochrome P450 oxidase, CYP1A, following the activation of the Ah receptor (AhR) [9]. While AhR
activation seems to be a prerequisite for DLCs toxicity [10], the identity of the trigger gene or genes
regulating teratogenesis remains unknown.

Zebrafish (Danio rerio) has received increasing attention as an animal model for understanding
chemical effects during development and to study diseases [11]. Particularly, its heart resembles that
of a human embryo at three weeks of gestation and effects on the cardiovascular system can be easily
assessed in living zebrafish using the microscope [12]. Additionally, unlike mammals, organs and
tissues of zebrafish embryo do not depend on the cardiac output for oxygen delivery. Embryos rely
on oxygen diffusion through the skin from the swimming medium up to 14 days post-fertilization
(dpf) [13], thereby allowing a detailed analysis of animals with severe cardiovascular defects.

Previously studies have been shown that PCB126 exposure in zebrafish at high concentration (32 to
128 µg/L) produces oxidative stress [14,15]. However, there are contradictory data concerning whether
that is true at the low concentrations at which the phenotypic effect is still present [16]. The purpose of
the current study was to investigate if oxidative stress is a component of the developmental toxicity of
PCB126 in zebrafish at a low concentration level with established phenotypic cardiovascular effects.
For that reason, we have first characterized the cardiovascular effects of PCB126 in zebrafish embryos
and subsequently evaluated the potential for a set of redox modulator chemicals to reverse the effects
of PCB126.

2. Results

2.1. Concentration-Dependent Cardiovascular Toxicity of PCB126

Embryos were exposed to increasing concentrations of PCB126 (1, 5, 10, 25, and 50 nM) and
vehicle (embryo medium with 0.01% acetone) in order to characterize the concentration-dependent
cardiovascular toxicity of the compound. As Figure 1 shows, exposure to PCB126 produced a
concentration-dependent increase in the pericardial sac area and a reduction on the body length
of the larvae with a correlation coefficient of r = −0.78. Moreover, the heart of PCB126 exposed
embryos (25 nM) failed to loop correctly (observed as a linear heart tube), and at high concentrations
(50 nM) embryos also showed ventricular standstill (Supplementary video file 1).

To determine whether PCB126 exposure disrupted peripheral blood circulation, we examined the
maximum and minimum caudal aortic blood flow. As Figure 2 shows, exposure to PCB126 produced a
concentration dependent decrease in peripheral blood velocity as well as a reduction in the diameter
of caudal aortic vessel that resulted in a significantly decreased mean flow from concentration 1nM of
PCB126 (Table 1). The reduction on peripheral blood flow circulation also came with a reduction in red
blood cells passing through the caudal aortic vessel (Supplementary video file 2). Embryos exposed to
PCB126 showed a significantly reduced cardiac output but an unaltered heart rate at 3 dpf (Table 1).



Int. J. Mol. Sci. 2019, 20, 1065 3 of 15

Int. J. Mol. Sci. 2019, 20, x 2 of 14 

 

to other vertebrates (mammals and birds) and phenotypically resemble some birth defects in 
humans [6]. The hallmark endpoints after DLC exposure in fish consists of circulatory failure, 
edema, craniofacial malformation, and growth retardation leading to lethality [7,8]. 
3,3’,4,4’,5-Pentachlorobiphenyl (PCB126) is the most representative coplanar congener of dioxin-like 
PCBs and has similar structure and biological effects to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 
PCB-mediated dysfunction in the vascular endothelium has been linked to increased oxidative stress 
mediated through the activation of a cytochrome P450 oxidase, CYP1A, following the activation of 
the Ah receptor (AhR) [9]. While AhR activation seems to be a prerequisite for DLCs toxicity [10], the 
identity of the trigger gene or genes regulating teratogenesis remains unknown. 

Zebrafish (Danio rerio) has received increasing attention as an animal model for understanding 
chemical effects during development and to study diseases [11]. Particularly, its heart resembles that 
of a human embryo at three weeks of gestation and effects on the cardiovascular system can be easily 
assessed in living zebrafish using the microscope [12]. Additionally, unlike mammals, organs and 
tissues of zebrafish embryo do not depend on the cardiac output for oxygen delivery. Embryos rely 
on oxygen diffusion through the skin from the swimming medium up to 14 days post-fertilization 
(dpf) [13], thereby allowing a detailed analysis of animals with severe cardiovascular defects.  

