Development of fluorescently labeled SSEA-3, SSEA-4, and Globo-H glycosphingolipids for elucidating molecular interactions in the cell membrane

Sachi Asano ${ }^{2,3}$, Rita Pal ${ }^{3}$, Hide-Nori Tanaka 1,2,3, Akihiro Imamura 2,3, Hideharu Ishida ${ }^{1,2,3}$, Kenichi G. N. Suzuki ${ }^{1,2,3, *}$, and Hiromune Ando ${ }^{1,2,3, *}$
${ }^{1}$ Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
${ }^{2}$ The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
${ }^{3}$ Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 5011193, Japan
* Correspondence: kgsuzuki@gifu-u.ac.jp (K. G. N. S.); hando@gifu-u.ac.jp (H. A.)

Table of contents

1. General information
2. Synthetic procedures
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for new compounds
4. References

1. General information

All reactions were performed under an argon atmosphere. All chemicals were purchased from commercial suppliers and used without further purification, if not stated otherwise. Molecular sieves were purchased from FUJIFILM Wako Pure Chemical Co. (Osaka, Japan) and pre-dried at $300^{\circ} \mathrm{C}$ for 2 h in a muffle furnace, and dried in a flask at $300^{\circ} \mathrm{C}$ for 2 h in vacuo prior to use. Dry solvents for reaction media $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, toluene, THF, MeCN, DMF, and pyridine) were purchased from Kanto Chemical Co., Inc. (Tokyo, Japan) and used without purification. Other solvents for reaction media were dried over molecular sieves and used without purification. TLC analysis was performed on Merck TLC plates (silica gel 60F $_{254}$ on glass plates), and visualized either by exposure to UV light (253.6 nm) or by soaking in a solution of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol followed by heating. Purification by flash column chromatography was performed on a silica gel (80 and 300 mesh; Fuji Silysia Chemical, Ltd., Aichi, Japan). The quantity of silica gel was usually estimated as 50 - to 100 -fold weight of crude sample to be charged. Solvent systems for chromatography were specified as v / v ratios. Evaporation, concentration, and drying-up were performed in vacuo. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 500 and 800 MHz spectrometers (Biospin AVANCE III; Bruker, Billerica, MA, USA). Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0.00 \mathrm{ppm}$ as an internal standard. Data are presented as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, quin = quintet, sext = sextet, dd = double doublet, $\mathrm{dt}=$ double triplet, and $\mathrm{m}=$ multiplet and/or multiple resonances), integration, coupling constant in Hz , and position of the corresponding proton. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC and ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HMQC methods were used to confirm the NMR signal assignments. High-resolution mass (ESI-TOF MS) spectra were taken with a Bruker micrOTOF. Optical rotations were measured with a high-sensitivity polarimeter (SEPA-300; Horiba, Kyoto, Japan). All analogs labeled with ATTO594NHS ester (ATTO-TEC; AD 594-35) were stored at $-80^{\circ} \mathrm{C}$ in glass vials after freeze-drying.

2. Synthetic procedures

ATTO594 SSEA-3 (1)

