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Abstract: Immune-checkpoint blockades, suchas PD-1 monoclonal antibodies, have shown new
promising avenues to treat cancers. Failure responsesof many cancer patients to these agents have
led to a massive need for alternative strategies to optimize tumor immunotherapy. Currently, new
therapeutic developments involve peptide blocking strategies, as they have high stability and low
immunogenicity. Here, we have designed and synthesized a new peptide FITC-YT-16 to target PD-1.
We have studied FITC-YT-16 by various experiments, including Molecular Operating Environment
MOE modeling, purification testing by HPLC and LC mass, peptide/PD-1 conjugation and affinity
by microscale thermophoresis (MST), and T cell immune-fluorescence imaging by fluorescence
microscopy and flow cytometry. The peptide was tested for its ability to enhanceT cell activity against
tumor cell lines, including TE-13, A549, and MDA-MB-231. Lastly, we assessed T cell cytotoxicity
under peptide treatment. YT-16–PD-1 interaction showed a high binding affinity as a low energy
complex that was confirmed by MOE. Furthermore, the peptide purity and molecular weights
were 90.96% and 2344.66, respectively. MST revealed that FITC-YT-16 interacted with PD-1 at a Kd
value of 17.8 ± 2.6 nM. T cell imaging and flow cytometry revealed high affinity of FITC-YT-16 to
PD-1. Interestingly, FITC-YT-16 efficiently blocked PD-1 signaling pathways and promoted T cell
inflammatory responses by elevating IL-2 and INF-γ levels. Moreover, FITC-YT-16 has the ability to
activate T cell cytotoxicity. Therefore, FITC-YT-16 significantly enhanced T cell anti-tumor activity by
blocking PD-1–PD-L1 interactions.
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1. Introduction

Cancer is a major cause of public health problems worldwide. Its incidence is associated with
an increase in annual mortality [1–4]. T cells have potential to be stimulated by tumor cells, thus
triggering immune responses. They are activated through the connection of the T cell receptor (TCR)
with major histocompatibility complex (MHC) in antigen presenting cells (APC) and interaction of
the co-stimulatory molecules. Unfortunately, tumors not only avoid the immune system by down
regulating both co-stimulatory molecules and MHC, but also upregulate co-inhibitory molecules [5,6].
Expression and engagement of PD-1 and CTLA-4 with their ligands are associated with tumorigenesis
prognosis and massiveness [7]. PD-1 is an immune checkpoint molecule expressed on T cells. It is a
member of the CD28/B7/CTLA-4 family and is encoded by PD-1 gene placed on chromosome number
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2 at q37 band [5,8]. PD-1 counter-receptors PD-L1 and PD-L2 convey potent T cells co-inhibitory
signals [9]. In cancer, the upregulation of PD-L1 leads to down-regulation of T cell activity and may
assist tumor immune avoidance [10]. It was reported that cancer cells mediate T cells polarization
through PD-L1 (CD274) to down-regulate immunosurveillance and enhance tumor proliferation
by releasing of TGF-β, IL-10, and other regulatory cytokines [11,12]. Engagement of tumor PD-L1
withPD-1on T cells delivers a signal that attenuatesP13K/Akt, RAS/MEK/ERK, PKC-θ, and glycolysis
activation loop phosphorylation. Moreover, PD-L1 binding to PD-1 also contributes to ligand-induced
TCR down-modulation during antigen presentation to naive T cells [13–15].

Blocking of the interaction between PD-L1 or PD-L2 expressed on tumor cells and PD-1 on
the T-cells has potential application in regulating the immune response against cancers (Figure 1).
Obviously, in order to achieve optimum activation, the interactions of PD-1/PD-L1 orPD-1/PD-L2
needs to be blocked. Therapeutic antibodies against either PD-1 or PD-L1 are widely used to
repair handicapped T cells’ ability to proliferate, secrete cytokines, and kill tumor cells. Therefore,
implementation of therapeutic antibody blockade of either PD-L1 or PD-1 leads to increased antitumor
immunity [16–18]. Various monoclonal antibodies (mAb) have been approved for this aim, such
as Cemiplimab, Nivolumab, Pembrolizumab, Atezolizumab, Avelumab, and Durvalumab. These
antibodies block the PD-1/PD-L1 or PD-1/PD-L2 interactions to treat several types of tumors [19–23].
However, monoclonal antibodies have a number of potential disadvantages, which include high
production costs and immune-related adverse events (irAEs) that cause cytotoxicity, affecting
normal tissues. Indeed, the massive immunogenicity of mAbs virtually enhances autoimmune
reactions [7,8,13].

The field of medical peptides and small molecules is expanding and could be one of the future
medications in the treatment of diseases. Many studies have been concerned with the design, synthesis,
extraction, and evaluation of the effectiveness of such molecules. In recent years, peptide therapy
has become one of the promise candidates for drug development in cancer treatment and other
diseases [24–32]. Jolene L. Lau and Michael K. Dunn said that peptides represent one of the greatest
areas of pharmaceutical development, particularly for tumor treatment, metabolic disease, and
cardiovascular disease [33].

Peptides are a unique type of pharmaceutical compound and their molecular weights are
between those of proteins and small molecules [33]. Peptides have a number of properties, such
as exquisite sequence selectivity, noticeable efficacy, and low toxicity. Moreover, a large number
of peptides are currently available and identified, all of which positively participate in a diverse
range of physiological mechanisms, with roles as growth factors, neurotransmitters, ion channel
ligands, hormones, antimicrobials, and immunomodulators [34–37]. A novel peptide represents
an excellent starting point in drug development. In addition, peptide specificity and selectivity to
their target receptors, their sequence flexibility, and conjugation possibilities make them good drug
candidates [38,39]. Compared to large biomolecules, the peptide can penetrate deep tissue in the body.
Furthermore, peptides have minor immunogenicity, minimal toxicity, greater efficacy, and are relatively
cheap, easy to produce, and more easily stored than antibodies and recombinant proteins [38–44].
Small molecules and peptides were also reported to target PD1 or PD-L1 as antagonists and they
showed enhanced anti-tumor activity and less immune-related side effects [8,21,42].