Previously studies have been shown that PCB126 exposure in zebrafish at high concentration 
(32 to 128 µg/L) produces oxidative stress [14,15]. However, there are contradictory data concerning 
whether that is true at the low concentrations at which the phenotypic effect is still present [16]. The 
purpose of the current study was to investigate if oxidative stress is a component of the 
developmental toxicity of PCB126 in zebrafish at a low concentration level with established 
phenotypic cardiovascular effects. For that reason, we have first characterized the cardiovascular 
effects of PCB126 in zebrafish embryos and subsequently evaluated the potential for a set of redox 
modulator chemicals to reverse the effects of PCB126.  

2. Results 

2.1. Concentration-Dependent Cardiovascular Toxicity of PCB126 

Embryos were exposed to increasing concentrations of PCB126 (1, 5, 10, 25, and 50 nM) and 
vehicle (embryo medium with 0.01% acetone) in order to characterize the concentration-dependent 
cardiovascular toxicity of the compound. As Figure 1 shows, exposure to PCB126 produced a 
concentration-dependent increase in the pericardial sac area and a reduction on the body length of 
the larvae with a correlation coefficient of r = −0.78. Moreover, the heart of PCB126 exposed embryos 
(25 nM) failed to loop correctly (observed as a linear heart tube), and at high concentrations (50 nM) 
embryos also showed ventricular standstill (Supplementary video file 1).  

 
(a) 

Int. J. Mol. Sci. 2019, 20, x 3 of 14 

 

 
(b) 

Figure 1. Concentration-dependent morphological effects of PCB126 exposure: (a) Mean pericardial 
sac area and body length of embryos exposed to increased concentration of PCB126. Values are mean 
± SEM. Asterisks represent statistical significance at * p < 0.05, ** p < 0.01, and *** p < 0.001; n = 4 pools 
of five embryos (two biological replicates). (b) Representative images of embryos at 80 hpf exposed 
to increasing concentrations of PCB126 (Scale bar = 200 µm). 

To determine whether PCB126 exposure disrupted peripheral blood circulation, we examined 
the maximum and minimum caudal aortic blood flow. As Figure 2 shows, exposure to PCB126 
produced a concentration dependent decrease in peripheral blood velocity as well as a reduction in 
the diameter of caudal aortic vessel that resulted in a significantly decreased mean flow from 
concentration 1nM of PCB126 (Table 1). The reduction on peripheral blood flow circulation also 
came with a reduction in red blood cells passing through the caudal aortic vessel (Supplementary 
video file 2). Embryos exposed to PCB126 showed a significantly reduced cardiac output but an 
unaltered heart rate at 3 dpf (Table 1). 
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Figure 1. Concentration-dependent morphological effects of PCB126 exposure: (a) Mean pericardial
sac area and body length of embryos exposed to increased concentration of PCB126. Values are
mean ± SEM. Asterisks represent statistical significance at * p < 0.05, ** p < 0.01, and *** p < 0.001;
n = 4 pools of five embryos (two biological replicates). (b) Representative images of embryos at 80 hpf
exposed to increasing concentrations of PCB126 (Scale bar = 200 µm).
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Figure 2. Effects of PCB126 on peripheral blood flow. Maximum and minimum caudal aortic flow
velocity after exposure of embryos to PCB126. Vessel diameter plotted on secondary axis. Values are
mean ± SEM (n = 6 larvae). Asterisks represent statistical significance at * p < 0.05, ** p < 0.01, and
*** p < 0.001.

Table 1. PCB126 exposure decreased peripheral mean blood flow velocity from 1 nM, caused no change
in heart rate but significantly decreased cardiac output. The highest concentration tested (50 nM) could
not be measured due to the high reduction of blood cells. Values are mean ± SEM on n = 6 larvae.
Asterisks represent statistical significance at * p < 0.05, ** p < 0.01, and *** p < 0.001.