To a solution of compound $\mathbf{2 0}(3.4 \mathrm{mg}, 2.50 \mu \mathrm{~mol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}=11 / 1(0.22 \mathrm{~mL})$ were added ATTO594 NHS ester ($4.6 \mathrm{mg}, 3.29 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(6.10 \mu \mathrm{~L}, 43.9 \mu \mathrm{~mol})$. After stirring for 4 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}=\right.$ $5 / 4 / 1 / 0.2$), the reaction mixture was purified by gel filtration ($\mathrm{LH} 2 \mathrm{O} ; \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$) and PTLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=5 / 4 / 1\right)$ to give compound $1(5.1 \mathrm{mg}, 100 \%)$ as a blue syrup; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75-5.89\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}^{\text {ATTO594 }}\right.$), 5.68 (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{4,5}=15.3 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}$), $5.44\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{Cer}}\right), 4.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=4.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.73-3.20\left(\mathrm{~m}, 56 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{a}, \mathrm{H}-\right.$ $3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-1^{b}, \mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 b^{b}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-$ $6 b^{c}, \mathrm{H}-1^{d}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-1^{e}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-$ $1 b^{\mathrm{Cer}}, \mathrm{H}-2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}, 5 \mathrm{OCH}_{2}, \mathrm{NHCH}_{2}, 3 \mathrm{NCH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{\text {ATTO594 }}$), 2.72 and $2.64(2 \mathrm{~s}, 3 \mathrm{H}$, $\mathrm{NCH}_{3}{ }^{\text {ATTO594 }}$), 2.18-2.15 (m, 2 H, NHC(=O)CH ${ }_{2}{ }^{\text {Cer }}$), 2.03-2.00 (m, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}$), $1.97(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ac})$, 1.78-1.29 (m, $74 \mathrm{H}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}, \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{3}{ }^{\text {ATTO594 }}, 4 \mathrm{Me}^{\text {ATTO594 }}$), $0.91-0.88\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}\right.$); ${ }^{13} \mathrm{C}$ NMR (200 MHz, CD ${ }_{3} \mathrm{OD}$) δ 180.3, 176.0, 175.2, 175.1, 175.0, 173.0, 171.5, 171.3, 159.2, 155.1, 154.2, 138.4, 137.6, 137.4, 135.1, 132.2, 131.9, 131.8, 131.4, 131.2, 130.7, $130.5,129.3,129.0,126.1,124.3,124.3,124.2,122.9,115.0,106.3,105.6,104.4,104.3,102.8,97.0$, $96.9,83.3,83.2,81.3,81.2,80.8,80.0,80.0,79.5,79.0,76.5,76.4,76.4,76.3,75.0,74.7,73.0,72.6$, $72.5,71.7,71.6,71.5,71.5,71.1,70.6,70.5,70.0,69.7,69.7,69.5,69.5,66.8,64.3,62.7,61.8,61.7$, $61.6,61.5,58.4,54.7,54.1,54.1,53.9,53.9,53.4,53.0,50.4,47.5,46.8,41.4,40.4,40.3,38.8,37.4$, $33.7,33.5,33.4,33.2,33.1,32.9,32.8,32.7,30.9,30.9,30.9,30.9,30.8,30.8,30.7,30.6,30.5,30.5$, $30.5,29.5,29.4,29.3,27.2,25.1,24.2,23.8,23.7,23.7,23.5,23.0,20.9,18.4,14.5,14.5,14.4,13.8$, 13.7; HRMS (ESI) m / z : found $[(M-H) / 2]^{-} 1166.5867, \mathrm{C}_{115} \mathrm{H}_{181} \mathrm{~N}_{6} \mathrm{O}_{39} \mathrm{~S}_{2}{ }^{-}$calcd for $[(\mathrm{M}-\mathrm{H}) / 2]^{-} 1166.5869$.

ATTO594 SSEA-4 (2)