In this study, we have designed a novel YT-16 sequence that targets PD-1 by computational peptide
design method [45] and prepared FITC-YT-16. To determine FITC-YT-16 peptide and PD-1 interactions,
a docking analysis was performed by Molecular Operating Environment (MOE 2009). FITC-labeled
peptide was produced by a chemical method on a solid-phase peptide synthesis (SPPS) [46]. Its purity
and molecular weight were evaluated by HPLC and mass spectrometry. Also, we have demonstrated
the interactions of FITC-YT-16/PD-1 by microscale thermophoresis (MST) analysis, cellular imaging,
and flow cytometry analysis. Furthermore, we confirmed that FITC-YT-16 can enhance T cell anti-tumor
activity by inducing greater cytokine secretion and improved cytotoxicity by in vitro experiments.
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such as (IL-2, IFN-γ) and enhanced cytotoxic activity. The functions of the interactions were also 
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Figure 1. Schematic drawing of the interactions between PD-1 on T cells and PD-L1/PD-L2 on tumor
cells. (A) PD-1/PD-L1 interaction in absence of YT-16 peptide accompanied by decreased T cell
proliferation, blocked cytokine secretion and inhibited cytotoxic activity. (B) PD-1/PD-L1 interaction in
presence of YT-16 accompanied by increased T cell proliferation, enhanced cytokine secretion such as
(IL-2, IFN-γ) and enhanced cytotoxic activity. The functions of the interactions were also summarized.

2. Results

2.1. Design of YT-16 and Its Interactions With PD-1

Based on the crystal structure of PD-1 and PD-L1, the Asn (68), Gln (75), Thr (76), Lys (78), Ile (126),
and Glu (136) in the PD-1 sequence were found to play a key role in PD-1/PD-L1 interactions. So, we
designed a virtual peptide library that can interact with PD-1 with potential affinity. These peptides
were designed based on the corresponding PD-L1 interacting fragment and the property of the five
accepting amino acids in the PD-1 molecule. The Asn (68), Gln (75), Thr (76), Lys (78), Ile (126), and Glu
(136) in PD-1 were selected and defined as accepting residues. Then, MOE 2009 was used to analyze
docking of the designed peptides in Table 1 with PD-1. The affinity between PD-1 and the designed
peptide is shown in Table 1. The peptide YT-16 (YRCMISYGGADYKCIT(C-C)) had the highest affinity.
The combination diagram of YT-16 and PD-1is shown in Figure 2. From Figure 2, it can be seen that
the N terminal part of YT-16 (YRCMISY) interacted with residues Ile (126) and Glu (136) of PD-1,
whereas the C terminal part of YT-16 (ADYKCIT) interacted with residues Asn (68), Gln (75), Thr (76),
and Lys (78) of PD-1. These simultaneous interactions benefit from the cyclic conformation of YT-16.
If YT-16 is a linear peptide, the simultaneous interactions may not be fulfilled. YT-16 was synthesized
for further evaluation.
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Table 1. Virtual screening of PD-1 and designed peptides.

Sequences Scoring

YRCMISYGGADYKCIT(C-C) −8.675
YRCMISPGGADYKCIT(C-C) −8.516
YRCMISYGGAEYKCIT(C-C) −8.502
YRCMISPGGAEYKCIT(C-C) −8.472
YRCMITYGGGDYKCIT(C-C) −8.591
YRCMITPGGGDYKCIT(C-C) −8.472
YRCMITYGGGEYKCIT(C-C) −8.328
YRCMITPGGGEYKCIT(C-C) −8.321
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Figure 2. Combination diagram of YT-16 and PD-1. PD-1 is shown in green and YT-16 is in magenta.
Panels A and B show the interactions seen from different angles.

2.2. Synthesis of FITC-YT-16

As mentioned above, peptide YT-16 (YRCMISYGGADYKCIT(C-C)) was designed with binding
specificity to human PD-1 by the computational peptide design method [28]. YT-16 was synthesized by
solid phase peptide synthesis using Fmoc-protected amino acids (GL Biochem Ltd, Shanghai, China),
and it was conjugated at the N terminus with fluorescein isothiocyanate isomer (FITC). In order to
avoid steric hindrance, an ε-aminocaproic acid residue (Acp) linker was used in between the YT-16
peptide and the FITC molecule (Figure 3).
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2.3. HPLC and LC-Mass

After synthesis, the peptide was prepared by cleavage off the resin, precipitation, and HPLC
purification. Then, FITC was conjugated to YT-16 via an Acp linker. HPLC detection of FITC-YT-16
purity was rated 90.96% as presented in Figure 4A. By electrospray ionization-mass spectrometry
analysis (ESI-MS), the main signal for FITC-YT-16 was at 1171.35 ([M − 2H]2−). The molecular weight
was calculated to be 2344.66 which is identical to the predicted molecular weight of FITC-YT-16
(Figure 4B).
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Figure 4. High-performance liquid chromatography (HPLC) and electrospray ionization-mass
spectrometry (ESI-MS) confirmed the purity and identification of FITC-YT-16. (A) The purity of
FITC-YT-16 was measured to be 90.96%. (B) ESI-MS measured the molecular weight to be 2344.66.

