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Abstract: G protein-coupled receptor 15 (GPR15, also known as BOB) is an extensively studied orphan
G protein-coupled receptors (GPCRs) involving human immunodeficiency virus (HIV) infection,
colonic inflammation, and smoking-related diseases. Recently, GPR15 was deorphanized and its
corresponding natural ligand demonstrated an ability to inhibit cancer cell growth. However, no study
reported the potential role of GPR15 in a pan-cancer manner. Using large-scale publicly available
data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases,
we found that GPR15 expression is significantly lower in colon adenocarcinoma (COAD) and
rectal adenocarcinoma (READ) than in normal tissues. Among 33 cancer types, GPR15 expression
was significantly positively correlated with the prognoses of COAD, neck squamous carcinoma
(HNSC), and lung adenocarcinoma (LUAD) and significantly negatively correlated with stomach
adenocarcinoma (STAD). This study also revealed that commonly upregulated gene sets in the high
GPR15 expression group (stratified via median) of COAD, HNSC, LUAD, and STAD are enriched
in immune systems, indicating that GPR15 might be considered as a potential target for cancer
immunotherapy. Furthermore, we modelled the 3D structure of GPR15 and conducted structure-based
virtual screening. The top eight hit compounds were screened and then subjected to molecular
dynamics (MD) simulation for stability analysis. Our study provides novel insights into the role of
GPR15 in a pan-cancer manner and discovered a potential hit compound for GPR15 antagonists.

Keywords: Orphan receptor GPR15/BOB; pan-cancer; TCGA; cancer immunity; differential gene
expression; prognosis; virtual screening

1. Introduction

G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors,
constitute the largest family of cell signaling receptors [1]. GPCRs respond to a wide range of
extracellular signals and regulate various cellular and physiological processes, including hormone
regulation, vision, immune responses, neuronal communication, and behavior [2]. Overwhelming
evidences have demonstrated that GPCRs and their downstream signaling targets play critical
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roles in cancer initiation and progression by regulating signal transduction and cellular processes
(including cell proliferation, apoptosis, stress signals, immune escape, invasion, angiogenesis and
metastasis, ion and nutrient transport and migration) [3,4]. It has also been demonstrated that diverse
GPCRs were overexpressed in a variety of tumors [5]. Both orphan and well-characterized GPCRs
have been reported to be involved in cancer development [6–10], which provide opportunities for
the development of new strategies of cancer prevention and treatment. At present, GPCR-targeted
drugs for cancer treatment are still few. The limited concrete knowledge about the role of GPCRs
in cancers might be the cause of this lack of GPCR-targeted drugs as a treatment for cancer.

G protein-coupled receptor 15 (GPR15, also known as BOB) is an extensively studied orphan
GPCR [11]. It is a chemokine co-receptor of human immunodeficiency virus type 1 and 2 [12] and
a meditator of homing control in the large intestine and skin [8]. Dozens of studies have demonstrated
the significant association between GPR15 and the immune system. For example, GPR15 was found
to be expressed in memory B cells, plasmablasts, and regulatory T cell subsets [13,14]. It directs
T cell homing to the developing epidermis as well as to the colon and regulates colitis [8,13,15,16].
When GPR15 controls the homing of FOXP3+ regulatory T cells (Tregs) to the large intestine lamina
propria, it alleviates colonic inflammation [8]. Mounting evidences have suggested that inflammation
may help tumor cells to evade the defense from the immune system [17]. The altered expression
level and epigenetic regulation of GPR15 could also have a significant influence in the health status
of smokers [18–20]. Moreover, recent studies reported that GPR15 was deorphanized and its ligand
can also bind to SUSD2. The co-expression pattern of GPR15L and SUSD2 can suppress proliferation
of several tumoral cell lines via G1 arrest [21–23]. This finding indicated that GPR15 may be
actively involved in cancer progression. Therefore, it is necessary to characterize the role of GPR15
in carcinogenesis.

In this study, we firstly performed pan-cancer analysis to elucidate the potential role of GPR15
in cancers. Earlier studies using similar methods have been published to provide new insights of specific
genes in carcinogenesis [24–28]. The expression levels of GPR15 were evaluated in 33 different cancers
using the data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx)
databases. The function of GPR15 was predicted by integrated network analysis. Our study identified
a number of common genes that are in the GPR15 regulatory network in four cancers. We provide
evidence that GPR15 acts as an immunomodulator and can be considered as a novel target for
immunotherapy for the four cancers. We also predicted the 3D structure of human GPR15 and applied
structure-based virtual screening (SBVS) approaches [29–37] to discover potential antagonists that bind
to the predicted active site. These results help us to understand the role of GPR15 in carcinogenesis
and its future prospective for STAD drug development.