Treatment Maximum Blood
Flow (nL/min)

Minimum Blood
Flow (nL/min)

Heart Rate
(beats/min)

Cardiac Output
(nL/min)

Control 34.7 ± 6.8 5.2 ± 1.1 215.7 ± 3.4 47.0 ± 6.1
PCB 126 1nM 12.1 ± 0.7 * 3.2 ± 0.3 * 219.4 ± 5.7 35.1 ± 4.4
PCB 126 5 nM 4.7 ± 0.6 * 0.8 ± 0.1 * 215.0 ± 10.7 22.8 ± 1.4 **
PCB 126 10 nM 2.7 ± 1.6 * 0.4 ± 0.3 * 226.8 ± 17.0 14.1 ± 4.7 ***
PCB 126 25 nM 1.7 ± 1.6 * 0.1 ± 0.1 * 209.2 ± 5.8 22.0 ± 5.9 **

2.2. Influence of Redox-Modulators on the Cardiovascular Toxicity Induced by PCB126

Embryos were co-exposed to several redox-modulating chemicals (Table 2) to determine whether
a more reduced or oxidized redox level would alter the gross defects observed after PCB126 exposure
(pericardial effusion severity or body length). The concentration of PCB126 used was 25 nM,
concentration that was found to produce a fully and uniform phenotype in zebrafish using our
protocol. Each redox-modulating chemical was first tested independently at increasing concentrations
and the maximum tolerable concentration (MTC) was established and subsequently used in the
co-exposure experiments.

We attempted to modulate deformities by decreasing glutathione (GSH) levels with dimethyl
maleate (DEM) and increasing GSH pools with N-acetyl cysteine (NAC). Co-treatment with NAC
(100 µM) did not prevent deformities and co-treatment with DEM (0.05 µM) failed to worsen
deformities (Table 3). We also examined whether several antioxidants could modulate deformities
produced by PCB126. Co-treatment with lipoic acid (10 µM) did not ameliorate pericardial effusion
and growth of the PCB126 treated larvae at 3 dpf (Table 3), but produced a non-significant increase in
pericardial area compared to PCB126. A dual role of lipoic acid as antioxidant/pro-oxidant molecule
has already been described and could be related to such a result [17].
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Table 2. Overview of the chemicals used as modulators in the cardiac toxicity produced by PCB126.

Substance CAS Number MTC 1 (µM) Description

N-Acetyl-L-cysteine (NAC) 616-91-1 100 Glutathione precursor
Diethyl maleat (DEM) 141-05-9 0.05 Glutathione depletor
(±)-α-Lipoic acid 1077-28-7 10 Antioxidant and free radical scavenger
(±)-α-Tocopherol 10191-41-0 100 Antioxidant and peroxyl radical scavenger
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid (TROLOX) 53188-07-1 15 Water-soluble analogue of alpha-tocopherol

Quercetin 117-35-9 12 Flavonoid (mitochondrial ATPase and
phosphodiesterase inhibitor)

Nω-Nitro-L-arginine methyl ester
hydrochloride (L-NAME) 51298-62-5 100 Inhibitor of nitric oxide synthase

Sodium nitroprusside dihydrate (SNP) 13755-38-9 250 Nitric oxide donor
Indomethacin 53-86-1 30 Non-steroidal anti-inflammatory compound

Note: 1 Maximum tolerable concentration.

Table 3. Pericardial sac area and body length of larvae at 3 dpf exposed to PCB126 and co-exposed
to several redox-modulating chemicals. Data are presented as mean ± SEM on n = 3–5 pools of three
embryos. Different letters on top of the bars indicate statistically significant differences with p < 0.05.

Treatment Pericardial Sac Area
(% Control Vehicle area)

Body Length
(% Control Vehicle Length)