2.4. FITC-YT-16/PD-1 Affinity

Microscale thermophoresis (MST) is a powerful technique used to determine the bimolecular
interaction quantity. It depends on thermophoresis, the directed transfer of molecules in a temperature
gradient, which is based on a variety of molecular properties, including charge, size, conformation,
and hydration shell [47]. The experiment was performed on a Monolith NT.115 device with 233 nM
FITC-YT-16 and various concentrations of PD-1 protein at 20% MST power, 20% LED power, and
25 ◦C in a premium capillary device at 25 ◦C. The concentrations of PD-1 protein were from
0.78 nM to 3188.75 nM. As shown in Figure 5A, the difference of the fluorescence signal of the
ten capillaries was within 10%, indicating the sample loading amounts into the ten capillaries were
similar. The thermophoresis curves in Figure 5B were smooth without serrations, indicating that there
were no sample aggregations and the parameters set were in accordance with detection requirements.
The MST measurements revealed that FITC-YT-16 interacted with PD-1 at a dissociation constant (Kd)
value of 17.8 ± 2.6 nM, as shown in Figure 5C.
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Figure 5. MST-determined binding affinity between FITC-YT-16 and PD-1 protein. (A) Fluorescence
of the ten capillaries by capillary scan. (B) Thermophoresis curves. (C) Data Analysis of FITC-YT-16
and PD-1 thermophoresis. FITC-YT-16 bound with a high affinity to its target, human PD-1
(Kd = 17.8 ± 2.6 nM).

2.5. PD-1 and PD-L1 Expression

Interactions between PD-1 on T cells and PD-L1 on tumor cells generate inhibitory signals to
decrease T cell activity [48]. As the actions of PD-1 antagonist was based on the pre-requirement that it
blocks PD-1/PD-L1 interactions, we detected the expression of PD-L1 on tumor cells and selected those
PD-L1-expressing tumor cells to set up the in vitro experimental model and to evaluate the activity of
our PD-1 peptide antagonist. It was found that esophageal squamous cell carcinoma (TE-13), lung
carcinoma cell line (A549), and human breast adenocarcinoma (MDA-MB-231) highly express PD-L1
(Figure 6A). In addition, PD-1 was found to be abundantly expressed on activated T cells (Figure 6B).
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2.6. Fluorescence Imaging of FITC-YT-16 Binding to T Cells

Binding of FITC-YT-16 with PD-1 on T cell surfaces was first confirmed with detection under a
fluorescence microscope. T cell membrane was stained with fluorescent Dil (red color) and FITC-YT-16
(green color). If FITC-YT-16 interacts with PD-1 on the T cell surface and stains the membrane green,
merging with the red color of Dil yields a yellow color. T cells were activated by incubation of freshly



Int. J. Mol. Sci. 2019, 20, 572 7 of 19

isolated human T cells with human T-activator CD3/CD28 Dynabeads (Gibco, Life Technologies, Grand
Island, NY, USA) for 48 h at 37◦C. As shown in Figure 6, after staining activated T cell membrane with
Dil (red) and with anti-PD-1 peptide (green) and examination under a fluorescence microscope, Dil
stained the T cell membranes red and FITC-YT-16 stained T cells green. Their merge resulted in yellow,
which confirmed that FITC-YT-16 interacted with PD-1 on the T cell surface (Figure 7, lower case).
Furthermore, when we used Dil and FITC-YT-16 to stain unactivated T cells on which minimal PD-1
was expressed, Dil can still stain T cells whereas FITC-YT-16 was unable to stain unactivated T cells
and their merge did not result in yellow. This confirmed that the green color of FITC-YT-16 stained
activated T cells as a result of the specific binding of FITC-YT-16 with cell surface PD-1, rather than
nonspecific binding of FITC-YT-16 with other cell membrane components (Figure 7, upper case).
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flow cytometry analysis of the fluorescence signal after incubation with different concentrations of 
FITC-YT-16. As shown in Figure 8, activated T cells were incubated with 10, 100, or 1000 nM FITC-
YT-16 for 2 h. Isotype antibody was used as a control and to define the gate for positive 
fluorescence signal. After incubation with FITC-YT-16, the rates of T cells with positive fluorescence 
signal were 0.243, 1.64, and 61.1%. This experiment confirmed that FITC-YT-16 interacts with PD-1 
on T cells. 

Figure 7. Binding of FITC-YT-16 peptide to activated and unactivated T cells. 300 nM FITC-YT-16
(PD-1 antagonist peptide) was incubated with activated or unactivated T cells. T cells were treated
with Dil dye (red) and FITC-YT-16 peptide (green). The red color indicated T cell membrane, green
color stated binding of FITC labeled peptide with PD-1 on the cell membrane, and the merge of two
colors confirmed co-localization of FITC-YT-16 peptide and cell membrane (lower case). Scale bars
represent 25 µm.

2.7. Flow Cytometry Analysis of FITC-YT-16 Binding to T Cells

Binding of FITC-YT-16 with PD-1 on the surface of an activated T cell was also confirmed by
flow cytometry analysis of the fluorescence signal after incubation with different concentrations of
FITC-YT-16. As shown in Figure 8, activated T cells were incubated with 10, 100, or 1000 nM FITC-YT-16
for 2 h. Isotype antibody was used as a control and to define the gate for positive fluorescence signal.
After incubation with FITC-YT-16, the rates of T cells with positive fluorescence signal were 0.243, 1.64,
and 61.1%. This experiment confirmed that FITC-YT-16 interacts with PD-1 on T cells.
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Figure 8. Binding of FITC/YT-16 peptide with PD-1 on T cells. T cells were incubated with 10, 100, and
1000 nM FITC/YT-16 peptide at 37 ◦C for 2 h. Binding of FITC/YT-16 with PD-1 was detected with
flow cytometry technology. Isotype antibody was used as a control and to define the gate for positive
fluorescence signal.

2.8. In Vitro Activity of FITC-YT-16 Binding

2.8.1. Inhibition of T Cell Activity by PD-L1-Expressing Tumor Cells

Activated CD4 T cells can secret cytokines, e.g. IL-2 and IFN-γ, which stimulate the immune cells
for proliferation and activation. Therefore, in the experiment presented in Figures 9 and 10, we aim
to evaluate the effect of blocking the interactions between PD-1 and PD-L1 by FITC-YT-16 on T cell
activity, which is evaluated by measuring secreted IL-2 and IFN-γ levels in culture supernatant. In the
experiment in Figure 9, we first tried to find the tumor cell to T cell ratio under which condition the
levels of IL-2 and IFN-γ decreased significantly compared to the sample of T cells, and we did not
have to culture a large quantity of tumor cells. Based on this tumor cell to T cell ratio, we evaluated
the enhancing effect of FITC-YT-16 incubation on T cell activity by measuring IL-2 and IFN-γ levels in
the culture supernatant (Figure 10).