2. Results

2.1. Pan-Cancer Mutational and Expression Landscape of GPR15

Among all of the 33 cancer types from the TCGA database, cancers with significant differential
GPR15 expression (on the basis of difference of median expression between cancer samples and
paired normal samples) are COAD (downregulated, p = 3.06 × 10−12) and READ (downregulated,
p = 6.80 × 10−4) (Figure 1C, Figure S1). Also, COAD showed significantly lower expression in tumor
tissue compared to healthy tissues from the Genotype-Tissue Expression (GTEx) project. The expression
landscape of GPR15 in TCGA cohorts is shown in Figure 1B.

GPR15 showed a low mutation rate compared with hotpots oncogenes among all TCGA cohorts
(Figure S2). It is most frequently mutated in uterine corpus endometrial carcinoma (UCEC), uterine
carcinosarcoma (UCS), lung squamous carcinoma (LUSC), rectal adenocarcinoma (READ), and colon
adenocarcinoma (COAD) (Figure 1A). We performed somatic mutations analysis on these five cancers.
The mutational distribution and protein domains for GPR15 with labelled hotspots are shown
in Figure S3. Most mutations in GPR15 are missense mutations while the minority mutational pattern
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is heterogenous, and the variant classification varies from frameshift deletion (COAD), frameshift
insertion (LUSC), and nonsense mutation (LUSC, READ) to missense mutation (Figure 2). Moreover, it is
worth noting that GPR15 in COAD is both hypermutated and significantly downregulated compared
to that in normal tissues. This pattern implies that alterations in GPR15-meditor T-cell homing [8] may
have undiscovered effects on the pathophysiology of COAD.
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Figure 1. Expression and mutational landscape of GPR15 in the Cancer Genome Atlas (TCGA) cohorts.
(A). Y-axis represents mutational rates of GPR15 (simple somatic mutation) in all TCGA cohorts.
The cancer types whose GPR15 mutational rate is 0 are excluded. (B). Pan-cancer expression landscape
of GPR15. “T” stands for tumor tissue and “N” stands for paired normal tissue. The expression
abundance is measured by log-normalized transcripts per million (TPM). The green color of the cancer
type means that GPR15 is differentially expressed between tumor tissue and paired normal cell.
(C) Bar graph of the gene expression profile across all tumor samples and paired normal tissues.
The height of bar represents the median expression (log-normalized TPM) of certain tumor type or
normal tissue.
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protein is YWHAB, and the linkage is supported by direct physical interactions. YWHAB encodes the 
protein 14-3-3 protein beta/alpha, which plays a role in mitogenic signaling and cell cycle machinery 
[39]. Integrated network analysis revealed that, apart from immunity control, GPR15 may have effects 
on cell growth, thereby affecting carcinogenesis. The top five GPR15-related genes with the highest 
scores are shown in Table 1.  
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Figure 2. Mutational summary plot of uterine corpus endometrial carcinoma (UCEC), Uterine
carcinosarcoma (UCS), lung squamous carcinoma (LUSC), rectal adenocarcinoma (READ), and colon
adenocarcinoma (COAD).

2.2. Integrated Network Analysis of GPR15

To obtain more functional insights for GPR15, we performed integrative network analysis
on GPR15 [38] as shown in Figure 3. The network was built upon co-expression, physical interaction,
genetic interaction, shared protein domains, and pathway data, where we found that the most related
protein is YWHAB, and the linkage is supported by direct physical interactions. YWHAB encodes
the protein 14-3-3 protein beta/alpha, which plays a role in mitogenic signaling and cell cycle
machinery [39]. Integrated network analysis revealed that, apart from immunity control, GPR15 may
have effects on cell growth, thereby affecting carcinogenesis. The top five GPR15-related genes with
the highest scores are shown in Table 1.
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Figure 3. The integrated network of GPR15. The edge color represents supporting data. Pink means
the line is based on physical interactions. Purple means the line is generated from co-expression profiles.
Blue means co-localization, and yellow stands for predicted interaction. Node size stands for its weight
in the network.
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Table 1. Top five GPR15-related genes with highest scores.

Gene Score Network Group Network Resource

YWHAB 0.22097643 Physical Interactions BioGRID-small-scale-studies [40]
YWHAB 0.14404532 Physical Interactions IREF-INTACT [41]
TACR1 0.038140558 Co-expression Tateno-Hirabayashi 2013 [42]
TAS2R9 0.034424774 Co-expression Hannenhalli-Cappola 2006 [43]
SPDYE4 0.031733938 Co-expression Coelho-Hearing 2015 [44]
GPR182 0.029303862 Co-expression Scholtysik-Kuppers 2015 [45]

Pathway analysis was conducted on the top 50 genes in the network to illustrate their biological
function by the Reactome platform. We found Butyrate Response Factor 1 (BRF1) binding and
tristetraprolin (TTP, ZFP36) binding as the two most significant pathways. Both pathways involve
YWHAB, which further implies the close interaction between GPR15 and YWHAB. The top five most
related pathways are shown in Table 2 and Table S1.