Vehicle control 100 ± 4.1 a 100 ± 1.1 a

DEM 50nM 128.7 ± 3.9 a 98.4 ± 0.5 a

PCB126 25 nM 329.5 ± 20.6 b 94.1 ± 0.9 b

PCB126 25 nM + DEM 50 nM 302.5 ± 10.8 b 93.7 ± 0.4 b

Vehicle control 100 ± 2.9 a 100 ± 1.2 a

NAC 100 µM 88.3 ± 8.2 a 101.2 ± 1.4 a

PCB126 25 nM 205.0 ± 21.5 b 94.1 ± 0.5 b

PCB126 25 nM + NAC 100 µM 216.5 ± 24.4 b 92.8 ± 0.9 b

Vehicle control 100 ± 4.9 a 100 ± 0.8 a

Lipoic acid 10 µM 102.9 ± 2.9 a 98.4 ± 1.0 a

PCB126 25 nM 271.6 ± 10.4 b 93.9 ± 0.1 b

PCB126 25 nM + lipoic acid 10 µM 318.9 ± 39.4 b 88.9 ± 0.8 b

Vehicle control 100 ± 3.1 a 100 ± 0.1 a

Quercetin 12 µM 118 ± 6.4 a 98.5 ± 0.6 a

PCB126 25 nM 350.5 ± 13.0 b 91.5 ± 0.5 b

PCB126 25 nM + quercetin 12 µM 340.3 ± 26.4 b 91.6 ± 1.0 b

Vehicle control 100 ± 10.1 a 100 ± 0.3 a

Indomethacin 30 µM 114.9 ± 1.7 a 96.5 ± 0.7 a

PCB126 25 nM 223.9 ± 19.2 b 92.3 ± 0.5 b

PCB126 25 nM + indomethacin 30 µM 246.9 ± 22.8 b 89.6 ± 1.3 b

Co-treatment with α-tocopherol (vitamin E liposoluble) at 100 µM ameliorated pericardial sac
area, but did not prevent PCB126 induction of pericardial effusion and shortening of body length
(Figure 3a). On the other hand, pericardial effusion and shortening of the body length was not
prevented by co-treatment with a soluble analogue of vitamin E (Trolox) at 15 µM (Figure 3b). Studies
showed that coplanar PCBs have proinflammatory effects on vascular endothelial cells [18] through
endothelial nitric oxide synthase (eNOS) signalling. Therefore, we attempted to modulate this effect by
co-exposing embryos to indomethacin, a non-steroidal anti-inflammatory compound, and quercetin, a
flavonoid with anti-inflammatory properties. Embryos co-exposed either to indomethacin (30 µM)
or quercetin (12 µM) still exhibited pericardial effusion and shortening of the body length at 3 dpf
compared to control group (Table 4). As shown in Figure 3c, co-exposure to the nitric oxide synthase
inhibitor, Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 µM), did not result in any
significant change in pericardial sac area and body length at 3 dpf. However, co-treatment with a
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nitric oxide donor, sodium nitroprusside (SNP, 250 µM), worsened the pericardial sac area but did not
significantly shorten body length.
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Figure 3. Pericardial sac area and body length of larvae at 80 hpf exposed to PCB126 and co-exposed
to (a) α-tocopherol (100 µM), (b) Trolox (15 µM), (c) L-NAME (100 µM), and SNP (250 µM). Data are
presented as mean ± SEM on n = 6–9 pools of three embryos. Different letters on top of the bars
indicate statistically significant differences with p < 0.05.
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2.3. Gene Expression Analysis of Oxidative Stress Related Genes

To determine the redox status of zebrafish embryo exposed to PCB126, gene expression of
several antioxidant genes was analyzed by quantitative RT-PCR. Alteration of the redox status was
examined in embryos treated with PCB126 at a concentration of 25 nM and after dysmorphogenesis
at 3 dpf. The targeted genes involved in the defense against oxidative stress (gpx1a, sod1, sod2, cat,
and gstp1), cyp1a, related to the AhR machinery, and hsp70 involved in the cellular stress response.
Cyp1a expression increased by nearly 200-fold in embryos exposed to PCB126. We also observed a
significant fold change induction of about 1.7 for hsp70 and gstp1 genes. For the remaining genes
(gpx1a, sod1, sod2, and cat), no alteration in expression was observed (Table 4).

Table 4. Expression of genes involved in the redox status of the embryo after exposure to PCB126
(25 nM) and after deformity development at 3 dpf. Relative expression was calculated respect the
housekeeping gene (gapdh) and control (0.01% acetone). Data are represented as mean ± SEM of
n = 3 pools of 15 embryos from different biological replicates. Asterisk indicates significant induction
compared to the vehicle control (p < 0.05).

