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Abstract: This study explicates molecular insights commencing Self-Incompatibility (SI) and CC
(cross-compatibility/fertilization) in self (SP) and cross (CP) pollinated pistils of tea. The fluorescence
microscopy analysis revealed ceased/deviated pollen tubes in SP, while successful fertilization
occurred in CP at 48 HAP. Global transcriptome sequencing of SP and CP pistils generated 109.7
million reads with overall 77.9% mapping rate to draft tea genome. Furthermore, concatenated
de novo assembly resulted into 48,163 transcripts. Functional annotations and enrichment analysis
(KEGG & GO) resulted into 3793 differentially expressed genes (DEGs). Among these, de novo
and reference-based expression analysis identified 195 DEGs involved in pollen-pistil interaction.
Interestingly, the presence of 182 genes [PT germination & elongation (67), S-locus (11), fertilization
(43), disease resistance protein (30) and abscission (31)] in a major hub of the protein-protein
interactome network suggests a complex signaling cascade commencing SI/CC. Furthermore,
tissue-specific qRT-PCR analysis affirmed the localized expression of 42 DE putative key candidates
in stigma-style and ovary, and suggested that LSI initiated in style and was sustained up to
ovary with the active involvement of csRNS, SRKs & SKIPs during SP. Nonetheless, COBL10,
RALF, FERONIA-rlk, LLG and MAPKs were possibly facilitating fertilization. The current study
comprehensively unravels molecular insights of phase-specific pollen-pistil interaction during SI and
fertilization, which can be utilized to enhance breeding efficiency and genetic improvement in tea.
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1. Introduction

The purpose of pollination is fertilization and seed production to secure future survivability.
Charles Darwin pioneered studies on the phenomenon of self-incompatibility in flowering plants
“which are completely sterile with their own pollen, but fertile with that of any other individual
of same species” [1]. This incapacity for self-pollination impeding self-fertilization is defined
as self-incompatibility (SI). It is a genetically controlled mechanism that predominantly exists in
flowering plants to overcome inbreeding depression and provides a high level of heterozygosity [2].
Self-incompatible plants have evolved genetic systems to prevent self-fertilization by recognition
and rejection of pollen/pollen tube (PT) expressing the same allelic specificity either with pistils
(pollen-pistil incompatibility) or ovular vicinity (ovular incompatibility/late-acting incompatibility),
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and post-fertilization mortality (post-zygotic incompatibility), inhibiting seed set [3]. Depending on the
genetic control system, SI may be homomorphic or heteromorphic under the control of sporophytic or
gametophytic conditions, and is categorized into three mechanisms, namely homomorphic sporophytic,
homomorphic gametophytic and heteromorphic self-incompatibility [4,5].

Although SI has been widely studied in various angiosperms, nevertheless, molecular
insights remained limited to Brassicaceae, Plantaginaceae, Rosaceae, Solanaceae and Papaveraceae.
Among these, Brassicaceae possesses Sporophytic Self-Incompatibility (SSI), wherein, S-alleles of both
the parents determine pollen’s compatibility [6]. The mechanism is controlled by a tightly linked
allele of stigma-specific S-receptor kinase (SRK) and pollen-specific S-locus cysteine-rich protein
(SCR)/s-locus protein 11 (SP11), often referred as S haplotype [7]. The pollen germination in plants
with similar S-haplotype is obstructed by inhibition of a stigmatic compatibility factor, Exo70A1 by
regulating the pollen hydration via water transport from papilla cells in stigma to facilitate the pollen
germination [8].

The members of Plantaginaceae, Rosaceae & Solanaceae exhibit Gametophytic Self-Incompatibility
(GSI), wherein the female determinant S-RNase acts as a cytotoxin inhibiting pollen with similar
S-allele. A group of pollen determinant S-locus F-box (SLF/SCF complex) found in the vicinity
of S-RNase gene in Petunia was controlling the pollen specificity commencing for either GSI or
fertilization/cross-compatibility (CC) [9]. Furthermore, non-self S-RNase were targeted by pollen
specific SCF complex and undergoes ubiquitin-mediated degradation inside the cross PT, while self
S-RNase were not blocked by SCFs, subsequently degrading the pollen’s RNA and arresting PT
growth [10]. Additionally, the roles of Pectin methyl esterase (PME) and pectin methyl esterase
inhibitors (PMEI) were also reported in GSI in Solanum species [11]. Another type of GSI is reported
in Papaveraceae, wherein Ca2+ mediated programmed cell death (PCD) occurs in self PT, preventing
fertilization [12]. A recent transcriptome study in Pyrus species indicated a role of ATPase in SI through
the calcium signaling pathway during the onset of pollination [13]. Moreover, late acting pre-zygotic SI
or ovarian SI has been predominantly reported in Winteraceae, Theaceae, Malvaceae, Apocynaceae and
Bignoniaceae families (eudicots); and Velloziaceae, Iridaceae, Amaryllidaceae and Xanthorrhoeaceae
in monocots [4,14]. In some plant species like Melaleuca alternifolia, Acacia retinodes and Theobroma cacao,
the PT normally grows up to ovary but failed to penetrate the ovule; while Asclepiassyriaca and
Spathodea campanulate have been reported with post-zygotic LSI having abnormal/no seed set [15,16].