Table 2. Top five pathways of genes in the integrated network.

Pathway ID Pathway Name p-Value Entities Found

R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 0.00231 YWHAB;EXOSC1
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 0.00231 YWHAB;EXOSC1
R-HSA-525793 Myogenesis 0.00636 MYF6;MEF2D
R-HSA-375170 CDO in myogenesis 0.00636 MYF6;MEF2D
R-HSA-388396 GPCR downstream signaling 0.00967 GPR15

2.3. Pan-Cancer Analysis of GPR15 Expression and Prognostic Association

To evaluate GPR15 expression and prognosis in a pan-cancer manner, we used the pre-train
multiple variate Cox regression model, which combined specific gene expression value and basic clinical
data provided by OncoLnc [46] to identify the TCGA cohorts of which the prognosis is significant with
the GPR15 expression value. We found that the prognoses of the four cancer types, COAD, HNSC,
LUAD, and stomach adenocarcinoma (STAD), are possibly (p < 0.15) associated with GPR15 expression
(Table 3, Table S2). In addition, based on Cox coefficients, the hazards of COAD, HNSC, and LUAD
were found to be negatively associated with GPR15 expression, whereas the expression of GPR15 was
positively correlated with the hazard of STAD.

Table 3. Top 10 potential cancer types whose prognosis is associated with GPR15.

Cancer Cox Coefficient p-Value Rank

STAD 0.27 0.002 269
HNSC −0.205 0.006 707
LUAD −0.161 0.039 3711
COAD −0.159 0.150 4299
READ −0.328 0.160 2696
LUSC 0.07 0.330 6956
KIRC −0.059 0.480 13,174

LAML 0.078 0.510 9516
ESCA 0.021 0.880 14,833

“Rank” stands for the expression abundance rank among all genes.

Then, we stratified the patients in each cohort based on the expression median into high- and
low-expression groups. Afterward, we built Kaplan Meier (KM) plots for the GPR15 group in COAD,
HNSC, LUAD, and STAD separately. We found that the prognoses of COAD (p = 0.014), HNSC
(p = 0.0058), LUAD (p = 0.0033), and STAD (p = 0.0092) were significantly correlated with the GPR15
expression groups (Figure 4B–E).
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GPR15 can reduce the inflammation level in the large intestine by controlling T-cell homing [8].
We thus hypothesized that the high expression of GPR15 in COAD can contribute to the homing
and infiltration of FOXP3+ regulatory T cells (Tregs), which in turn boost the immunity response of
the tumor and results in a better prognosis. This pattern was also observed in HNSC and LUAD,
which suggests that GPR15 may perform similar immunity control functions in head, neck, and lung
tissues. However, the observed upregulation of GPR15 in STAD implies poorer prognosis, which may
suggest the opposite effects of GPR15 on stomach tissue.

2.4. Commonly Upregulated Gene Set in High GPR15 Groups of COAD, HNSC, LUAD, and STAD

To dissect the effects of the expression of GPR15 in a genome-wide manner, we performed
differential gene expression (DEG) analysis [47,48] on the GPR15 low-expression group compared
to the GPR15 high-expression group in the four cancer types. We found that 357, 487, 346, and 333
genes were differentially expressed in COAD, HNSC, LUAD, and STAD, respectively (Supplementary
Material). The profiles of the top 200 differential expressed genes in COAD, HNSC, LUAD, and STAD
are shown in Figure S4. Interestingly, we found that 146 genes were commonly upregulated (Figure 4A).
These genes are defined as a commonly upregulated gene set (CUPGS). This considerable number of
CUPGS implies a shared regulatory mechanism of GPR15 in COAD, HNSC, LUAD, and STAD.

GO enrichment analysis of the CUPGS was conducted and the results are shown in Figure
S5A–C. Intuitively, we found that these genes were significantly enriched in the functional category
of antigen binding (p = 2.41 × 10−159), cellular component of immunoglobulin complex (p = 1.32
× 10−50), and the biological process of various immunological response processes. The results
of KEGG pathway analysis are shown in Figure S5D–F, which also showed that the CUPGS
enriched the categories of the B-cell receptor immunology pathway, intestinal immune network
for immunoglobulin A (IgA) production, and primary immunology. The GO enrichment results are
listed in Table 4. The gene-concept network for CUPGS is depicted in Figure 5. Surprisingly, besides
the established function of T-cell homing of GPR15, these CUPGS were also significantly associated
with B-cell meditated immunity, and these genes were upregulated in the high GPR15 expression
groups, which suggests that GPR15 exerts a broader immunological impact.
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Figure 5. Gene-concept network for commonly upregulated gene set (CUPGS). The size of the GO
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the gene name stands for the mean fold-change in the high GPR15 expression groups compared to
the low GPR15 expression groups among COAD, HNSC, LUAD, and STAD.
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Table 4. Top 10 enriched GO terms for each GO category. BP stands for biological process, CC stands
for cellular component, MF stands for molecular function.