To a solution of compound $38(3.5 \mathrm{mg}, 2.05 \mu \mathrm{~mol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}=11 / 1(0.21 \mathrm{~mL})$ were added ATTO594 NHS ester ($4.3 \mathrm{mg}, 3.07 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(5.70 \mu \mathrm{~L}, 41.0 \mu \mathrm{~mol})$. After stirring for 22 h at ambient temperature as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / 5 \%\right.$ aq. $\mathrm{CaCl}_{2}=$ $5 / 4 / 1$), the reaction mixture was purified by gel filtration ($\mathrm{LH} 20 ; \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$) and PTLC ($1^{\text {st }}$: $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=5 / 4 / 1,2^{\text {nd }}: \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=5 / 4 / 1,3^{\text {rd }}: \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=5 / 5 / 0.5\right)$ to give compound 2 ($4.2 \mathrm{mg}, 82 \%$) as a blue syrup; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75-5.88\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}^{\text {ATTO594 }}\right.$), 5.68 (near quin, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{4,5}=15.4 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{Cer}}$), 5.44 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{Cer}}$), 4.943.16 (m, $58 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{a}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-1^{b}, \mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-$ $1^{c}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-1^{d}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-1^{e}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}$, H-5 ${ }^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-4^{f}, \mathrm{H}-5^{f}, \mathrm{H}-6^{f}, \mathrm{H}-7^{f}, \mathrm{H}-8^{f}, \mathrm{H}-9 a^{f}, \mathrm{H}-9 \mathrm{~b}^{f}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{H}-2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}, \mathrm{NHCH}_{2}, 3$ $\mathrm{NCH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{\text {ATTO594 }}$), $2.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 e q^{f}\right), 2.71$ and $2.66\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}{ }^{\text {ATTO594 }}\right.$), 2.18-2.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}{ }^{\mathrm{Cer}}$), 2.04-1.96 (m, $8 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}, 2 \mathrm{Ac}$), 1.83-1.29 (m, $75 \mathrm{H}, \mathrm{H}-3 a x^{f}, 26$ $\mathrm{CH}_{2}{ }^{\mathrm{Cer}}, \mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{3}{ }^{\text {ATTO594 }}, 4 \mathrm{Me}^{\text {ATTO594 }}$), $0.91-0.88(\mathrm{~m}, 6 \mathrm{H}, 2$ $\mathrm{Me}^{\mathrm{Cer}}$) ; ${ }^{13} \mathrm{C}$ NMR (200 MHz, CD ${ }_{3} \mathrm{OD}$) δ 176.0, 175.9, 175.3, 175.3, 175.0, 175.0, 175.0, 171.2, 159.2, 159.1, 154.9, 154.2, 138.4, 137.7, 135.1, 132.2, 131.8, 131.4, 131.2, 130.7, 128.9, 126.2, 126.1, 124.2, $124.2,122.9,122.9,115.0,106.1,106.1,105.5,104.4,104.4,102.8,101.3,97.2,97.1,81.3,81.2,81.1$, $80.5,80.0,77.6,76.8,76.5,76.4,76.4,76.2,75.0,74.8,74.7,73.0,72.6,72.5,71.7,70.8,70.8,70.7$, $70.6,69.9,69.5,69.5,69.4,69.4,69.1,63.0,62.9,62.8,62.7,61.8,61.6,54.7,54.1,54.0,53.9,53.9$, $53.8,53.2,47.7,43.7,42.0,41.4,38.8,37.4,33.8,33.6,33.2,33.1,32.7,31.0,30.9,30.9,30.9,30.8$, $30.8,30.7,30.6,30.6,30.5,29.5,29.5,29.4,27.3,23.8,23.8,23.6,23.6,22.8,22.7,14.5,14.5,13.9$, 13.8; HRMS (ESI) m / z : found $[(M-H) / 2]^{-} 1246.0952, \mathrm{C}_{120} \mathrm{H}_{186} \mathrm{~N}_{7} \mathrm{O}_{44} \mathrm{~S}_{2}{ }^{-}$calcd for $[(\mathrm{M}-\mathrm{H}) / 2]^{-} 1246.0953$.

ATTO594 Globo-H (3)