Logically, the incubation of PD-L1-expressing tumor cells with T cells was accompanied by
inhibition of T cell activity, e.g. inhibition of IL-2 and IFN-γ secretion by T cells. To evaluate the
activity of T cells, we co-cultured TE-13, A549, and MDA-MB-231 cells that highly express PD-L1
(Figure 6) with T cells in different ratios as presented in Table 2. This was confirmed by an experiment
in Figure 9. The ratio was tumor cell to T cell ratio. From Figure 9, co-culture of tumor cells with T cells
decreased the levels of IL-2 and IFN-γ secreted by T cells for all three-tumor cell lines. This inhibition
strengthened with the increase of tumor cell to T cell ratio. As presented in Figure 9A–C a tumor cell to
T cell ratio of 4:1 showed a significant reduction of IL-2 levels, in which case a relatively small number
of tumor cells were needed. However, the effect of a tumor cell to T cell ratio on INF-γ secretion
was less significant than IL-2 (Figure 9D–F). A tumor cell to T cell ratio of 16:1 showed a significant
reduction of both IL-2 and IFN-γ levels. These results indicated that tumor cell lines down-regulated
T cell pro-inflammatory cytokine secretions significantly at a tumor cell to T cell ratio of 16:1. This
ratio was used in the following FITC-YT-16 activity detection. For the samples with tumor cells (TE-13,



Int. J. Mol. Sci. 2019, 20, 572 9 of 19

A549 or MDA-MB-231) and without T cells, the levels of IL-2 and IFN-γ in cell culture were under the
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reduced IL-2 secretion; T cell culture without tumor cells was used as a negative control. Moreover, 
the same tumor cell lines at same mixing ratios with T cells also showed a significant reduction of 
IFN-γ levels in the culture systems as illustrated in (D–F). There were three replicates for each 
experimental condition. *p<0.05, **p<0.01 and ***p<0.001, compared with the control group of T cells. 
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systems which indicated that T cell activity was enhanced as shown in Figure 10 (A, B, C). This 
effect was confirmed by determination of significantly enhanced secretion of IFN-γ in the same 
culture systems as presented in Figure 10 (D, E, F). This suggested that T cell activity was recovered 
by blocking of PD-1/PD-L1 interaction by FITC-YT-16. Tumor cells with T cells in absence of FITC-
YT-16 were used as a negative control and tumor cells with T cells in presence of a commercially 
available PD-1/PD-L1 inhibitor 3 (a cyclic peptide) were used as a positive control.  

Figure 9. IL-2 and IFN-γ secretion by T cells in response to co-culture with different tumor cell to T
cell ratio. (A) TE-13 co-culture with T cells reduced IL-2 secretion, (B) A549 co-culture with T cells
significantly reduced IL-2 secretion, (C) MDA-MB-231co-culture with T cells also significantly reduced
IL-2 secretion; T cell culture without tumor cells was used as a negative control. Moreover, the same
tumor cell lines at same mixing ratios with T cells also showed a significant reduction of IFN-γ levels in
the culture systems as illustrated in (D–F). There were three replicates for each experimental condition.
* p < 0.05, ** p < 0.01 and *** p < 0.001, compared with the control group of T cells.

2.8.2. Increased T Cell Cytokine Secretion by FITC-YT-16 Blockage of PD-1/PD-L1 Interactions

From the illustrated experiment in Figure 9, a tumor cell to T cell ratio of 16:1 was used to
establish a platform to evaluate the effect of FITC-YT-16 incubation. These experiments showed
that PD-1 signaling blockage by FITC-YT-16 resulted in significantly enhanced pro-inflammatory
cytokines production as illustrated in Figure 10. IL-2 level was significantly increased in the culture
systems which indicated that T cell activity was enhanced as shown in Figure 10A–C. This effect
was confirmed by determination of significantly enhanced secretion of IFN-γ in the same culture
systems as presented in Figure 10D–F. This suggested that T cell activity was recovered by blocking of
PD-1/PD-L1 interaction by FITC-YT-16. Tumor cells with T cells in absence of FITC-YT-16 were used
as a negative control and tumor cells with T cells in presence of a commercially available PD-1/PD-L1
inhibitor 3 (a cyclic peptide) were used as a positive control.
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This result was confirmed by analysis of secreted INF-γ in the same culture systems, which showed 
significantly enhanced production of INF-γ cytokine (D–F). The test was done in comparison to 
tumor cell to T cell ratio without peptide as a negative control sample and PD-1/PD-L1 inhibitor 3 (a 
cyclic peptide) as a positive control. *p<0.05, **p<0.01, and ***p<0.001. 
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dependently increased with FITC-YT-16 concentration. The highest cytotoxicity was noticed with 16 
µMFITC-YT-16. Tumor cells with T cells in absence of FITC-YT-16 were used as a negative control 
and tumor cells with T cells in presence of a commercially available PD-1/PD-L1 inhibitor 3 were 
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Figure 10. Enhanced T cells secretion of IL-2 and IFN-γ by FITC-YT-16 blockage of PD-1/PD-L1
interaction. FITC-YT-16 loaded T cells were incubated with three tumor cell lines at a tumor cell to T
cell ratio of 16:1 with different FITC-YT-16 incubation concentrations (final concentrations of 1, 2, 4,
8, and 16 µM). Panels A, B, and C show significant elevated IL-2 levels with FITC-YT-16 incubation.
This result was confirmed by analysis of secreted INF-γ in the same culture systems, which showed
significantly enhanced production of INF-γ cytokine (D–F). The test was done in comparison to tumor
cell to T cell ratio without peptide as a negative control sample and PD-1/PD-L1 inhibitor 3 (a cyclic
peptide) as a positive control. * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.8.3. Lactate Dehydrogenase Release (LDH) Assay