Gene Fold Change

cyp1a 199.6 ± 62.1 *
hsp70 1.72 ± 0.2 *
gpx1a 1.21 ± 0.2
sod1 1.03 ± 0.07
sod2 1.02 ± 0.06
cat 0.91 ± 0.09

gstp1 1.74 ± 0.5 *

3. Discussion

The results of this study demonstrate that PCB126 developmental exposure elicits a
cardiovascular concentration-dependent toxicity in zebrafish embryos. PCB126 exposure leads to
a concentration-dependent increase in pericardial sac area, which is in accordance with previous
reports by Jönsson et al. [7], where craniofacial malformations, heart malformations (hypotrophy
and reduced looping), slower and weaker heartbeats, impaired circulation, and immobility were
also described. Our study also shows that PCB126 exposure leads to a concentration-dependent
shortened body length, being the LOAEC 5 nM of PCB126 (Figure 1). This reduction in body length
could suggests an impairment of the growth of the larva, but it is also an effect often observed when
there is a cardiovascular defect [19], and, in this case, a significant reduction in maximum blood
flow at concentrations not affecting body length was detected. An increased pericardial sac area was
moderately correlated (r = −0.78) with reduced body length.

Chemicals that are AhR agonists are known to reduce blood flow in trunk vessels of zebrafish
embryos at 72 hpf or later [20]. In our study, exposure to PCB126, a known AhR agonist, significantly
reduced peripheral blood circulation and aortic caudal vessel diameter in a concentration-dependent
way from concentration of 5 nM (Figure 2). Particularly, reduction in blood vessel diameter suggests
impairment in endothelial cell function. Considering that, hemodynamic changes play an important
role in blood vessel formation and changes in blood flow can lead to severe vascular distortion [21].
Grimes et al. [22] have already strongly suggested a link between hemodynamic forces and myocardial
dysmorphogenesis produced by PCB126. In line with this, the observed significant reduction on
peripheral blood flow circulation came together with a reduction in red blood cells passing through
the caudal aortic vessel (Supplementary video file 2), and cardiac malformation (no heart looping).
However, it is not possible to discern whether the PCB126-heart phenotype we observed is secondary to
the endocardial disruption and hemodynamic impairment or not. It should be noted that measurement
of peripheral blood flow provides more accurate information about the blood pumped by the heart
than measuring cardiac output. This is because the method used to measure cardiac output does not
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take into account a possible blood reflux between chambers. In any case, PCB126 exposure produced
a significant decrease in cardiac output from concentration of 5 nM (Table 3). This reduction in
cardiac output occurring at the same time was not related to an altered heart rate but to the abnormal
morphogenesis of the heart ventricle observed in PCB126 exposed embryos. Antkiewicz et al. [10] also
observed a significantly decreased stroke volume and cardiac output, with no effect on heart rate after
TCDD treatment. In our case, some treated embryos at high concentrations showed reflux of blood
between chambers or a contractile ventricle chamber without blood passing through it (Supplementary
video file 2) that made measurement of cardiac output difficult.

As mentioned before, PCB126 is a strong agonist for AhR, a ligand-activated cytosolic transcription
factor that induces the expression of a battery of genes involved in xenobiotic metabolism. The
activity of these genes contributes to the formation of reactive oxygen species that can subsequently
lead to cellular oxidative stress, lipid peroxidation, and DNA fragmentation [23]. Some studies
indicate that an increase in cellular oxidative stress and an imbalance in antioxidant status are
critical events in PCB-mediated induction of inflammatory genes and endothelial cell dysfunction [18].
Therefore, in this study we sought to determine the role of redox imbalance in mediating the cardiac
toxicity caused by PCB126 in the developing zebrafish. For that reason, embryos were exposed
to several redox modulating chemicals to demonstrate if oxidative stress is a component of the
developmental toxicity of PCB126. Nine redox modulating chemicals were tested in the zebrafish that
are known to modulate different redox mechanisms: increase or decrease in GSH pools (NAC [24]
and DEM [25], respectively), free radical scavengers (Lipoic acid [26], vitamin E [14], Trolox [26]),
anti-inflammatory agents (indomethacin [27], quercetin [28]), inhibitor of NO synthase (L-NAME [29]),
and a nitric oxide donor (SNP [30]). Among all the redox modulating chemicals tested we have
observed that PCB126 toxicity could only be modulated by vitamin E. We could observe only a partial
amelioration in the pericardial sac area and no significant effect in body length of larvae, in contrast
with what was observed in the study of Na et al. [14]. This difference could be due to differences in
experimental protocol. On the other hand, our results demonstrated that SNP, a nitric oxide donor,
worsened pericardial effusion induced by PCB126 exposure. Pelster et al. [29] demonstrated that the
vasodilator effect of NO contributes to changes in local blood flow, and modifications of shear stress.
Endothelial cells are able to convert mechanical stimuli into intracellular signals that affect cellular
functions (e.g., permeability or remodeling) [31]. Some studies have shown that PCB126 decreases
NO production and alters the expression of eNOS in human umbilical vein endothelial cells [32,33]
and increases endothelial production of the inflammatory mediator IL-6 [18]. Additionally, it has
been suggested that NO can induce COX activity and subsequent production of proinflammatory
prostaglandins [34]. Cyclooxygenase-2 (Cox-2) enzymes have been proposed to be involved in some
DLC-mediated toxicities [35]. Particularly, PCB126 showed a concentration dependent increase in
COX-2 expression [36]. Our results suggest that NO signalling pathway is involved in PCB126 induced
endothelial cell permeability dysfunction, although more studies with inhibitors or gene knockdown
specific for zebrafish COX-2 are required for further understanding the roles of zebrafish nitric oxide
and COX-2 involvement in the cardiotoxicity elicited by PCB126.