To a solution of compound $\mathbf{5 0}(2.3 \mathrm{mg}, 1.36 \mu \mathrm{~mol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}=11 / 1(0.19 \mathrm{~mL})$ were added ATTO594 NHS ester ($3.9 \mathrm{mg}, 2.83 \mu \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(5.20 \mu \mathrm{~L}, 37.8 \mu \mathrm{~mol})$. After stirring for 1.5 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}=\right.$ $5 / 4 / 1 / 0.2$), the reaction mixture was purified by gel filtration ($\mathrm{LH} 2 \mathrm{O} ; \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$) and PTLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=5 / 4 / 1\right)$ to give compound $3(2.3 \mathrm{mg}, 68 \%)$ as a blue syrup; ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.74-5.86\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}^{\text {ATTO594 }}\right.$), 5.68 (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, \mathrm{~J}_{4,5}=15.2 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}$), $5.44\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{Cer}}\right.$), 5.31-3.14 (m, $66 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{a}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-1^{b}$, $\mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-1^{c}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 b^{c}, \mathrm{H}-1^{d}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}, \mathrm{H}-$ $5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-1^{e}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-1^{f}, \mathrm{H}-2^{f}, \mathrm{H}-3^{f}, \mathrm{H}-4^{f}, \mathrm{H}-5^{f}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}$, $\mathrm{H}-2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}, 5 \mathrm{OCH}_{2}, \mathrm{NHCH}_{2}, 3 \mathrm{NCH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{\text {ATTO594 }}$), 2.72 and $2.64\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}{ }^{\text {ATTO594 }}\right.$), 2.18-2.13 (m, $2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}{ }^{\text {Cer }}$), 2.03-1.16 (m, $82 \mathrm{H}, \mathrm{H}-6^{f}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{Ac}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{\text {ATTO594 }}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{3}{ }^{\text {ATTO594 }}, 4 \mathrm{Me}^{\text {ATTO594 }}$), $0.91-0.88\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}\right.$); ${ }^{13} \mathrm{C}$ NMR (200 MHz, CD ${ }_{3}$ OD) δ 176.0, 175.1, 174.4, 171.2, 159.3, 154.2, 154.2, 138.4, 138.4, 137.6, 135.1, $131.4,131.2,130.8,128.9,126.1,124.3,124.2,123.0,123.0,115.1,115.1,105.6,105.5,104.5,104.1$, 102.9, 100.7, 97.1, 97.0, 84.6, 81.3, 80.6, 80.2, 79.1, 76.6, 76.5, 76.3, 75.2, 75.0, 74.8, 73.9, 73.6, 73.1, 72.7, 72.6, 71.7, 71.4, 71.1, 70.7, 70.5, 70.2, 70.0, 69.9, 69.7, 69.7, 67.8, 66.7, 64.5, 62.7, 62.7, 61.9, $61.8,61.7,61.7,61.6,54.8,53.9,53.2,48.3,47.7,41.4,40.5,39.3,38.8,37.4,33.9,33.5,33.1,33.1$, $33.1,30.9,30.9,30.9,30.9,30.8,30.8,30.8,30.7,30.7,30.7,30.5,30.5,30.5,30.5,29.5,29.5,29.3$, 29.3, 27.9, 27.2, 24.2, 23.8, 23.6, 21.6, 16.7, 14.5, 14.4, 13.8, 13.8; HRMS (ESI) m / z : found [(M-H)/2] ${ }^{-}$ 1239.6158, $\mathrm{C}_{121} \mathrm{H}_{191} \mathrm{~N}_{6} \mathrm{O}_{43} \mathrm{~S}_{2}^{-}$calcd for $[(\mathrm{M}-\mathrm{H}) / 2]^{-} 1239.6159$.

Supporting Scheme 1. Synthesis of Gal donor 4

Compound S2

To a solution of compound $\mathbf{S 1}^{501}(1.45 \mathrm{~g}, 3.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine $=4 / 1(35 \mathrm{~mL})$ was added $\operatorname{TrocCl}(566 \mu \mathrm{~L}, 4.22 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After stirring for 30 min at $-40^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (n-hexane/EtOAc $=2 / 1$), the reaction mixture was co-evaporated with toluene and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/EtOAc $=12 / 1 \rightarrow 5 / 1$) to give compound $\mathbf{S 2}\left(1.68 \mathrm{~g}, 82 \%\right.$) as a white foam; $[\alpha]_{D}-1.8^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.8 \mathrm{~Hz}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right)$, $4.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right), 4.63-4.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 4.30-4.23$ (m, 2 H, H-6a, H-6b), 4.13 (td, $1 \mathrm{H}, \mathrm{J}_{2, \text { он }}=2.6 \mathrm{~Hz}, J_{1,2}=J_{2,3}=9.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.50 (br s, $1 \mathrm{H}, \mathrm{H}-5$), 2.54 (d, $1 \mathrm{H}, \mathrm{OH}-2), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,132.8,129.1,128.2$, 94.3, 89.9, 81.4, 76.9, 74.9, 69.7, 67.1, 67.1, 27.5, 27.4, 23.3, 20.6; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$ 609.0675, $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{Cl}_{3} \mathrm{O}_{7}$ SSi calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$609.0674.