ID Description p-Adjust Category

GO:0006958 complement activation, classical pathway 2.78 × 10−120 BP
GO:0002455 humoral immune response mediated by circulating immunoglobulin 3.03 × 10−117 BP
GO:0006956 complement activation 2.21× 10−112 BP
GO:0072376 protein activation cascade 1.16 × 10−107 BP
GO:0016064 immunoglobulin mediated immune response 1.36 × 10−104 BP
GO:0019724 B cell mediated immunity 1.66 × 10−104 BP
GO:0002429 immune response-activating cell surface receptor signaling pathway 3.22 × 10−91 BP
GO:0006959 humoral immune response 4.60 × 10−91 BP
GO:0002768 immune response-regulating cell surface receptor signaling pathway 8.99 × 10−94 BP
GO:0002460 adaptive immune response based on somatic recombination of immune receptors 1.21 × 10−91 BP
GO:0019814 immunoglobulin complex 1.32 × 10−80 CC
GO:0042571 immunoglobulin complex, circulating 3.13 × 10−77 CC
GO:0009897 external side of plasma membrane 1.50 × 10−44 CC
GO:0072562 blood microparticle 2.80 × 10−18 CC
GO:0098802 plasma membrane receptor complex 0.513620478 CC
GO:0042101 T cell receptor complex 0.513620478 CC
GO:0008180 COP9 signalosome 0.721923256 CC
GO:0043235 receptor complex 0.721923256 CC
GO:0000788 nuclear nucleosome 0.721923256 CC
GO:0005771 multivesicular body 0.754761177 MF
GO:0003823 antigen binding 2.41 × 10−159 MF
GO:0034987 immunoglobulin receptor binding 2.28 × 10−71 MF
GO:0004252 serine-type endopeptidase activity 2.71 × 10−46 MF
GO:0008236 serine-type peptidase activity 9.31 × 10−45 MF
GO:0017171 serine hydrolase activity 1.40 × 10−44 MF
GO:0005068 transmembrane receptor protein tyrosine kinase adaptor activity 0.03233891 MF
GO:0042834 peptidoglycan binding 0.055957242 MF
GO:0031210 phosphatidylcholine binding 0.100244352 MF
GO:0050997 quaternary ammonium group binding 0.100244352 MF
GO:0035591 signaling adaptor activity 0.102967022 MF

2.5. Association between GPR15 Expression Levels and the Immune Cell-Infiltrating Levels in Cancer

Together, the results of the enrichment analysis revealed that the regulatory role of GPR15 in the four
cancers is strongly correlated to immunity function. To support these findings, we investigated
the association between GPR15 expression levels and immune cell infiltration levels in the tumor
microenvironment using TIMER (Figure 6, Table S3). We found that the GPR15 expression value
was significantly negatively correlated with tumor purity in all four types of cancer. As for T cells,
for three types of cancer, excluding COAD, the GPR15 expression value was significantly positively
correlated with CD8+ T cell infiltration. In COAD, HNSC, and STAD, the GPR15 expression value was
significantly positively correlated with CD4+ T cell infiltration. Even with similar immune profiles,
the prognosis of STAD is the opposite from the other three types of cancer, which implies different
underlying mechanisms.
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2.6. 3D Structure Modeling of GPR15

Based on all the aforementioned analyses, we hypothesized that GPR15 could be a novel target of
cancer immunotherapy. Recent studies have shown that the known natural ligands of GPR15 are all
agonists [21,22]. We thus put more of an emphasis on drug discovery specifically for STAD to identify
potential inhibitors of GPR15. There is no crystal structure available for GPR15. Thus, we performed
homology modeling for the 3D structure of human GPR15. Template-based modeling is the most
common approach to explore the relationships between the three-dimensional coordinates of unknown
proteins and their homologs. The GPR15 sequence was searched against the PDB-BLAST for similar
template selection, and type-1 angiotensin II receptor (PDB:4YAY) was selected, with a sequence
identity of 32.64% and query coverage of 30 to 317 aa (Figure S6). A total of 10 models were generated
and further validated by the SAVE server. The best predicted model structures were further refined by
calculation of the probability density function (pdf) and discrete optimized potential energy (DOPE).
The 3D model had a DOPE score of –15,495.15, which was the lowest against the predicted other
models. Also, the Ramachandran plot showed 90.9% of the residues in the allowed region that depicted
the stability of the predicted model. The results of the homology modelling of GPR15 are shown
in Figure 7.
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2.7. Structure–Function Relationship-Based Binding Site Prediction