Tea (Camellia sinensis (L) Kuntze), indigenous to India and China, has been among the most
profitable cash-crop across the globe. It is chiefly used as a ‘health/energy drink’ due to its ability
to accumulate beneficial ingredients (mainly polyphenols) [17,18]. Belonging to family Theaceae,
commercially important tea species have been classified into Chinese (Camellia sinensis var. sinensis),
Assam (Camellia sinensis var. assamica) and Cambod (Camellia sinensis var. assamica subssp. lasiocalyx)
forms of tea [19]. Due to tea’s high economic value, breeding efforts have been made for its genetic
improvement, though these efforts are still incomplete due to certain bottlenecks such as a high
outcrossing nature (allogamy), profuse phenotypic variation, perennial, long gestation periods,
high inbreeding depression and self-incompatibility contributing to tremendous heterozygosity in
tea [20,21]. Hence, conventional clonal propagation is preferred over natural propagation to maintain
the quality lines. Considering the multiple advantages of cost-effective next-generation sequencing
(NGS) technologies for molecular dissection of complex traits [22,23], an earlier study suggested
involvement of the SCF complex and S-RNase during SI in the style [24]. Furthermore, investigations
of ion components in self and cross pollinated pistils indicated the role of Ca+2 and K+ signal during
SI [25]. Additionally, microscopy studies revealed LSI or ovarian sterility with pollen tube growth
arrest in the SP ovary [26]. However, being a novel SI system, limited information is available
regarding molecular insights regulating LSI response due to unidentified pollen/pistil factor having
an important role in SI/CC reactions in tea [25,26]. In the current study, novel candidates involved
in pollen-pistil interaction (LSI & fertilization) were identified by comparing the transcriptome of
self-(SP) and cross-pollinated (CP) pistils in tea using high-throughput NGS technology. Furthermore,
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tissue-specific relative expression (style vs. ovary) of key genes provides a better understanding of the
spatial transcriptional changes throughout the pistil during LSI. The results generated in this study
elucidates important insights to understand the molecular mechanisms of LSI in light of fertilization
in tea.

2. Results

2.1. Field Study and Microscopy Analysis

Pistil of both accessions (SA-6 and T78) possess wet type stigma with an ascending type style
and syncarpous superior ovary [27]. The 24 h after Pollination (HAP) pistils were observed with
PTs elongation up to the terminal region of style towards ovary in each case (Figure 1A). At 48 HAP
Cross Pollinated pistils (CP), higher abundance of PT density and embryo sac with infiltrating PTs
was observed in style and ovary, respectively (Figure 1B,C). In contrast, 48 HAP “Self-pollinated
SA-6” (SP_S) and “Self-pollinated T78” (SP_T) exhibited less PT density in style with ceased/deviated
PT towards integuments or other connective tissues in ovary (Figure 1B,C). A significant number of
fertilized ovules (~97%) were recorded in reciprocal crosses of CP ovaries (SxT & TxS) at 48 HAP, while
being insignificant in SP_S (1.1%) and SP_T (1.6%). However, a significant number of ovaries with
abnormal PT behavior (ceased/deviated) near the micropyle in SP_S (98.8%) and SP_T (98.4%) was
observed (Figure 1E and Table S1). Furthermore, a field study revealed ~60% fruit set at 180 Days
after Pollination (DAP), and a seed set was observed at 360 DAP in both CP pistils (Figure 1D).
In contrast, abortive ovules were also observed at 144 HAP in SP pistils [Figure 1C(c,f)]. Considering
the microscopy inferences, 48 HAP was found to be an appropriate time to capture both fertilization and
self-incompatible interactions for molecular analysis in our study. Additionally, a significant number
of fertilization events with a strong positive correlation was recorded in both the reciprocal crosses
(SxT and TxS) at 48 HAP, therefore, a single cross SxT of CP was utilized for transcriptome analysis.
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Figure 1. Pollen tube (PT) growth in self-pollinated pistil (SP) and cross-pollinated pistil (CP). (A) PT 
elongation in stigma (a–c), mid stylar region (d–f) and terminal stylar region (g–i) at 24 HAP SP and 
CP style. (B) PT growth in stigma (a–c), mid stylar region (d–f) and terminal stylar region (g–i) at 48 
HAP SP and CP style. (C) PTs cessation (a,d,e) and deviation (b) at 48 HAP with abortive ovules (c,f) 
at 144 HAP in SP ovaries; PT (callose fluorescence) inside ovules (g), PTs infiltrating embryo sac (h), 
fertilized ovule with degenerated synergid (i) at 48 HAP CP ovaries. (D) 180 DAP fruit morphology 
and anatomy in CP pistil (a), 360 DAP seed morphology in CP pistil (b). nu represents nucellus, EA: 
Egg apparatus, in: integuments, ii: inner integument, oi: outer integument, mi: micropyle, sy: 
synergid, dsy: degenerated synergid, EC: Egg Cell, LEN: liquid endosperm, loc: locule, SC: seed coat 
(E) Graphical representation of microscopy inferences showing number fertilized ovules, number of 
ovules with PT deviation and number of ovules with PT cessation near micropyle at 48 HAP SP and 
CP pistils. 

2.2. Illumina Sequencing, Sequence Assembly and Functional Annotation 

Based on microscopy inferences, cDNA libraries of self (SP) and cross-pollinated CP pistils were 
sequenced to surmise the global molecular insights of pollen tube-pistil interaction. Overall, 91.2 

Figure 1. Pollen tube (PT) growth in self-pollinated pistil (SP) and cross-pollinated pistil (CP). (A) PT
elongation in stigma (a–c), mid stylar region (d–f) and terminal stylar region (g–i) at 24 HAP SP and
CP style. (B) PT growth in stigma (a–c), mid stylar region (d–f) and terminal stylar region (g–i) at 48
HAP SP and CP style. (C) PTs cessation (a,d,e) and deviation (b) at 48 HAP with abortive ovules (c,f)
at 144 HAP in SP ovaries; PT (callose fluorescence) inside ovules (g), PTs infiltrating embryo sac (h),
fertilized ovule with degenerated synergid (i) at 48 HAP CP ovaries. (D) 180 DAP fruit morphology
and anatomy in CP pistil (a), 360 DAP seed morphology in CP pistil (b). nu represents nucellus,
EA: Egg apparatus, in: integuments, ii: inner integument, oi: outer integument, mi: micropyle, sy:
synergid, dsy: degenerated synergid, EC: Egg Cell, LEN: liquid endosperm, loc: locule, SC: seed coat
(E) Graphical representation of microscopy inferences showing number fertilized ovules, number of
ovules with PT deviation and number of ovules with PT cessation near micropyle at 48 HAP SP and
CP pistils.