Compound 4

To a solution of compound $\mathbf{S 2}(4.42 \mathrm{~g}, 7.52 \mathrm{mmol})$ in pyridine $(75 \mathrm{~mL})$ were added $\mathrm{Bz}_{2} \mathrm{O}(2.56 \mathrm{~g}, 11.3$ mmol) and DMAP ($91.9 \mathrm{mg}, 0.752 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 20 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/EtOAc $=3 / 1$), the reaction was quenched with MeOH , and the mixture was co-evaporated with toluene, and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/EtOAc $=8 / 1$) to give compound $4(5.01 \mathrm{~g}, 96 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+62.5^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.05-7.22(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.79\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2}=J_{2,3}=9.9 \mathrm{~Hz}, \mathrm{H}-2\right), 4.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3\right)$, 4.89 (d, $1 \mathrm{H}, \mathrm{H}-1$), $4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right), 4.65(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}$), 4.33-4.27(m,2 H, H-6a, H-6b), 3.57 (br s, $1 \mathrm{H}, \mathrm{H}-5$), 1.15 (s, $9 \mathrm{H},{ }^{t} \mathrm{Bu}$), 1.03 (s, 9 H , $\left.{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 165.2,153.7,133.8,133.4,132.5,129.9,129.5,128.9,128.4,127.9$, 94.2, 87.6, 79.2, 76.8, 74.8, 70.3, 67.9, 67.0, 27.5, 27.5, 23.3, 20.7; HRMS (ESI) m/z: found $[\mathrm{M}+\mathrm{Na}]^{+}$

Compound 7

To a solution of donor $4(2.74 \mathrm{~g}, 3.96 \mathrm{mmol})$ and acceptor $\mathbf{5}^{502}(1.34 \mathrm{~g}, 2.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(66 \mathrm{~mL})$ were added NIS ($1.78 \mathrm{~g}, 7.92 \mathrm{mmol}$) and $4 \AA$ Å molecular sieves $(6.50 \mathrm{~g})$. After stirring for 1 h at ambient temperature, $\mathrm{TfOH}(210 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring for 3 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=5 / 2$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/EtOAc $=90 / 1$) to obtain crude mixture of 6 , which was dissolved in $\mathrm{AcOH}(30 \mathrm{~mL})$ and zinc powder ($15.4 \mathrm{~g}, 236 \mathrm{mmol}$) was added. After stirring for 2.5 h at ambient temperature as the progress of the reaction was monitored by TLC (toluene/EtOAc $=12 / 1$), the reaction mixture was filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were co-evaporated with toluene and diluted with CHCl_{3}. The organic layer was washed with satd. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/EtOAc $=20 / 1 \rightarrow 6 / 1$) to give compound $\mathbf{7}$ (2.04 g, 78\%) as a white foam; $[\alpha]_{\mathrm{D}}+80.5^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-6.76(\mathrm{~m}, 24 \mathrm{H}, 5$ Ar), 5.98 (dd, $1 \mathrm{H}, J_{1,2}=7.7 \mathrm{~Hz}, J_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}$), $5.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=3.5 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right.$), $5.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.16-5.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-1^{b}\right), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{H}-4^{b}$), $4.27\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{3, \mathrm{OH}}=11.5 \mathrm{~Hz}, \mathrm{H}-3^{b}\right)$, $4.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.16(\mathrm{~d}, 1 \mathrm{H}$, PhCH_{2}), 4.15 (br s, $1 \mathrm{H}, \mathrm{H}-5^{b}$), 3.95 (near t, $1 \mathrm{H}, \mathrm{H}-5^{a}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.69 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}$, $J_{\text {gem }}=9.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}$), $3.54\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=6.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{a}\right)$, $3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}\right)$, $2.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}-$ 3^{b}), $1.05\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,165.7,165.5,155.7,151.1$, $137.2,133.7,133.3,133.2,130.3,129.8,129.7,129.4,129.0,129.0,128.7,128.4,128.4,128.2,128.0$, $127.9,119.2,114.5,101.0,98.0,77.2,73.8,73.8,73.7,73.4,73.3,71.1,69.5,68.6,67.7,67.2,66.2$, 55.6, 27.5, 27.3, 23.3, 20.7; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 1013.3752, \mathrm{C}_{55} \mathrm{H}_{62} \mathrm{O}_{15}$ Si calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 1013.3750.