The structure–function relationship of GPR15 is helpful in drug design. We identified its
structure–function relationship using the Cofactor server [49]. We found that TRP89, SER109, ARG172,
LYS180, CYS183, TRP195, PHE257, and LYS261 residues were located in the active region in GPR15.
Active site regions were largely located in the extracellular regions of seven transmembrane domains,
where the potential leads can bind and play a crucial role in signal transduction. A schematic
representation of the ligand binding site is shown in Figure 8A,B. Also, cross-validation of the predicted
residues at the active region was further supported by the results produced in the Site Finder tool
of the MOE suite. Amino acid residues within 5 Å of the active were used for the generation of
the receptor grid of GPR15 that was used for virtual screening.
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Figure 8. Ligand binding landscape of GPR15 (A) The schematic graph of the predicted binding site
of GPR15. The predicted binding site in our 3D structure is a traditional orthosteric binding site
in the vicinity of the highly conserved residue (TRP254, W6.48) of family A GPCRs [50]. The key residues
are shown in purple-red sticks. (B) The snake diagram, generated via GPCRdb [51], of the predicted
active side residues (purple) interacting with the ligands. (C) The predicted binding mode between
GPR15 and ligands at the active site pocket (dashed box). The protein–ligand interactions of
representative docking poses of the top eight hits are displayed around. Different ligands are
represented by different colored sticks. Hydrogen bonds are illustrated by purple lines, and Pi–pi and
Pi–cation interactions are marked by a black line.

2.8. Virtual Screening and Molecular Docking Results

We utilized the virtual screening technique to identify potential antagonists exhibiting an adequate
binding affinity. We started with a chemical database consisting of 62,500 small molecules and
isolated a set of compounds satisfying the threshold of a high docking score. After the first round
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of filtration, we obtained 733 compounds via shape-based virtual screening. This shape-based
screening approach utilizes the concept of the shape of binding pockets and electrostatic potential
resemblance to select new molecules, which may show similar binding modes to the binding pocket.
These 733 molecules were subjected to re-docking. Docking of the selected ligands was achieved to
obtain the top conformations of the selected 733 molecules into the predicted GPR15 binding site.
Finally, based on the docking scores, with the threshold values fixed between −13.00 and −8.00, only
the top eight screened compounds ranked by the lowest binding energy were identified as potential
antagonists for GPR15. The interactions analysis for the eight hits is given in Table 5 and Figure S7,
and their 2D structures are given in Figure S8.

Table 5. The docking score and predicted protein–ligand interaction of the top eight compounds
selected in virtual screening.

Compound
No.

Molecular
Formula Weight (g/mol) Docking Score Noncovalent

Interactions Residues

C1 C38H58O2N2 576.91 −11.63 2 Pi–pi, 2 H–bond TRP89, ASP91

C2 C60H55O8N1 918.09 −11.15 1 Pi–pi, 2 Pi–cation,
1 H–Bond

LYS180, ARG172,
TRP195, LYS261

C3 C38H41O7N3 653.77 −10.79 2 H–Bond CYS183, ARG172

C4 C21H28O4N2S 404.53 −10.28 1 Pi–pi, 2 H–bond TRP89, SER109,
LYS180

C5 C34H47O6N3 593.76 −10.11 1 Pi–pi, 1
Salt–bridge PHE257, LYS261

C6 C27H46O3 418.66 −8.72 2 H–bond ARG172, LYS180

C7 C20H24O4 328.41 −8.3 2 Pi–pi, 1 H–bond TRP89, TYR182,
LYS180

C8 C22H27O5N5S 473.55 −8.29 1 Salt–bridge,1
Pi–pi LYS261, TRP89

2.9. MD Simulations and Binding Free Energy Analysis

We performed MD simulation of the top eight potential complexes to measure the stability of
the protein–ligand complex. RMSD (root-mean-square deviation) profiles of the protein are shown
in Figure 9A, which indicates that all systems were stable during the entire simulation run and
could be used for further analysis. The RMSD of ligand-heavy atoms was also conducted to predict
the stability of the atoms in docked complexes (Figure 9B). Compounds 5−8 exhibited a consistently
lower RMSD (<2.1 Å), suggesting that that these compounds formed stable complexes with GPR15.
We selected four hits with lower ligand RMSD values for further interaction analysis and explored
the ligand binding mode in the protein based on the occupancy of hydrogen throughout the simulation
time. Compound 5 showed more than 90% salt bridge interaction with Lys261 (Figure S9) in the MD
trajectories. The fluctuation in RMSD was further supported by the MM/PBSA results (Table S4),
which showed that compound 5 (C34H47O6N3) had a stronger binding affinity (lowest binding free
energy) among the hits with consistently lower RMSD values. Combining all the structural analyses,
we identified compound 5 as a promising candidate for GPR15 inhibition.
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complexes. All the complexes are stable and attain the stability soon after reaching 20 ns. (B) RMSDs of
heavy atoms for screened ligands. Compound 5, 6, 7, and 8 showed lower fluctuations among the eight
hits in RMSD.