2.2. Illumina Sequencing, Sequence Assembly and Functional Annotation

Based on microscopy inferences, cDNA libraries of self (SP) and cross-pollinated CP pistils
were sequenced to surmise the global molecular insights of pollen tube-pistil interaction. Overall,
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91.2 million filtered reads were obtained after quality filtering of 109.7 million raw reads (Figure S1).
The de novo assembly of high-quality reads yielded 51,489 (average length: 543 bp; N50:719 bp) and
68,176 (average length: 776 bp; N50:960 bp) transcripts using CLC genomic workbench and TRINITY,
respectively (Table S2). Furthermore, the assembled transcripts obtained from both assemblers were
concatenated and clustered into 48,163 high-quality non-redundant (NR) transcripts. Additionally,
reference-based assembly resulted in a 77.9% overall mapping rate of filtered reads (SP_S, 81.1%;
CP, 77.9% and SP_T, 74.7%) with the tea draft genome [28].

To obtain the global functional insights of assembled transcripts, sequence homology search
(BLASTx) was performed with various publicly available protein databases annotating 35,136 (73%),
33,017 (68.56%), 26,945 (55.9%) and 31,798 (66.02%) transcripts with NCBI’s nr, EggNOG, Swiss-Prot
and TAIR10, respectively. The gene ontology (GO) annotation identified 23,996 transcripts assigned
with 82,326 GO terms and classified them into the biological process (52%; 17 sub-categories), molecular
function (22%; 7 sub-categories) & cellular component (26%; 8 sub-categories) (Table S3 and Figure S2a).
Furthermore, a sequence search with Plant-TFDB resulted into 17,760 (36.56%) transcripts representing
58 transcription factors families. Among these, transcripts encoding basic helix-loop-helix transcription
factor (bHLH) were the most abundant (2429 transcripts) followed by NAC (1663), MYB-related (1584),
ERF (1278) and C2H2 (1038), (Figure S2b). Moreover, 378 pathways representing “metabolism” (44.5%),
“genetic information & processing” (46.7%) and “signaling & cellular processes” (8.8%) exhibited
significant enrichment in the KEGG pathway (Figure S2c).

2.3. Global Transcripts Expression Dynamics and Gene Ontology Enrichment Analysis

To elucidate molecular insights and key regulators involved in SI and fertilization, differential
gene expression (DGE) of self (SP_S and SP_T) and cross-pollinated (CP: SxT) pistils resulted into 3793
(SP_S vs. CP), 3530 (SP_T vs. CP) and 3423 (SP_S vs. SP_T) differentially expressed (DE) genes in
de novo DGE analysis (p-value & FDR ≤ 0.05) (Table S4). While the reference genome based DGE
yielded 1847 (SP_S vs. CP), 1919 (SP_T vs. CP) and 1298 (SP_S vs. SP_T) DE genes with p-value &
FDR ≤ 0.05 (Table S5). Moreover, the gene ontology (GO) enrichment analysis revealed a maximum
enrichment of GO categories in CP followed by SP_S and SP_T, respectively (Figure S3). The categories:
“signal transduction”, “pollen-pistil interaction”, “embryonic and post-embryonic development” of
biological process and “hydrolase”, “transferase”, “kinase”; “signal transducer & receptor activity”;
and “proteasome & its regulatory complexes” of molecular function exhibited significantly higher
enrichment in CP (Figure S4). However, “cell death” and “response to stress” showed significantly
higher enrichment in SP pistils (SP_S and SP_T) (Figures S5c and S6c).

2.4. Phase Specific Differentially Expressed Transcripts Involved in Pollen-Pistil Interaction

Based on the global expression and GO enrichment analysis, 195 significantly DE transcripts
(considering both de novo and reference-based DGE along with their functional relevance in SI &
fertilization) were extracted and categorized into five phases during pollen-pistil interactions [29].
These phases include pollen germination in stigma region (Phase I), PT elongation in the upper
stylar region (Phase II), PT elongation and incompatible interactions in the style transmitting tract
(Phase III), PT ovular guidance and LSI interactions (Phase IV) and ovarian region encompassing
genes involved in fertilization (Phase V) (Table S6). The transcripts corresponding to genes
involved in the pollen germination of phase I (Exo70A1, SRK, CER4) along with gametophytic
self-incompatibility of phase II-III [S-RNase (csRNS), SKIP (ABI1 and EBF1), F-box like (FBL), Pectin
lyase (polygalacturonase, PGLR; Exo-polygalacturonase, ExoPG)] and some disease resistance proteins
(DRPs) were significantly upregulated in SP. Meanwhile, transcripts involved in normal PT elongation
in style of Phase III (ANXUR-rlk, 26s proteasome, LAT52, Root hair defective (RHD), Lipid transfer
proteins (LTP), Arabinogalactan protein (AGP)); PT-ovular guidance of phase IV [Rapid alkalization
factor (RALF), COBL10, SETH, K+ transporters] and fertilization of phase V [FERONIA-rlk, LORELEI
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like glycoprotein (LLG), PMEI, GEX and ECP] along with auxin biosynthesis and auxin response
factors (ARF) exhibited higher expression in CP (Figure 2).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 21 

 

 
Figure 2. Schematic representation of PT elongation inside self and cross-pollinated pistil [Self PT: 
deviated (red) and ceased (brown), cross PT fertilization (purple)] as observed in microscopy, along 
with expression pattern of transcripts involved in different phases of pollen-pistil interaction. The 
heatmap represents expression pattern (log2 transformed FPKM) in yellow-blue scale. (A) Transcripts 
expression of genes involved in pollen germination and PT elongation (Phase I & II); (B) PT elongation 
in mid-stylar region and incompatible interactions (Phase III); (C) PT ovular guidance/rejection (Phase 
IV); (D) fertilization in cross-pollinated (Phase V) and; (E) disease resistance proteins. 