The experiment in Figure 10 mainly evaluated the activation status of CD4+ T cells by detection
of IL-2 and INF-γ levels in the culture supernatant. The test in Figure 11 mainly evaluated the
enhanced cytotoxicity by CD8+ T cells by detection of lactate dehydrogenase (LDH) release in the
culture supernatant. Activated CD8 T cells can recognize tumor cells and kill tumor cells by means
of degranulation and Fas/FasL recognition. After the tumor cells were damaged, a cytoplasmic
enzyme with name lactate dehydrogenase (LDH) is released from damaged cells into the supernatant
and by measuring the levels of LDH, we can evaluate the cytotoxic effect of CD8 T cells. From
Figure 11, FITC-YT-16 significantly enhanced the release of LDH to the culture medium. We noticed
that blocking of T cell PD-1 enhanced T cell cytotoxicity, resulting in tumor cell recognition and killing.
This indicated that PD-1 inhibition by FITC-YT-16 not only enhanced cytokine secretion, but also
enhanced cellular cytotoxicity. In addition, we noticed that the cytotoxicity was dose-dependently
increased with FITC-YT-16 concentration. The highest cytotoxicity was noticed with 16 µMFITC-YT-16.
Tumor cells with T cells in absence of FITC-YT-16 were used as a negative control and tumor cells with
T cells in presence of a commercially available PD-1/PD-L1 inhibitor 3 were used as a positive control.
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16 and prepared FITC-YT-16 by a solid phase peptide synthesis method. FITC-YT-16 was assessed 
by HPLC (90.96%) and mass spectrophotometer (2344.66). FITC-YT-16 and targeted PD-1 showed 
conjugation activity in MOE analysis and a high-affinity value of 17.8±2.6 nM in MST analysis 
(Figure 5). The binding potential of a designed peptide to PD-1 was also confirmed by flow 
cytometry and T cell fluorescence imaging.  

In this project, three solid tumor cell lines TE-13, A549, and MDA-MB-231 with high expression 
of PD-L1 were individually co-cultured with T cells in presence of FITC-YT-16. These experiments 
confirmed that FITC-YT-16 is able to maintain T cell viability and promoted T cell inflammatory 
responses by elevating IL-2 and INF-γ secretion levels. Qiao Li. et al reported the Ar5Y_4 peptide, 
an anti-PD-1 peptide, acts to elevate IL-2 secretion levels, as did our peptide FITC-YT-16 [28]. On 
the other hand, Chang Hao, et al. demonstrated thatDPPA-1 peptide, a PD-L1 inhibitor, acts to 
inhibit PD-1/PD-L1 interaction [42]. Furthermore, the cytotoxic activity of T cells also increased 
remarkably in the LDH test. Our analysis showed that T cell activity was enhanced by FITC-YT-16 
incubation which indicated that PD-1/PD-L1 interaction is an important factor to inhibit T cell anti-
tumor responses and facilitate tumor proliferation. So, FITC-YT-16 blocking PD-1/PD-L1 
interactions increased T activity and activated their cytolysis potential and these effects were dose-
dependent. FITC-YT-16 peptide acts as a PD-1/PD-L1 blocker and enhanced T cell anti-tumor 
activity against several tumor cells including TE-13, A549, and MDA-MB-231. By MST assay, YT-16 

Figure 11. Enhancement of T cell cytotoxicity by FITC-YT-16 incubation. TE-13 cells were co-cultured
with effector T cells at a ratio of 16:1 in presence of different FITC-YT-16 concentrations. T cell
cytotoxicity was dose-dependently increased with FITC-YT-16 concentration. The highest cytotoxicity
was noticed with 16 µM FITC-YT-16. The test was done in comparison to tumor cell to T cell ratio
without peptide as a negative control sample and PD-1/PD-L1 inhibitor 3 as a positive control.
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Discussion

Engagement of PD-1 on T cells and PD-L1 on tumor cells transduces a signal that inhibits
T cell cytolysis, cytokine production, and proliferation. Several lines of evidence suggest that
PD-1 is a hot antitumor target on the surface of tumor-infiltrating T cells. High expression of
tumor PD-L1 showed strong association with high tumor prognosis, suggesting that PD-1 is a
key regulator of T cell immunosuppressive responses [49]. The PD-1 blocking strategy has been
extensively reported. It showed T cell function recovery that proved the therapeutic importance
of PD-1 targeting, however, most monoclonal antibodies against PD-1 show highly cytotoxic side
effects [7,13]. According to available reports, peptides targeting the PD-1/PD-L1 interaction are an
important and beneficial strategy for cancer treatment. The field of medical peptides may form the
basis for a novel immunomodulatory molecule. Furthermore, a peptide is a feasible platform on which
to create a specific PD-1/PD-L1 inhibitor [8,28,42].

A novel strategy to block the PD-1 pathway without side effects and high toxic effects and with
lower cost is needed. Therefore, we hypothesized that the designation of new peptide blocking
PD-1 could provide an effective therapeutic strategy. Here, we designed a PD-1 antagonist peptide
YT-16 and prepared FITC-YT-16 by a solid phase peptide synthesis method. FITC-YT-16 was assessed
by HPLC (90.96%) and mass spectrophotometer (2344.66). FITC-YT-16 and targeted PD-1 showed
conjugation activity in MOE analysis and a high-affinity value of 17.8 ± 2.6 nM in MST analysis
(Figure 5). The binding potential of a designed peptide to PD-1 was also confirmed by flow cytometry
and T cell fluorescence imaging.