3. Discussion and Conclusions

GPCRs are well-established crucial participants in various signal transduction pathways and
are major targets in drug design. Until now, more than 134 GPCRs as targets for drugs have been
approved in the United States or European Union [52]. Although the endogenous ligand is not known,
O-GPCRs are still popular targets with specificity in many therapeutic approaches. There is a broad
range of indications linked to orphan GPCRs, including cancers, thus O-GPCRs may be utilized as
clinical therapeutic targets in cancer therapy [53].

In this study, we demonstrated a novel integrative pan-cancer analysis workflow and conducted
a comprehensive analysis from upstream omics to downstream drug discovery of GPR15 in cancer.
Our study reported GPR15 expression and mutation levels across all cancers; the correlation between
its expression and cancer prognosis; an investigation of genes with similar GPR15 expression patterns
in COAD, HNSC, LUAD, and STAD; and 3D structure modeling of GPR15 to virtually screen
its antagonists.

Our study provided evidence of the associations between GPR15 expression and cancer immunity.
We analyzed CUPGS in COAD, HNSC, LUAD, and STAD to investigate the functions of co-expression
genes with similar GPR15 expression patterns. Nearly all CUPGS were enriched in the immune-related
function. GPR15 was proven to mediate regulatory T cells (Tregs) to migrate to the large intestine
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and reduce inflammation in the mouse model [8], but it is preferentially expressed on human effector
T cells [13]. Further research supported that GPR15-dependent human CD8+ T cells can migrate
into the inflamed gut, and GPR15 can also help dendritic epidermal T cells migrate to the skin [15].
Mounting evidence suggests that GPR15 may play a role in the pathological process of chronic
inflammatory diseases [54]. In normal tissue, chronic inflammation is a well-acknowledged risk factor
for cancers. It could gradually generate an immunosuppressive tumor microenvironment, which
allows mutated cells to evade the surveillance of the immune system, causing cancer eventually [17].
However, in malignant cancer tissue, immune infiltration, which is often depicted as “inflammation”,
suggests better prognosis [55]. We found that GPR15 expression is significantly positively associated
with the prognoses of COAD, HNSC, and LUAD, and significantly negatively associated with STAD.
Based on clinical and transcriptomic analyses, we can hypothesize that GPR15 could influence cancer
prognosis through downstream immunological effectors. Moreover, the tumor microenvironment
dissection via TIMER also supports possible CD8+ T cell and CD4+ T cell infiltration mediated
through GPR15.

A recent study has shown that GPR15 was deorphanized and its known natural ligands are all
agonists [21,22]. From another point of view, designing inhibitors for GPR15 could provide some
clues for the treatment of STAD and help the functional study of GPR15 at the molecular level
for experimental biologists. Therefore, we performed virtual screening for GPR15 antagonists and
predicted the protein–ligand interaction of the top eight compounds. MD simulation and free energy
calculation conducted on the top eight compounds led to the discovery of the best compound, compund
5 (C34H47O6N3), which could be a hit for novel drugs targeting STAD.

Together, our analysis functionally annotated GPR15 expression in a pan-cancer manner and
identified potential inhibitory agents that target GPR15. Our study provided evidence of the associations
between GPR15 expression and cancer immunity. Our results provide new clues regarding GPR15′s
role in carcinogenesis and new insights into cancer therapy targets. Also, this novel comprehensive
omics-based workflow could be utilized for the hypothesis generation of new targets in cancer.

4. Methods

4.1. Pan-Cancer Mutational Data Retrieval

We retrieved the mutation annotation format (MAF) files of the Cancer Genome Atlas (TCGA) [27]
cohorts using the R package “TCGAbiolinks” [56] on 15 October 2018. The TCGA program provided us
with multiple versions of somatic mutation data sets, which were generated using different workflows,
and we selected the data set “MuTect2 Variant Aggregation and Masking” [57] because it encompassed
more mutations than the others. Besides, according to a comparison study of mutation callers [58],
MuTect2 has the highest recall and robustness. A total number of 33 cancer types and 9914 cancer
samples were included in this study. Mutational summary and landscape plots were performed by
R package “maftools” [59]. The mutant rate plot of GPR15 was available from the National Cancer
Institute GDC Data Portal (https://gdc.cancer.gov).