2.5. Protein-Protein Interactome Network Analysis 

To identify the key regulatory genes and their involvement in complex signaling pathways 
during pollen-pistil interactions, a predetermined AtPIN (Arabidopsis thaliana protein interaction 
network) was used [30]. The 195 DE transcripts showed direct interactions with 330 first neighbors 
(average number of neighbors: 27.170; network heterogeneity: 0.941 and clustering coefficient: 0.452). 
Interestingly, 182 nodes (1953 edges) were present in the major hub representing PT germination & 
elongation (67), S-locus related (13), Fertilization (43), disease resistance protein (DRPs, 30) and 
abscission (31) (Figure 3A; Table S7). 

Figure 2. Schematic representation of PT elongation inside self and cross-pollinated pistil [Self PT:
deviated (red) and ceased (brown), cross PT fertilization (purple)] as observed in microscopy, along with
expression pattern of transcripts involved in different phases of pollen-pistil interaction. The heatmap
represents expression pattern (log2 transformed FPKM) in yellow-blue scale. (A) Transcripts expression
of genes involved in pollen germination and PT elongation (Phase I & II); (B) PT elongation in
mid-stylar region and incompatible interactions (Phase III); (C) PT ovular guidance/rejection (Phase IV);
(D) fertilization in cross-pollinated (Phase V) and; (E) disease resistance proteins.

2.5. Protein-Protein Interactome Network Analysis

To identify the key regulatory genes and their involvement in complex signaling pathways
during pollen-pistil interactions, a predetermined AtPIN (Arabidopsis thaliana protein interaction
network) was used [30]. The 195 DE transcripts showed direct interactions with 330 first neighbors
(average number of neighbors: 27.170; network heterogeneity: 0.941 and clustering coefficient: 0.452).
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Interestingly, 182 nodes (1953 edges) were present in the major hub representing PT germination
& elongation (67), S-locus related (13), Fertilization (43), disease resistance protein (DRPs, 30) and
abscission (31) (Figure 3A and Table S7).
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transcripts encoding genes involved in SI and Fertilization. 
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interactions of fertilization related genes with S-locus related (11), PT germination & elongation (57) 
and abscission (26) putatively suggested their major role in regulating PT growth to undergo 
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related genes, put forward their putative involvement in regulating PT abscission during LSI (Table 
1).  

Table 1. Intra-interactome network analysis among five categories showing a number of outgoing 
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Figure 3. Predicted protein-protein interactome network of DE transcripts involved in fertilization or
Self-Incompatibility in tea. (A) A major hub of 182 genes interacting with 343 first neighbors (6598
edges), (B) Co-expression network of 169 genes (1417 edges) extracted from 182 genes. (C) Gene
specific predicted PPI-interactome network of S-Locus group (SRKs) and csRNS (C. sinensis). (D) Direct
interactions of S-locus related group and S-RNase. (E) Direct and indirect interactions of transcripts
encoding genes involved in SI and Fertilization.

Furthermore, co-expression analysis revealed 148 genes (105 nodes in major hub) interacting
with 211 first neighbors (2943 edges), displaying 129 incoming and 161 outgoing interactions
(Figure 3B and Table S8). The degree of outgoing edges from node/gene (outgoing interactions)
represents its regulatory function towards the node/gene receiving edges (incoming interaction) [31].
The intra-interactome network among five categories revealed that transcripts belonging to PT
germination & elongation showed maximum outgoing interactions to the disease resistance proteins
(DRP, 29) and abscission (16). Thus, transcripts involved in PT germination & elongation may have
a role in pollen-pistil interaction by regulating DRPs and abscission-related genes. Furthermore,
higher outgoing interactions of fertilization related genes with S-locus related (11), PT germination
& elongation (57) and abscission (26) putatively suggested their major role in regulating PT growth
to undergo fertilization or LSI. Higher outgoing interactions of S-locus related transcripts with the
abscission-related genes, put forward their putative involvement in regulating PT abscission during
LSI (Table 1).
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Table 1. Intra-interactome network analysis among five categories showing a number of outgoing and
incoming interactions.

Outgoing Interactions
Incoming Interactions

PT Germination &
Elongation

S-Locus
Related Fertilization DRP Abscission

PT germination & elongation 67 3 26 29 16
S-locus related 2 11 5 3 8

Fertilization 57 11 43 5 26
DRP 7 2 6 30 4

abscission 27 10 20 2 31

The direct interactions of S-locus related transcripts with the ovular guidance & fertilization,
abscission, DRP, PT elongation; and indirect interactions with SI related transcripts (csRNS & Exo70A1)
and ovular guidance cysteine rich proteins (RALF) also suggest their regulatory function during SI
and CC. Furthermore, direct interaction of csRNS with AGP8A (autophagy 8A), peroxidase (PAP17),
pectin lyase; and indirect interactions with actin depolymerization factor (ADF) & PMEI indicates
its key role during incompatible interactions. Moreover, the ExoPG recorded direct interactions with
the genes involved in PT growth arrest (PMEI & CPK24) may also have a role in self-incompatibility.
A gene belonging to family receptor-like kinase (ANXUR-rlk) exhibited direct interactions with the
genes involved in normal PT elongation and abscission, which probably suggests its role in normal
PT elongation, and was also recorded with higher expression in CP. Moreover, the genes involved
in ovular guidance GPI-Anchored proteins (COBL10) were found to be directly interacting with
Rapid alkalization factor (RALF), arabinogalactan protein (AGP), Ca++ mediated signal transduction
(csCPK), SETH and ROPGEF. This indicates their role in regulating PT ovular guidance for successful
fertilization. Additionally, another receptor-like kinases (FERONIA-rlk) with significantly upregulated
expression in CP, recorded direct/indirect interactions with fertilization related genes (ROPGEF, LLG,
SETH, MPKs), thus it probably has a role in regulating fertilization (CC) (Figure 3C–E).