It is well established that PCB126 binds to the AhR and induces the expression of a battery of
genes (the AhR gene battery), including cyp1a. PCB126 has been shown to markedly contribute to
cellular oxidative stress in endothelial cells in vitro by inducing cyp1a activity and decreasing vitamin
E content [37]. Accordingly in our study, embryos exposed to PCB126 during 24 h showed a strong
induction of cyp1a at 3 dpf (Table 4). Our results are in line with previous reports [7] demonstrating
the largest fold change between basal and induced expression on day 3 (236 ± 34 fold the control).
Besides, our analysis shows significant fold induction for HSP70 gene after PCB126 exposure. Heat
shock proteins (HSPs) are a highly conserved, ubiquitously expressed family of stress response
proteins, which are expressed at low levels under normal physiological conditions. HSPs can function
as molecular chaperones, facilitating protein folding, preventing protein aggregation, or targeting
improperly folded proteins to specific degradative pathways [38]. Moreover, it has been demonstrated
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that HSP activity is required for physiological responses, such as endothelial cell migration and
blood vessel repair specifically, as hsp70 morphants of zebrafish have impaired vessel development
and sprouting [39]. On the other hand, the expression of genes related to the NRF2 pathway was
not altered after exposure to 25 nM of PCB126 at 3 dpf, but there was the upregulation of gstp1 by
PCB126. There are contradictory data concerning the role of NRF2 in regulation of phase II enzymes in
zebrafish [16,40,41]. Moreover, some studies have been shown that knockdown of gstp2 did not serve
as a protective function against the cardiac toxicity caused by PCB126 [42].

Although the production of PCBs has been strictly regulated in most industrialized countries since
the late 1970s, they are still prevalent in the environment due to their high persistence and resistance to
bio-degradation. The most abundant PCB congener in serum is usually PCB153, a congener that does
not display “dioxin-like” activity. As an approach to compare “dioxin-like” compound concentrations
in serum or breast milk with the concentrations used in this study, we have calculated the corresponding
toxic equivalent (TEQ). The total TEQ concentrations detected in these biological samples were in the
pg/L range, being the highest level in blood around 142.4 pg/L [43]. In contrast, our study is in the
range of 326-1630 ng/L. However, how the effect of concentrations in zebrafish embryos can be related
to appropriate effect levels in mammalian models is still a major issue for future research. In our study,
nominal concentrations were used and may represent a limitation. Under short-term exposures, a
steady state may only be reached for test substances with lower hydrophobicity and rarely reached for
more hydrophobic substances [44], leading to an underestimation of the apparent short-term toxicity
of PCB126. Therefore, the potential health risk for the developing human to “dioxin-like” compounds
still needs further investigation.

4. Materials and Methods

4.1. Zebrafish Maintenance and Egg Production

Adult female and male zebrafish were obtained from a commercial supplier (Pisciber, Barcelona)
and housed separately in a closed flow-through system in standardized dilution water (ISO, 1996;
2 mM CaCl2·2 H2O; 0.5 mM MgSO4·7 H2O; 0.75 mM NaHCO3; 0.07 mM KCl). Fish were maintained
at 26 ± 1 ◦C under a 14:10 light:dark cycle. The study was approved by the Ethic Committee for
Animal Experimentation of the University of Barcelona (398/14, Mai 2014) and by the Department
of Environment and Housing of the Generalitat de Catalunya with the license number DAAM 9967
(Mai, 2018).