In this project, three solid tumor cell lines TE-13, A549, and MDA-MB-231 with high expression
of PD-L1 were individually co-cultured with T cells in presence of FITC-YT-16. These experiments
confirmed that FITC-YT-16 is able to maintain T cell viability and promoted T cell inflammatory
responses by elevating IL-2 and INF-γ secretion levels. Qiao Li. et al reported the Ar5Y_4 peptide,
an anti-PD-1 peptide, acts to elevate IL-2 secretion levels, as did our peptide FITC-YT-16 [28]. On the
other hand, Chang Hao, et al. demonstrated that DPPA-1 peptide, a PD-L1 inhibitor, acts to inhibit
PD-1/PD-L1 interaction [42]. Furthermore, the cytotoxic activity of T cells also increased remarkably in
the LDH test. Our analysis showed that T cell activity was enhanced by FITC-YT-16 incubation which
indicated that PD-1/PD-L1 interaction is an important factor to inhibit T cell anti-tumor responses and
facilitate tumor proliferation. So, FITC-YT-16 blocking PD-1/PD-L1 interactions increased T activity
and activated their cytolysis potential and these effects were dose-dependent. FITC-YT-16 peptide acts
as a PD-1/PD-L1 blocker and enhanced T cell anti-tumor activity against several tumor cells including
TE-13, A549, and MDA-MB-231. By MST assay, YT-16 has a Kd value of 17.8 nM for its target PD-1.
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The Kd value of Ar5Y_4 peptide for PD-1 is 1.38 µM [29] and the Kd value of DPPA-1 for PD-L1 is
0.51 µM [43]. It is worthwhile to make further chemical modifications of YT-16, trying to increase its
affinity with the target molecule and, if possible, improve its in vivo stability.

In recent years, there has been a huge leap in the design, construction, efficacy, and marketing
of peptides [50–54]. The anti-tumor activity of PD-1 antagonist peptides, such as YT-16, should not
be limited by its single use. For example, the combination of anti-CTLA-4 and anti-PD-1 monoclonal
antibodies enhances their anti-tumor activity, although with high immune-related adverse events
(irAEs). This prompts us to construct a novel anti-CTLA-4/anti-PD-1 dual function peptide as a
combination therapy [55]. Also, the specific blockage of the PD-1 pathway enhances a chimeric antigen
receptor (CAR), leading to enhanced eradication of tumor cells [56]. Therefore, the YT-16 peptide may
be used as an immune function booster in combination with CAR-T therapy. Overall, the obtained
results demonstrated that the FITC-YT-16 peptide has high affinity to PD-1 and it can restore T cell
cytokine secretion and cytotoxicity functions of T cells.

4. Materials and Methods

4.1. Ethics Statement

All samples were collected under a protocol approved by the Ethics Committee of China
Pharmaceutical University (Permit Number: SYXK2012-0035, date of approval: 20 July 2012), following
written informed consent.

4.2. YT-16 Peptide Designed and Synthesis

Based on the crystal structure of PD-1 and PD-L1, we have designed a new trigger anti-PD-1
peptide with the sequence YRCMISYGGADYKCIT(C-C) by a computational peptide design
method [45]. Asn (68), Gln (75), Thr (76), Lys (78), Ile (126), and Glu (136) play a key role in the
relationship of PD-1 and PD-L1. So, we designed the virtual peptide library that can interact with PD-1.
Asn (68), Gln (75), Thr (76), Lys (78), Ile (126), and Glu (136) were selected. To determined YT-16/PD-1
affinity, molecular operating environment (MOE 2009) was used to perform a docking analysis. PD-1
sequence was obtained from Protein Data Bank (PDB ID: 3BIK). YT-16 peptide was modeled using the
homology model method. The predicted antagonist sequence was inserted into the three-dimensional
structures of PD-1 under activation of different active sites. The docking procedure predicted the
complex structures of interactions between the YT-16 peptide and PD-1, and then the affinity and
required energy complex were determined. In addition, all binding sites at the PD-1 structure’s core
and outer region were detected. It was synthesized on a solid phase peptide synthesizer (GL Biochem
Ltd, Shanghai, China) and the N-terminal of the peptide was labeled with fluorescein isothiocyanate
(FITC) via an Acp linker.

4.3. Purification and Identification of Peptide by HPLC and LC Mass

The FITC-YT-16 peptide was separated by reversed-phase liquid chromatography (HPLC) on a
Waters system using a 4.6×250 mm, Kromasil 100-5 C18 column (Varian Prostar HPLC system, CA,
USA). The mobile phase consisted of two solvents, A and B, run in gradient elution. Mobile phase A,
was 0.1% trifluoroacetic in acetonitrile, while 0.1% trifluoroacetic acid in water constituted the phase B.
The elution system was as follows: at 0–25 min, 70% of B; at 25–25.1 min, 45% of B and 25.1–30 min, 0%
of B. The flow rate was 1.0 mL/min and a 5 µL sample was loaded onto the column. The separated
components were detected at 220 nm.

To determine the molecular mass of the FITC labeled peptide, the chromatographic system
coupled to a Waters ZQ2000 mass spectrometer was used. The operating conditions were as follows:
mode, ESI negative; nebulizer gas flow, 1.5 L/min; CDL, −20.0 v; CDL temperature, 250 ◦C; block
temperature, 200 ◦C; probe bias, +4.5 kv. The peptide was lyophilized and stored at −20 ◦C until use
and reconstituted in phosphate buffered saline (PBS) solution for in vitro experiments.
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4.4. Microscale Thermophoresis (MST) Binding Assay

Microscale thermophoresis (MST) is a powerful technique used to determine the biomolecular
interactions quantity depends on the thermal motion [57]. Therefore, MST is able to describe
protein–peptide binding. Here, it was achieved with 233 nM FITC-YT-16 in 1 mM EDTA, 1 mM DTT,
10 mM sodium phosphate (pH 7.0), and 0.5 mM PMSF with PD-1 protein (Cloud-Clone Corp, USA) at
different concentrations (3188.75 nM, 1594.38 nM, 797.19 nM, 398.59 nM, 199.30 nM, 24.91 nM, 6.23 nM,
3.11 nM, 1.56 nM, and 0.78 nM), at 20% MST power and 20% LED power in premium capillaries
on a Monolith NT.115 device at 2–6 ◦C (NanoTemper Technologies, Munich, Germany). Analysis of
MST affinity was carried out using MST analysis software (MO. Affinity Analysis, Munich, Germany).
Monolith NTTM capillary “Premium coated” (NanoTemper Technologies, Munich, Germany) were
loaded with 4 µL sample. Then, tubes were installed to NanoTemper’s dedicator to test at 1480 nm.