2.6. RNA-Seq Data Validation by qRT-PCR

To confirm DGE inferences, qRT-expression validation of 12 key genes involved in pollen-pistil
interaction during SP and CP showed a strong positive correlation with RNA-Seq expression data
using GAPDH as an internal control (Figure 4A,B; Tables S9 and S10).
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Figure 4. qRT-PCR validation of RNA-seq data using GAPDH as internal control. (A) Significantly
upregulated SI related transcripts in SP pistils. (B) Significantly upregulated fertilization related
transcripts in CP pistils. The bar represents standard deviation (SD) of relative expression for three
replicated, and significance level is represented as stars: p-values (0.001, 0.01, 0.05) <=> symbols
(“***”, “**”, “*”).
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Interestingly, 9 of 12 fertilization related genes were significantly up-regulated in both CP with
respect to their SP pistils (SxT vs. SP_S and TxS vs. SP_T), and recorded a strong positive correlation
[R squared correlation coefficient (R2) = 0.8292] between the two reciprocal crosses of CP pistils (SxT &
TxS) (Figure 5 and Table S10).
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2.7. Tissue-Specific qRT-PCR Expression Dynamics during Pollen-Pistil Interaction

To study tissue and event specific expression, 42 key regulatory transcripts [pollen germination &
elongation (9); ubiquitin-mediated protein degradation (6), ovular guidance (8), fertilization (12) and
disease resistance (7)] were utilized for qRT-PCR relative expression analysis in style and ovary during
SP and CP condition using GAPDH as an internal control (Table S9). A strong positive correlation
in the expression pattern between SP genotypes in stylar (SP_S_style &. SP_T_style; R2 = 0.83) and
ovary (SP_S_ovary & SP_T_ovary; R2 = 0.75) tissues possibly suggests a similar molecular behavior of
incompatibility in both the SP pistils (Figure 6A and Figure S7A). However, an insignificant correlation
in expression pattern between SP and CP possibly suggests a contrasting molecular mechanism
commencing with SI and CC (Figure 6B,C; Figure S7B,C and Table S10).
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Figure 6. Tissue specific (style vs. ovary) and event specific (SP vs. CP) qRT-PCR expression correlation
plot (correlation matrix and correlogram) of 42 key genes involved self-incompatibility and fertilization.
(A) Tissue-specific correlation between self-pollinated tissues. (B) Event specific correlation between
SP_S style and ovaries and (C) SP_T style and ovaries with respect to CP style and ovaries. The relative
expression pattern is depicted in red-blue scale. Color intensity and size of the circle are proportional to
the correlation coefficients. The legend color in the bottom represents the scale of correlation coefficients.
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The transcripts involved in SI (csRNS & SRK) and pollen tube growth regulator (PMEI, PGLR,
ExoPG) were upregulated in SP_style, while the transcripts participating in PT elongation (LAT52,
cofilin, RHD, FBL) along with Ubiquitin mediated protein degradation (20s, 26s) [29] were highly
expressed in CP_style. However, genes involved in PT-ovular guidance from stylar transmitting tract
to ovule (RALF, LLG & COBL10) and fertilization (FER, GEX, hapless2, MAPKs and ECP) [29,32]
exhibited upregulated expression in CP ovaries, and suggested a higher probability of PT ovular
guidance commencing fertilization (Figure 7 and Figure S8).
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Figure 7. qRT-PCR expression analysis (log2 fold change) of 42 key genes using GAPDH as internal
control in event specific (A) and tissue specific (B) manner. The positive values (periphery) represent
genes upregulated in SP and style, while negative (center) represents upregulation in CP and ovaries.
(C) Significant relative expression of genes in self and cross-pollinated style and; (D) ovaries with
respect to unpollinated style and ovaries respectively. The error bar in the graph represents SD of
relative expression for three replicated experiments and significance level is represented as symbols
(“***”, “**”, “*”) <=> p-values (0.001, 0.01, 0.05).
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Interestingly, a significantly higher expression of csRNS, PMEI, polygalactuonase (PGLR) and
Exo-polygalaturonase (ExoPG) in SP style [33,34] suggests its role in lower PT growth rate in SP style.
Furthermore, higher expression of ANXUR-rlk in CP_style and SP_ovary, possibly associated with
normal PT elongation in CP_style, while deviation in SP_ovary. Additionally, up-regulated expression
of PMEI in CP_ovary and SP_style might involve in slackening PT elongation to assist PT burst [35].

3. Discussion

The journey to fertilization is arbitrated by a series of complex signaling mechanisms from
stigma to an ovary, wherein PT growth in style can stimulate changes within the ovary [36].
In the present study, the phenological, microscopic and genome-wide expressions forms of analysis
have been comprehensively explored to unravel the complexity of SI/CC in tea. 48 HAP as
implicated in this study was also appropriately reported with the pollen tubes elongation up
to ovary commencing successful fertilization in earlier studies in tea [26]. The concatenated
de novo assembly using two assemblers (CLC and TRINITY) resulted in high-quality non-redundant
transcripts in this study [37]. Furthermore, ≥77 % mapping of reads with the reference genome of
tea suggested quality transcriptome data in this study [28,38]. The higher enrichment of ‘signal
transduction’, ‘post-embryonic development’ and ‘pollen-pistil interactions’ putatively suggests
successful commencement of fertilization in CP (Figure S4), while, ‘cell death’ and ‘response to
stress (endogenous and biotic)’ enrichment indicates the occurrence of SI in SP (Figures S5 and S6) [24].
Additionally, qRT validation of key genes of pollen-pistil interaction suggests the reliability of the
RNA-Seq expression data. Significant abundance of fertilized ovules with a strong positive correlation
in the expression pattern of fertilization related genes in reciprocal crosses (SxT & TxS) suggests the
rare probability of unilateral incompatibility (UI) in tea [39].

Most of the SI related earlier studies have been focused on molecular dynamics between pollen
and style, with limited attention given to the ovary specific events. Hence, the tissue-specific
relative expression of 42 key candidates obtained in the current study were further investigated in a
phase-specific manner (Phase I to V) [40] using stigma-style and ovary to gain a better understanding
of the LSI response in the light of fertilization in tea. Considering an evolution of SI from pathogen
defense mechanisms, the higher expression pattern of defense-related genes (CC-NBS-LRR; NB-ARC
domain) and transcription factors (WD40) in SP suggests their possible involvement in incompatible
PT arrest in tea [16,41].