Embryos were collected after natural spawning of adult zebrafish, as previously described [45].
Embryos used in the experiments were held in 0.3× Danieau’s solution (5.8 mM NaCl; 0.23 mM KCl;
0.13 mM MgSO4·7 H2O; 0.2 mM Ca(NO3)2; 5 mM HEPES; pH 7.4) at 27 ◦C and at 14:10 light:dark
cycle. All exposures were performed in glass crystallization dishes.

4.2. Exposure to PCB126

Groups of 25 embryos at approximately 8 h post-fertilization (hpf) were exposed to increasing
concentrations of PCB126 (Dr. Ehrenstorfer GmbH, Augsburg, Germany) or carrier solvent (0.01%
acetone, v/v) in 20 mL of 0.3× Danieau’s solution. After 24 h, the exposure test solution was removed
and replaced with fresh 0.3× Danieau’s solution. Embryos were held, with daily changes of the
medium, until 3 dpf.

4.3. Exposure to Redox Modulating Chemicals

Embryos were exposed to chemical modulators at 4 hpf and during the whole test until 3 dpf,
renewal of medium was done every 24 h. All redox modulating chemicals were dissolved in 0.3×
Danieau’s solution, except lipoic acid, α-tocopherol, and indomethacin that were initially prepared in
100% DMSO and subsequently diluted in embryo medium (0.05% DMSO, v/v). Trolox stock solution
was prepared at 2 mM in 0.3× Danieau’s solution and filtered (0.22-µm syringe filter) (GE Healthcare
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Whatman®, Chicago, Illinois, USA). The concentration was adjusted using absorption at 290 nm and
extinction coefficient of 2350/M/cm. A preliminary range finding test was performed in order to
determine the maximum tolerable concentration (Table 2), defined as the maximum concentration
tested that does not produce a significant increase in mortality or dysmorphogenesis. At 3 dpf,
induction of the pericardial sac area and body shortening was compared between embryos treated
with PCB126 alone and embryos co-treated with PCB126 chemical modulator.

4.4. Heart Rate

Cardiovascular function of embryos was evaluated by time-lapse recording using a high-speed
digital camera (Exilim, CASIO). Sequential images of the heart (480 frames per second –fps–) were
obtained with the embryo positioned on its side from the lateral position and with a duration of 5 s.
To avoid the movement of zebrafish embryo during recoding, embryos were anaesthetized by adding
tricaine to embryo medium and mounted in 3% methylcellulose on double depression slides. The final
concentration of tricaine was 0.004% (w/v), which has shown to not affect heart rate in zebrafish
embryos [46].

To quantify heartbeat in the zebrafish, video recording were analyzed with ImageJ [47]. A plot
of dynamic pixels was obtained by selecting an area of the heart ventricle with high deviation of
pixel intensity by means of the z projection function. The frequency as frames/beat was obtained
by analyzing the waveform of dynamic pixels by Short-term Fourier Transform using Statgraphics
software (Statpoint Technologies Inc., Virginia, Washington D.C., USA). Then, the heart beat frequency
(beats/min) was calculated taking into account the speed of video recording (480 fps).

4.5. Stroke Volume and Cardiac Output

To ensure that a comparable plane of focus was examined for ventricular analysis, zebrafish hearts
were imaged in a standardized lateral right position, with the ventricle clearly visible in the plane of
focus throughout the cardiac cycle. The atrium usually lay outside the plane of focus. Ventricular
performance of embryos was analyzed by identifying frames that captured ventricular end systole
and end diastole in the sequential still frames (as shown in [48]). From the ventricle, image major
and minor axes measurements were extracted and exported to an Excel spreadsheet. Calculation of
ventricle volume during systole and diastole was based on the formula for the volume of a prolate
spheroid (V = 4πab2/3), where “a” represents the major axe radius and “b” the minor axe radius of
the ventricle image. The stroke volume (SV), the volume of blood ejected by the ventricle in one heart
beat was calculated using the Equation (1).

SV (nl) = (end-diastolic volume - end-systolic volume) (1)

Cardiac output (CO), the volume of blood ejected by the heart in one minute, was calculated
using Equation (2).