4.5. T Cell Activity Assay

4.5.1. PBMCs Isolation and T Cell Isolation, Activation, and Culturing

To verify if FITC-YT-16 exerts a functional effect on human T cells, we assessed peptide
performance on freshly isolated T cells. Briefly, human peripheral blood mononuclear cells (PBMCs)
were isolated from healthy donor’s blood by density gradient centrifugation using Ficoll-Paque
PLUS (GE Healthcare, Little Chalfont, Buckinghamshire, UK)). In brief, blood was diluted at 1:1
with phosphate-buffered saline (PBS), layered on Ficoll-Paque and centrifuged at 2000× g for 20 min.
PBMCs were re-suspended in phosphate-buffered saline. Isolated T cells were immediately enriched
by magnetic microbeads positive selection (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany).
For stimulating and activating T cells, isolated T cells were cultured in 6 well-plate in RPMI-1640
medium with 10% fetal bovine serum (FBS), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Gibco,
Life Technologies, Grand Island, NY, USA). Then inoculated with human T-activator CD3/CD28
Dynabeads (Gibco, Life Technologies, Grand Island, NY, USA, USA) at a ratio of one bead to one
T cell for 24 h, supplemented with 50 IU/mL of recombinant human IL-2 (Novus Biologicals, Littleton,
CO, USA).

4.5.2. Fluorescence Imaging

Fluorescence microscopy allowed the investigation of the peptide interactions with activated
and unactivated T cells. FITC-labeled peptide proved to bind to PD-1 on the activated T cell
surface. T cells plated in 24-well culture plate and then treated with 1 mL 1% bovine serum albumin
(BSA) for 30 min at 37 ◦C. Next, the cells were incubated with 300 nM FITC-YT-16 peptide (final
concentration) at 37 ◦C for 1 h in dark condition. After incubation, cells were washed twice with
PBS and then stained by Dil dye for 10 min. Finally, T cells were collected, washed twice with PBS
and detected the binding of FITC-YT-16 peptide to PD-1 on activated and unactivated T cells surface
by fluorescence microscopy (OLYMPUS IX53, Tokyo, Japan). For detection of yellow and green
fluorescence, the excitation wavelength is 490–495 nm and the emission wavelength is 520–530 nm.
For detection of red fluorescence, the excitation wavelength is 549 nm and the emission wavelength is
565 nm.

4.5.3. Flow Cytometry Assay

To evaluate conjugation and affinity potential of the new designed FITC-YT-16 peptide to a PD-1,
we performed flow cytometry assay in comparison to IgG3 isotype as a negative control (Biolegend,
San Diego, CA, USA). Briefly, 1 × 105 T cells were co-cultured with different FITC-YT-16 peptide
concentrations (0, 10, 100, and 1000 nM). Thereafter, cultures were incubated under humid conditions,
5% CO2 and 37 ◦C for 2 h. Later, cells were collected, washed and then investigated by MACS Quant
flow cytometer (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). Results were analyzed by
FlowJo software version 7.6.1 (FlowJo LLC, Ashland, USA).
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4.5.4. Tumor Cell Lines and Cell Culture

Esophageal squamous cell carcinoma (TE-13), lung carcinoma cell line (A549), human breast
adenocarcinoma (MDA-MB-231) were purchased from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). Tumor cells were cultured in Dulbecco’s modified Eagle medium (DMEM)
containing 100 µg/mL streptomycin, 50 IU/ml penicillin, 2200 µg/mL NaHCO3 and 10% (v/v) fetal
bovine serum (FBS) (Gibco, Life Technologies, Grand Island, NY, USA), and incubated at 5% CO2 in a
humidified incubator at 37 ◦C.

4.5.5. Western Blot Analysis of Protein Expressions

Western blot was performed as previously described [26]. It was performed to analyze the
protein expression in cells. Tumor cells and T cells were collected and washed twice with ice-cold
PBS. Cells were lysed in RIPA lysis buffer which contains PMSF in ratio of 99: 1 (v/v) (Wanleibio
Co. Ltd, Liaoning, China) in ice for 30 min according to the manufacturer’s instructions. Then
the supernatant was collected by centrifugation at 12,000× g for 15 min at 4 ◦C. The concentrated
protein was separated on a 10% SDS-polyacrylamide gel, and the protein bands were transferred
to polyvinylidene fluoride (PVDF) membrane. Thereafter, membranes were blocked by incubating
with 5% skim milk in TBST buffer for 2 h and incubated with specific primary antibodies (Abcam,
Cambridge, MA, USA) with gentle agitation overnight at 4 ◦C. After that, the membranes were
washed three times with TBST buffer and incubated at room temperature for 1.5 h with horseradish
peroxidase-conjugated secondary antibody (Wuhan Servicebio Technology Co. Ltd, Wuhan, China),
and then the membranes were washed by TBST. Finally, protein bands were visualized with an
enhanced chemiluminescence detection kit (ECL, Millipore Corporation, Billerica, MA, USA).

4.5.6. Cytokine Production Test by ELISA

Production of cytokines is an important indicator to evaluate the function of T cells [28]. Concisely,
targeted cells (tumor cells) cells co-cultured with effectors cells (T cells) at a different ratio as illustrated
in Table 2. The cells were co-cultured in a 96-well round-bottomed plate (Thermo Scientific™) using
200 µL RPMI-1640 and incubated at 37 ◦C, 95% humidity and 5% CO2 for 24 h. Then, the test plate
was centrifuged at 1500 rpm for 20 min. Afterward, the supernatants were collected and IFN-γ and
IL-2 levels were measured at 450 nm by using ELISA kit (MultiSciences Lianke Biotech Co., Ltd.
Hangzhou, China).