3.1. Pollen Germination & PT Elongation (Phase I-III)

As reported in Brassicaceae, the pollens were physically adhered to stigmatic papilla cells by
pollen coat proteins and hydrated via Exo70A1 in stigma, wherein pollen coat lipids assist in pollen
hydration to undergo germination [42]. The higher expression of Exo70A1 in SP_style is possibly
responsible for the wet type of stigma with higher stigma receptivity in SP than CP at 48 HAP [27].
Furthermore, lower PT density in SP_style can be attributed by an upregulated expression of SI related
transcripts (csRNS, SRK, SKIP, ADF, pectin lyase, PGLR and Exo-PG) [43]. Moreover, csRNS and
S-locus related transcripts can be considered as key regulators due to their interactions with many
compatibility and incompatibility factors in PPI network analysis. Additionally, indirect interaction of
csRNS with ADF suggests its possible role in programmed cell death (PCD) by depolymerization of
actin cytoskeletons, hence arresting the self PT growth during GSI [10,44]. Considering an indicator
of self-incompatibility, a significantly higher expression of Ca+2 transporters recorded in SP pistils
may be responsible for higher concentration of Ca+2 ions in SP [25]. Nonetheless, the upregulated
expression of transcripts involved in normal PT elongation (ANXUR-rlk, LAT52, cysteine rich proteins
and RHD) and Ubiquitin-mediated S-RNase degradation (20s, 26s proteasome and SCF complex) may
be attributed to higher PT density in the CP style (Figure 8A,B) [29,43].
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Figure 8. Summarized illustration representing self-incompatibility and cross-compatibility with tissue specific expression. The PT elongation within self and
cross-pollinated pistil [Self PT: deviated (red) and ceased (brown), cross PT fertilization (purple)]. (A) Ceased (a) and deviated pollen tubes (b) representing
incompatible interactions in style; (c) Heat map showing tissue specific qPCR expression of ANXUR-rlk, PMEI and csRNS in style revealing upregulated expression
(yellow) of PMEI and csRNS in both SP coupled with downregulated expression (blue) of ANXUR-rlk; The self S-RNase (csRNS) in SP style inhibits phosphorylation
of NADPH-ox, resultantly inducing programmed cell death (PCD) via depolymerization of actin cytoskeleton [44] (B) Normal PT elongation in style in CP as non-self
S-RNase undergoes ubiquitin mediated protein degradation [10], (a) qPCR expression pattern showing up-regulated expression of genes involved in normal PT
elongation in CP style. (C) Cross PT growth arrest followed by its burst within synergids commencing fertilization (a); qPCR expression pattern (b) of PT-ovular
guidance and fertilization related genes exhibiting significantly up-regulated expression in CP ovaries. The lower expression of ANX coupled with higher expression
of PMEI as observed in SP_style and CP_ovary suggests their putative role in inhibiting self-PT growth in SP style leading to SI and cross-PT inhibition in CP ovary to
facilitate PT burst during fertilization. The yellow-blue scale represents fold change obtained in tissue specific relative expression analysis.
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3.2. PT-Ovular Guidance (PHASE IV & V)

The higher tissue-specific expression of ANXUR-rlk, cofilin and RHD involved in PT elongation
may be correlated with PT deviation in SP ovaries [45,46]. Additionally, higher expression of csRNS,
PGLR, ExoPG and PMEI in SP (style & ovary) possibly associated with anomalous PT behavior,
suggesting the initiation of LSI in style and its sustenance up to ovary [24]. Nevertheless, higher
expression RALF, GPI-APs (COBL10 and LLG) and SETH in CP ovaries suggests their involvement
during normal PT-ovular guidance (Phase IV) [42]. Furthermore, indirect interaction of S-locus (SRK)
with COBL10 via SETH in PPI network probably suggests its regulation by SRK during compatible
and incompatible interactions. Also, the interaction of SETH with GPI-APs (COBL10 & LLG), calcium
channels (csCPKs) and ROPGEF involved in downstream activation of NADPH-oxidase (increase ROS
level) leads to PT-synergid cell burst, thereby commencing fertilization [25,32]. Additionally, COBL10 is
reportedly involved in regulating PTs cell wall organization via pectin modifications by activating PMEI
causing PT burst during fertilization and is governed by the ovular guiding signals [42]. The higher
expression of PMEIs coupled with lower expression of ANXUR-rlk in SP_style and CP_ov suggests
their putative role in inhibiting self-PT elongation in SP style leading to LSI, and cross-PT inhibition in
CP ovary commencing successful fertilization [35,47] (Figure 8).

During fertilization (Phase V), the female “FERONIA dependent signaling pathway” is activated
within synergid, while the male “ANXUR dependent signaling pathway” is deactivated in compatible
PT [48]. In the current study, ANXUR-rlk and PME were found to be co-expressed in network analysis
with significantly higher expression in CP_style and SP_ovary, which can be correlated with normal PT
elongation by regulating PME. Meanwhile higher PMEI expression coupled with low ANXUR-rlk in CP
ovary were possibly involved in the commencement of fertilization (Figure 8C) [35,47]. Additionally,
the presence of FERONIA-rlk in the major hub having direct interactions with transcripts involved in
the fertilization suggests its key regulatory role in commencing fertilization. Moreover, upregulated
expression of FERONIA-rlk along with genes involved in double fertilization (GEX, HAP2 and BAHD
acyltransferase) and transcription factor MAPK3 (Mitogen-activated Protein Kinase 3) can be correlated
with higher frequency of fertilized ovules in CP ovaries as observed in microscopy [32].