CO (nl/min) = SV (nl) × heart rate (beats/min) (2)

4.6. Peripheral Blood Flow

To identify a reproducible location for analysis of blood circulation, the dorsal aorta adjacent
to the cloaca was chosen as a defined imaging landmark. Video recordings of the dorsal aorta at
240 fps were processed with ImageJ. A scan line was placed parallel on the blood flux on the stack
of images, and a series of lines were obtained whose slopes were inversely proportional to cellular
velocity. OrientationJ plugin [49] of ImageJ was used in order to calculate cellular velocity from the
scanned lines.
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4.7. Pericardial Sac Area and Body Length

To quantify the degree of increase in the pericardial sac area and body shortening, lateral images
were obtained for at least 10 larvae mounted in 3% methylcellulose. By tracing the boundaries of the
pericardial space with ImageJ software, the pixel area was obtained. For body length, a line starting at
the anterior-most point of the head and ending at the tail end was measured.

4.8. Quantitative RT-PCR

Total RNA was extracted from a pool of 15 embryos per sample homogenized zebrafish larvae
(3 dpf) using TRIZOL®reagent (Life Technologies S.A., Carlsbad, California, USA) according to the
manufacturer’s instructions. RNA quantity and quality was analyzed spectrophotometrically using
a NanoDrop ND1000 (NanoDrop Technologies, Wilmington, Delaware, USA). RNA samples were
stored at −80 ◦C until use. cDNA was produced from 2 µg of total DNAse treated RNA samples
using RevertAid™ Reverse Transcriptase (MBI Fermentas, Thermo Fisher Scientific, Inc., Waltham,
Massachusetts, USA) in 20 µL.

Real-time PCR reactions were carried out using the SensiMix SYBR Hi-ROX One-Step Kit
(Bioline Reagents Ltd., London, UK) and following manufacturer’s instructions. Amplifications
were performed in 384-well plates on an ABI 7900HT (AppliedBiosystems, Life Technologies S.A.,
Carlsbad, California, USA) real-time PCR machine at the Scientific and Technologic Center of UB
(CCITUB) under the following thermal cycle: initial denaturation for 10 min at 95 ◦C, 40 cycles of
denaturation for 10 s at 95 ◦C, annealing for 20 s at 55 ◦C, and elongation for 20 s at 72 ◦C. A final
denaturation was performed for 30 s at 95 ◦C. This was followed by generation of a melting curve,
starting from 60 ◦C to 95 ◦C. Temperature was raised in 0.5 ◦C increments, holding each temperature
for 7 s. Primer sequences were obtained from literature or designed using Primer3 program [50].
Primer sequences and accession numbers of all investigated genes are listed in Supplementary Table S1.
Gapdh gene was used as a housekeeping gene for qPCR normalization.

4.9. Statistics

Statistical analysis was performed with SPSS 15.0 (IBM, Chicago, USA). One-way analysis of
variance (ANOVA) followed by post hoc multi-comparison with Bonferroni’s test was used to analyze
homogeneous data of the continuous variables. Significance threshold was established at p < 0.05.

The comparative Ct method [51] was used to determine average fold induction of mRNA by
comparing the Ct of the target gene to that of the reference gen (Gapdh). The fold change obtained
for each biological replicate pool of 15 embryos was averaged for treatments. Statistical analysis was
performed with REST© software [52].

5. Conclusions

PCB126 exposure leads to a cardiovascular failure manifested by the development of pericardial
effusion, body shortening, altered peripheral blood flow, and cardiac performance in zebrafish larvae.
It is likely that PCB126 disrupts endothelial cell permeability and it seems that altered hemodynamic
forces could be implicated. However, the precise nature of this cellular dysfunction and how it leads
to abnormal heart morphology remains to be elucidated. The results further suggest that redox
modulation did not serve as a protective function against cardiovascular effects caused by PCB126 in
developing zebrafish. Oxidative stress may not be the primary factor contributing to the deformities
caused by low concentration of PCB126.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/5/
1065/s1.
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Abbreviations

CHD Congenital heart defects
DLC Dioxin-like polychlorinated biphenil
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
PCB126 3,3’,4,4’,5-Pentachlorobiphenyl
AhR Aryl hydrocarbon receptor
MTC Maximum tolerable concentration
GSH Glutathione
DEM Dimethyl maleate
NAC N-Acetyl-L-cysteine
TROLOX (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid
L-NAME Nω-Nitro-L-arginine methyl ester hydrochloride
SNP Sodium nitroprusside dihydrate
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