Table 2. The ratio of target to effector cells.

Ratio Targeted (Tumor Cells) Number Effectors Cells (T Cells) Number

64:1 1.28 × 107 2 × 105

32:1 6.4 × 106 2 × 105

16:1 3.2 × 106 2 × 105

8:1 1.6 × 106 2 × 105

4:1 8 × 105 2 × 105

As presented in Table 2, we performed experiments to select the proper ratio of the tumor cell to
T cell, and we analyzed the secreted cytokines. Tumor cells to T cells ratio (16:1) revealed a significant
of cytokine secretion as showed in Figure 9. Thereafter it was selected to detect FITC-YT-16 efficacy.
Briefly, targeted (Tumor) cells co-cultured with effectors (T) cells at ratio 16:1 in the presence of different
FITC-YT-16 concentrations (1, 2, 4, 8, and 16 µM) on a 96-well round bottom plate and incubated 24 h
at 37 ◦C in the presence of 5% CO2. The supernatant was collected by test plate centrifugation at
1500 rpm for 20min. ELISA plates (MultiSciences Lianke Biotech Co., Ltd. Hangzhou, China) were
used to evaluate IL-2 and INF-γ levels. It was performed using a 10 µL PD-1/PD-L1 inhibitor 3 cyclic
peptide (Selleck Chemicals, Houston, TX, USA) as a positive control and a mixture of the tumor to



Int. J. Mol. Sci. 2019, 20, 572 15 of 19

T cell (16:1 ratio) in absence of FITC-YT-16 as a negative control. Three replicates of each experimental
condition were performed. GraphPad software (version 5.01; GraphPad Inc. La Jolla, CA, USA) was
used to analyze the results.

4.5.7. Lactate Dehydrogenase (LDH) Release Assay

Effect of FITC-YT-16 peptide on T cell cytotoxicity was detected by measuring the release of a
cytoplasmic enzyme, lactate dehydrogenase (LDH), from damaged cells into the supernatant by using
a colorimetric assay according to cytotoxicity detection kit (Cayman Chemical, Ann Arbor, MI, USA).
TE-13 and T cells were plated on a 96-well round bottom plate. Concisely, 2 × 105 T cells and 3.2 × 106

TE-13 cells were cultured in a 96-well round-bottom plate in RPMI-1640 medium, treated with different
concentrations of FITC-YT-16 (1, 2, 4, 8, and 16 µM) and incubated overnight at 37 ◦C in the presence of
5% CO2. After the incubation, the test plate was centrifuged at 1500 rpm for 20 min. The supernatant
was transferred to a new 96-well assay plate and the LDH reaction solution was added to each well
and incubated for 30 min at 37 ◦C before the absorbance was read at 490 nm. The incubated cells
in medium without peptide served as a negative control and PD-1/PD-L1 inhibitor 3 cyclic peptide
(Selleck Chemicals, Houston, TX, USA) as a positive control. Triplicate wells were averaged and the
percentage of specific lysis was calculated by the following equation:

% Cytotoxicity =

[
Experimental value A490 − Spontaneous release A490
Maximum release A490 − Spontaneous release A490

]
∗ 100

4.6. Statistical Analysis

The data were analyzed by GraphPad software (version 5.01; GraphPad Inc. La Jolla, CA, USA).
The results were expressed as means ± SD and p-values, 0.05 were considered to be statistically
significant (* p < 0.05; ** p < 0.01; *** p < 0.001).

5. Conclusions

In summary, we designed and synthesized a novel anti-PD-1 peptide. It has a high affinity to PD-1
and efficiently binds to PD-1-expressing activated T cells. It also efficiently enhanced the anti-tumor
activity of activated T cells by enhancing cytokine secretion and their cytotoxic effect. Although it is
too early to use FITC-YT-16 peptide as a strategy to treat tumors by blocking PD-1 pathway, it provides
another example proving the concept that blocking PD-1/PD-L1 interactions by an antagonist peptide
can enhance the anti-tumor activity of T cells, and this peptide may facilitate the evaluation of its
combined use with an antagonist of other immune checkpoint molecules, such as CTLA-4, or even its
use in combination with CAR-T cell strategy. Further modifications of this peptide are worthwhile to
obtain a new peptide with higher affinity to its target, PD-1, and better bioavailability.
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Abbreviations

AP-1 Activator protein 1
APC Antigen-presenting cell
Acp ε-aminocaproic acid residue
BSA Bovine serum albumin
CTL Cytotoxic T lymphocyte
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
DMEM Dulbecco’s modified Eagle medium
DTT Dithiothreitol
ECL Enhanced chemiluminescence
EDTA Ethylenediaminetetraacetic acid
ELISA Enzyme-linked immunosorbent assay
FBS Fetal bovine serum
FITC Fluorescein isothiocyanate
HPLC High-performance liquid chromatography
irAEs Immune-related adverse events
IL-2 Interleukin 2
IFN-γ Interferon-gamma
IU International unit
MST Microscale thermophoresis
LDH Lactate dehydrogenase
mAb Monoclonal antibody
MHC Majorhistocompatibilitycomplex
MOE Molecular operating environment
NF-κB Nuclear factor kappa-B
PBMCs Peripheral blood mononuclear cells
PBS Phosphate buffered saline
PD-1 Programmedcelldeathprotein1
PD-L1 Programmeddeath-ligand1
PD-L2 Programmeddeath-ligand2
PVDF Polyvinylidene fluoride
SPPS Solid-phase peptide synthesis
TBST Tris-buffered saline solution with 0.05% Tween
TCR T cell receptor
PMSF Phenylmethanesulfonyl fluoride
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