4. Materials and Methods

4.1. Plant Material

Two self-incompatible tea accessions, SA-6 and Tukdah (T)-78 with high level of cross-
compatibility [19,49] were selected in this study. These accessions were maintained at the CSIR-Institute
of Himalayan Bioresource Technology, Palampur, India (1300 m altitude; 32◦06′ N, 76◦33′ E). Controlled
pollination was carried out at the balloon stage (flowering) during October to December in three
subsequent years (2013-2015). Enlarged and about to open floral buds with maximal stigmatic
receptivity were emasculated, bagged and pollinated next day between 8:30 to 10:00 AM, followed
by immediate re-bagging after pollination. The experimental analysis was performed in three
combinations as “Self-pollinated SA-6 (SP_S)”; “Self-pollinated T78 (SP_T)” and “Cross-pollinated SA-6
x T78 and T78 x SA6 (CP)”. Pistils at 24 and 48 HAP were fixed for microscopy. A total 320 pollinated
pistils (40 each for SP_S, SP_T and CP at 24 and 48 HAP) were collected for the microscopy, while some
were leftover in the field to monitor the subsistent fruit and seeds set.

4.2. Microscopic Analysis

Twenty-four HAP and 48 HAP pistils were harvested and fixed in FAA fixative solution
(Formaldehyde: Acetic acid:Alcohol::1:1:18) to target the PTs localization inside female gametophyte
(pistil). Of the forty pistils, twenty each were used to trace the PTs inside stigma-stylar region using
squash method and for targeting the PTs inside the ovary using microtome. For squash method,
the pistils were fixed in F.A.A. for 24 h and stained using the aniline blue staining protocol [50].
Furthermore, 10 µm thin transverse sections of paraffin wax embedded ovaries were performed using
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microtome (Thermo Shandon Finesse microtome, Thermo Fisher Scientific, Waltham, MA, USA).
Sections were mounted and stained using 0.1% aniline blue staining solution. The mounted stained
samples and squashed samples were scanned and captured using Fluorescence microscope with
AxioCam Zeiss MR Lenses (Oberkochen, Germany). Chi-square test was used to assess significance
level of microscopy data to affirm the distinctness (p < 0.05) among collected samples.

4.3. RNA Extraction, cDNA Library Preparation And Illumina Sequencing

Based on microscopy inferences, 48 HAP pistils of SP_S, SP_T and CP (SxT) in ten biological
replicates were collected and snap-frozen to liquid nitrogen for total RNA extraction using IRIS
method [51]. The RNA was quantified on NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA),
and quality was assessed on 1% formaldehyde agarose gel (MOPS) and Agilent Bioanalyzer with
RNA 7500 series II Chip (Agilent Technologies, CA, USA). The RNA samples with RIN (RNA
Integrity Number) value greater than 8 and the final concentration of 4.0 µg were used for cDNA
library preparation.

Eight cDNA libraries in biological replicates SP_T (3), CP (3) and SP_S (2) were constructed using
the illumina Truseq RNA Sample prep v2 LS Protocol (Illumina Inc., CA, USA). The libraries were
quantified on Qubit 2.0 fluorometer (Invitrogen, USA), while quality was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, CA, USA). The paired-end (PE) (2 × 72 bp) sequencing was
performed using Illumina GAIIx.

4.4. Quality Filtering, Sequence Assembly and Differential Expression Dynamics

The base calling and demultiplexing of raw data obtained from GAIIx run was performed using
Illumina Casava 1.8.2 pipeline (http://support.illumina.com/). The demultiplexed raw reads were
filtered using NGS QC Toolkit [52]. Filtered fastq reads were de novo assembled using both CLC
Genomics Workbench 6.5 (CLC Bio-Qiagen, Aarhus, Denmark) and TRINITY RNA-Seq ver. 2.3.0 [53]
with default parameters. Both of the assemblies were combined independently to optimize the
coding region of transcriptome as discussed by Cerveau and Jackson (2016) [37]. The intra-assembly
clustering of both the de novo assembled transcripts was performed using CD-HIT-ESTver4.6
clustering tool [54]. The unique transcripts derived from both the assemblies were concatenated
and ORFs were detected using TransDecoder ver.3.0.1. These ORFs were further re-clustered based
on their sequence similarity, yielding non-redundant high-quality transcripts. Individual sample
reads were then separately mapped to the concatenated transcripts using Bowtie 2 and normalized
to estimate transcript abundance and DE. The Transcript abundance was estimated using RPKM
(Reads Per Kilobase of transcript per Million mapped reads) [55,56]. The differential gene expression
between self-pollination (SP_S and SP_T) and cross-pollination (CP) events were estimated using
the edgeR tool [57,58]. The p-values of DE transcripts were adjusted for multiple testing by the
Benjamini-Hochberg false discovery rate (FDR) method [59]. The transcripts with FDR ≤0.05 and log2

FC≥1 & ≤−1 were extracted for downstream analysis. Transcripts abundance (RPKM) was illustrated
as a heatmap using MeV package v.4.9.0. Furthermore, with the advent of draft tea genome [28],
reference-based DGE was also performed using Tuxedo reference genome based assembly pipeline
with default parameters [60]. The sample-specific filtered reads were mapped to reference genome
using TOPHAT ver2.1.0. Cufflink was used to assemble the transcriptome and estimate transcript
abundance followed by Cuffmerge, to merge all the assemblies and estimate expression level. The DE
transcripts between CP and SP conditions were compared using Cuffdiff. The TransDecoder ver.3.0.1
was used to extract the longest coding sequence using the merged GTF file obtained as an output
from cuffmerge.

4.5. Transcripts Homology, Functional Classification and GO Enrichment Analysis

The de novo assembled transcripts were subjected to blastx analysis against the protein
sequences in NCBI’s nr, Swiss-Prot, TAIR10, EggNOG v4.5 (http://eggnogdb.embl.de/), KEGG (http:

http://support.illumina.com/
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//www.kegg.jp/kegg/tool/annotate_sequence.html) and Plant Transcription Factor Database (http:
//planttfdb.cbi.pku.edu.cn/) considering e-value ≤ 1 × 10−5 to retrieve the top hits with functional
attributes showing highest sequence similarity with the assembled transcripts. Gene enrichment
was estimated using AgriGO toolkit. TAIR orthologous ID of DE transcripts was retrieved for GO
enrichment using singular enrichment analysis (SEA) in AgriGO toolkit [61]. Plant GO slim was
performed using Fischer statistical analysis (Hochberg-FDR adjustment cut-off <0.01) for optimal
gene enrichment and represented in a hierarchical semantic similarity based scattered model and
treemap (Figure S3). The in-silico enrichment analyses were computed using Bioconductor R package
version 3.2.3. The GO terms were grouped into three categories: molecular function, biological
processes, and cellular component. The over and under-represented GO terms were reduced and
visualized on the Revigo tool using the Fisher-exact test.