4.2. Pan-Cancer GPR15 Expression Profile Analysis

We used GEPIA [60] to interactively analyze the expression profile of GPR15 among 33 cancer
types, 9736 tumors, and 8587 paired normal samples from the TCGA and the Genotype-Tissue
Expression (GTEx) project [61]. We used the limma [48] backend with the threshold of log2 fold-change
>1 and q-value <0.05 to detect cancer types exhibiting differential expressed GPR15 compared to
matched normal samples. Differential expression of GPR15 was validated from the UALCAN database
(http://ualcan.path.uab.edu/index.html). The Spearman’s correlation between the GPR15 expression
value and immune infiltration level in 4 types of human cancer (COAD, HNSC, LUAD, and STAD) was
calculated via TIMER (Tumor IMmune Estimation Resource) [62], and visualized by its “Gene” module.

https://gdc.cancer.gov
http://ualcan.path.uab.edu/index.html
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4.3. Integrated Network Analysis of GPR15

To obtain more functional insights into GPR15, we used GeneMANIA [38] and Cytoscape [63] to
perform integrated network analysis. The integrated network consists of co-expression data from Gene
Expression Omnibus [64] (GEO), physical and genetic interaction data from BioGRID [40], predicted
protein interaction data based on orthologue using the Interologous Interaction Database [65] (I2D),
and pathway molecular interaction data from BioGRID. In an algorithmic perspective, the integrated
network analysis can be divided into two parts. Firstly, we used a linear regression-based algorithm
to calculate a single composite functional association network from multiple network data sources
(co-expression, physical interaction, genetic interaction, shared protein domains, pathway data, and
so on). Second, a variation of the Gaussian field label propagation algorithm was utilized to assign
a score (the discriminant value) to each node in the network. This score reflects the computed strength
of association between gene pairs [66]. We also used the Reactome [67] platform to conduct pathway
analysis of the predicted genes.

4.4. Survival Analysis of GPR15 Expression

We used OncoLnc [46] to determine the cancer type o which the prognosis is potentially associated
with GPR15 expression. Then, we used the R package “TCGAbiolinks” to retrieve the corresponding
clinical and expression data. We stratified patients in each associated cohort into “high” and “low”
groups based on the median expression value of GPR15. The Kaplan–Meier method was utilized to
estimate the survival function, and we used the log-rank test to evaluate the significance between
two groups. Survival analysis and corresponding visualization were performed using the R package
“survival” and “survminer” [68], respectively.

4.5. Gene Differential Expression Analysis

We used standalone limma and voom [47] pipeline to identify differentially expressed genes
associated with GRP15 expression, comparing tumor samples with high expression of GPR15 to
low-expression ones and applied the threshold of log2 fold-change >1 and adjusted p-value <0.01 to
select for biological significant genes.

4.6. Commonly Upregulated Gene Set Identification and Annotation

We extracted differential expressed genes (DEGs) that were upregulated and shared among
COAD, HNSC, LUAD, and STAD, and visualized these using the R package “UpsetR” [69] and
“vennerable” [70]. These genes were collectively defined as the commonly upregulated gene set
(CUPGS). We used the R package “clusterProfiler” [71] to perform gene ontology [72] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [73] annotation of the CUPGS.

4.7. 3D Structure Prediction and Validation of GPR15

We used BLASTP [74], which is implemented in NCBI (https://www.ncbi.nlm.nih.gov/), to search
and align the best templates for 3D structural modeling of GPR15. We used BLAST-p to align
GPR15 with similar PDB structures and protein sequences retrieved from the UniProt database
(https://www.uniprot.org/). A template was identified from the NCBI-BLASTp program. Homology
modeling was performed using the MODELLER program [75], where 10 models were built through
the aligned templates, and Python scripts were executed for loop modeling and model refinement.
Model selection was based on the parameters of the optimized loop, side-chain conformations, DOPE,
Q-mean, Z-score, and maximum deviation. Structure refinement of the modeled GPR15 was performed
using the KoBaMIN [76], a web server, in order to obtain the best conformation of the modeled
structures resulting from MODELLER. Validation of the predicted model was performed using
the Ramachandran plot generated by the Structure Analysis and Verification Server (SAVES) server
(https://servicesn.mbi.ucla.edu/SAVES/).

https://www.ncbi.nlm.nih.gov/
https://www.uniprot.org/
https://servicesn.mbi.ucla.edu/SAVES/
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4.8. Active Site Prediction

The structure–function relationship for the predicted GPR15 model was established by exploring
the active-site residues using the Cofactor server [49]. This approach was used to identify the biochemical
function of the predicted GPR15 model and the potential binding region for its antagonists.
The cross-validation of the predicted binding site was also conducted by the Site Finder tool of
the MOE software.

4.9. Screening of Potential Compounds Targeting GPR15

We screened the chemical library using the best homology model of GPR15 as the receptor
structure. We performed shape-based virtual screening in the first round using the Surflex-Dock [77]
module of the SYBYL software. The receptor was optimized and prepared for virtual screening with
hydrogen atoms and charges added. A library of 62,500 compounds obtained from the Maybridge
Library (55,975) and in-house compound library (6525) were used for the screening of compounds.
The dataset compounds were converted to 3D coordinates and then minimized via the Powell
method using 1000 iterations with a Tripose force field. We detected the surface in the predicted
active sites and mapped an idealized active site ligand (called a protomol). Then, we applied five
maximum conformations per fragment and five maximum poses per ligand with a 0.05 Å minimum
(root-mean-square deviation) RMSD to dock in the defined Protomol region. The search area was set
to 5 Å in the grid. We restricted the cutoff value (total score < –6) in the docking scoring function to
eliminate false positive results.