4.6. Protein-Protein Interactome Network Analysis

A protein-protein interactome network was built to identify key regulatory genes involved in
incompatible and compatible interactions. The sequences homologues of DE transcripts were extracted
from nr, TAIR and Swiss-Prot protein database and subjected to the STRING interactome public
database for network analysis [62]. A correlation edge was considered as conserved when the selected
tea genes had a significant correlation edge with its respective orthologs in the Arabidopsis thaliana PPI
network. First neighbors of the mapped IDs were selected for predicting their interaction. Subsequently,
a regulatory network was built based on phylogenetic co-occurrence, the number of directed edges,
homology and co-expression of values. This network was visualized on Cytoscape ver. 3.4.0 [63].
Genes of selected categories were represented in circular layouts using a number of directed edges as
an attribute.

4.7. RNA-Seq Expression Pattern Validation Using Real-Time PCR

Differential Gene expression of 12 DE transcripts from RNA-Seq data were validated utilizing
Real time PCR (RT-PCR). The RNA of whole pistil from each SP_S, SP_T and CP was considered
in RNA-Seq validation as utilized in RNA-Seq analysis. Additionally, RNA from SxT & TxS pistils
was also extracted to scrutinize the expression pattern of 9 fertilization related genes between two
reciprocal crosses (Table S9). The first strand cDNA was synthesized using 2 µg of total RNA by Revert
Aid First strand cDNA synthesis kit (Thermo Scientific, USA). Gene-specific primers from selected
transcripts were designed with BatchPrimer3 (http://probes.pw.usda.gov/batchprimer3/). Reactions
were performed in 20 µL reaction volume containing 200 ng template cDNA with FG-POWER SYBR®

Green PCR Master Mix Applied Biosystem (Foster City, CA, USA) and gene-specific primers (Table S9)
in StepOne™ Real-Time PCR System (Applied Biosystem). Specific GAPDH primers were used as
an internal control. The expression analysis of all the genes were performed in three replicates and
relative expression was calculated using comparative Ct values [59,64].

4.8. Tissue-Specific Transcript Expression Analysis Using qRT-PCR

42 putative key candidate genes involved in compatible/incompatible interactions were selected
based on their functional annotation, enrichment and PPI network analysis to assess tissue specific
(style vs. ovary) and event specific (SP vs. CP) relative expression analysis using qRT-PCR. Total
RNA was extracted from both 48 HAP style and ovaries, separately from each SP_S, SP_T and CP
along with their respective controls (un-pollinated style and ovary) using IRIS method [51]. The cDNA
preparation and qRT-analysis were performed as mentioned in the previous section (Section 4.7) using
GAPDH as a reference gene (Table S9). The expression analysis of all the genes were performed in three
replicates and relative expression was calculated using comparative Ct values [59,64]. The relative
expression ratio of SP and CP, style and ovaries were obtained with respect to unpollinated style and
ovaries. Furthermore, ovaries and CP were considered as control in tissue specific and event specific
fold change analysis respectively. Pearson’s correlation coefficient along with their significance were

http://www.kegg.jp/kegg/tool/annotate_sequence.html
http://www.kegg.jp/kegg/tool/annotate_sequence.html
http://planttfdb.cbi.pku.edu.cn/
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http://probes.pw.usda.gov/batchprimer3/
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computed based on candidate genes specific relative expression ratio to find tissue specific and event
specific correlation and were plotted using the R package.

5. Conclusions

The current study provides a comprehensive atlas of genes and pathways involved in pollen
pistil interaction leading to LSI in light of fertilization in tea. Combined inferences drawn based on
microscopy, genome-wide transcriptome, interactome network and tissue specific qRT-expression
analysis suggests a pre-zygotic type of LSI, which probably initiates in style and sustains up to ovary
with the active involvement of potential candidates belonging to categories cysteine-rich proteins
(RALF), receptor-like kinases (FER-rlk, ANXUR-rlk), GPI-Aps (COBL10, LLG), enzyme (csRNS, PME
& PMEI) and transcription factors (MAPK). The valuable genomic resources and putative master
regulators obtained in this study will promote a better understanding of the molecular mechanism of
pollen-pistil interaction that commences LSI and fertilization in tea. These resources can be employed
to enhance breeding efficiency and genetic improvement in tea and other perennial plant species.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/3/539/s1,
Figures S1–S8; Tables S1–S10. Figure S1: Quality check and filtering of RNA-seq Data. [a] Overall Filtering of Data.
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Abbreviations

SI Self-incompatibility
LSI Late-acting gametophytic self-incompatibility
CC Cross-compatibility (Fertilization)
SP Self-Pollinated
CP Cross-pollinated
PT Pollen tube
HAP Hours after pollination
DAP Days after pollination
KEGG Kyoto encyclopedia of genes and genomes
GO Gene ontology
DGE Differential gene expression
NGS next generation sequencing
SLF/SCF S-locus F-box protein
SRK S-receptor kinase
CPK Calcium-dependent protein kinases
TLP Tubby like proteins
RHD Root hair defective
PMEI Pectin methylesterase inhibitor
GEX Gamete expressed
ARF auxin response factors
DRP Disease resistance proteins
RALF Rapid alkalization factors
LLG LORELLEI like glycoprotein
GPI-Ap Glycosylphosphatidylinositol anchored protein
CRP Cystein rich protein
qRT-PCR Quantitative Real-Time PCR
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