4.10. Molecular Docking

Docking experiments were performed via Surflex-Dock. Top hits were selected for docking and
the receptor grid box was confined around the 5 Å area of the predicted active site radii. The Lamarckian
genetic algorithm, a well-known docking algorithm, was used to conduct docking by setting the default
parameters with 150 initial populations with randomly placed individuals and the maximum number
of generations set to 27,000. A shortlist based on the consensus scoring function (Chem score + G Score
+ D Score + PMF Score) was generated. We then applied a cutoff (total score <–8) for the docking score
function to eliminate false positive results. The lowest free binding energy was set as the criterion for
the selection of the top poses.

4.11. Molecular Dynamics (MD) Simulations

We selected the top eight hits based on stability and protein–ligand interaction analyses. The initial
structures for MD simulations originated from the representative docking pose form virtual screening.
The GROMACS V5.1.3 package [78] was used to perform biophysical simulation of the eight complexes
for 100,000 ps (100 ns), respectively. Membrane systems were constructed using the CHARMM-GUI
Membrane Builder [79]. Proteins and lipids were presented using the CHARMM36 force field [80],
and ligands were assigned to the CHARMM CGenFF [81]. All the systems were solvated in a cubic
water box with a distance of 10 Å between the proteins, and the TIP3P model [82] was used for water
molecules. Counter ions (0.15 M NaCl) were used to keep each system electrically neutral followed
by a steepest descent energy minimization (~5000 steps). Subsequently, the minimized system was
equilibrated into the NVT and NPT phases for 500 ps, and all bond lengths were restrained by using
the LINCS method [83] with time steps of 2 fs. The temperature was set to 310 K and the pressure was
maintained at 1.01325 × 105 Pa (1 air pressure) using the Langevin piston method [84], which were
controlled by a Nose-Hoover thermostat and Parrinello-Rahman barostat [85], respectively. The particle
mesh Ewald algorithm (PME) [86] was utilized to compel long-range electrostatic interactions, and
a 1.4-nm cut off for short-range van der Waals interactions was utilized. Sampling of the MD trajectories
was carried out every 2.0 ps. Finally, 100 ns MD simulations for each system were performed for
further analysis. Detailed simulations conditions are listed in Table S5.
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4.12. MD Trajectories Analysis

The time course of the root-mean-square deviation (RMSD) from the respective initial structures
was used to assess the stability of the proteins and ligand in different simulations. Hydrogen bonds
were defined as hydrogen–acceptor at a distance less than 3.5 Å and donor–hydrogen–acceptor angle
as more than 135◦. Salt bridges were defined by oppositely charged atoms that were within 5 Å.
All of the analyses were performed using the analysis tools implemented in GROMACS. In total,
100-ns trajectories (10,000 structure) of each MD system were analyzed after eliminating the rotational
and translational movements. The trajectory images were visualized and analyzed with PyMol
(https://pymol.org/2/) and VMD (http://www.ks.uiuc.edu/Research/vmd/).

4.13. Binding Free Energy Calculations

To estimate the corresponding relative binding affinities, the binding free energy for selected
complexes was calculated using the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
method as implemented in the g_mmpbsa tool [87], which integrates functions from GROMACS and
APBS [87]. For a protein–ligand complex, the lower the binding free energy, the higher the binding
affinity. The calculation was based on the following equation:

∆Gbind = Gcomplex −Gprotein −Gligand
∆Gbind = ∆EMM + ∆GPB + ∆Gnonpolar − T∆S
∆Gbind = Gele + Gvdw + GSA + GPA

, (1)

where ∆EMM is the sum of the van der Waals and electrostatic energy, ∆GPA is the polar solvation energy,
and ∆GSA is the non-polar solvation energy. The final, binding energy, ∆Gbind, was a relative value
rather than an absolute value because the vibrational entropy contribution (T∆S) was not included
in our calculation. In total, 100 snapshots at an interval of 10 ps from the last 10-ns trajectories during
the stable phase were extracted as sampling for the calculations.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/24/
6226/s1.
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Abbreviations

ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell Carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma
KICH Kidney chromophobe
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KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LGG Lower grade glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PADD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
TGCT Testicular germ cell tumors
THCA Thyroid carcinoma
THYM Thymoma
UCEC Uterine corpus endometrial carcinoma
UCS Uterine carcinosarcoma
UVM Uveal Melanoma
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