Compound 9

To a solution of donor $8^{503}(2.98 \mathrm{~g}, 3.89 \mathrm{mmol})$ and acceptor $\mathbf{7}(3.86 \mathrm{~g}, 3.89 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(78 \mathrm{~mL})$ were added NIS ($1.05 \mathrm{~g}, 4.67 \mathrm{mmol}$) and $4 \AA$ Å molecular sieves (7.80 g). After stirring for 1 h at ambient temperature, $\mathrm{TfOH}(3.4 \mu \mathrm{~L}, 38.9 \mu \mathrm{~mol})$ was added at $-40^{\circ} \mathrm{C}$. After stirring for 2.5 h at $-40^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=20 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/EtOAc $=100 / 1$) to give compound 9 (6.04 g, 94\%) as a white foam; $[\alpha]_{\mathrm{D}}+107.3^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 8.24-6.79(\mathrm{~m}, 29 \mathrm{H}, 6 \mathrm{Ar}$, $\mathrm{NH}-2^{c}$), $5.97\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.9 \mathrm{~Hz}, J_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-2^{b}\right)$, $5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.56\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.32$ (d, $\left.1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.5 \mathrm{~Hz}, J_{2,3}=11.5 \mathrm{~Hz}, \mathrm{H}^{c} \mathrm{3}^{c}\right), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.4 \mathrm{~Hz}, \mathrm{H}-4^{b}\right)$, $4.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right), 4.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{c}}\right), 4.54(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-4^{a}$), $4.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{b}\right), 4.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{c}\right), 4.29\left(\mathrm{t}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 5^{a}), 4.26-4.21 (m, $4 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}^{-6 b}{ }^{c}, \mathrm{PhCH}_{2}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}$), $4.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.06$ (near q, $1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=8.5 \mathrm{~Hz}, \mathrm{H}-2^{c}$), $3.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right), 3.74-3.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OMe}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CCl}_{3}\right), 3.64-$ $3.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}\right), 3.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=0.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=12.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{b}\right), 1.31\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$, 1.08 ($\mathrm{s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}$), $1.06\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 166.6,166.2,156.6,154.7,154.2$, $152.4,152.2,139.1,136.8,134.6,134.3,134.1,131.3,130.9,130.6,130.3,130.2,129.6,129.5,129.5$, 129.1, 128.5, 128.4, 127.3, 125.5, 119.5, 115.3, 103.2, 101.6, 101.3, 98.8, 97.0, 95.5, 79.2, 78.3, 77.4, $76.7,74.9,74.7,74.6,74.4,73.8,73.5,73.4,70.8,70.0,69.6,69.0,68.8,67.5,67.0,55.8,53.2,35.1$, 31.6, 28.1, 28.0, 24.0, 21.3; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 1666.3463, \mathrm{C}_{78} \mathrm{H}_{87} \mathrm{Cl}_{6} \mathrm{NO}_{23} \mathrm{Si}$ calcd for [M+Na]+ 1666.3462.

Compound 10

To a solution of compound $9(100 \mathrm{mg}, 60.7 \mu \mathrm{~mol})$ in $\mathrm{AcOH}(2.5 \mathrm{~mL})$ was added zinc powder (500 mg , $7.64 \mathrm{mmol})$. After stirring for 1 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and dried for 2 h . The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(8.60 \mu \mathrm{~L}$, $91.1 \mu \mathrm{~mol}$). After stirring for 1 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}^{2}=20 / 1\right)$ to give compound $\mathbf{1 0}$ (69.9 mg, $86 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+101.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-6.75(\mathrm{~m}, 28 \mathrm{H}, 6$ Ar), 6.03 (dd, $1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=10.9 \mathrm{~Hz}, \mathrm{H}-2^{a}$), $5.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=4.0 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right.$), 5.59 (d, $1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=3.5 \mathrm{~Hz}, \mathrm{NH}-2^{\text {c }}$), $5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.9 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.20(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{b}\right), 5.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3, \mathrm{OH}}=5.5 \mathrm{~Hz}, \mathrm{OH}-3^{c}\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.74(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}$), $4.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.41\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{c}\right), 4.29\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{b}\right)$, 4.18-4.15 (m, $2 \mathrm{H}, \mathrm{H}^{\mathrm{H}} \mathrm{4}^{c}, \mathrm{PhCH}_{2}$), $4.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right.$), $4.11\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{c}}\right), 4.04(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{b}$), 3.94 (near t, $1 \mathrm{H}, \mathrm{H}-5^{a}$), 3.88-3.80(m,2H, H-2ch $\mathrm{H}-3^{c}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.63 (br s, 1 H , H^{-5}), $3.57\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=7.3 \mathrm{~Hz}, J_{\text {gem }}=9.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right.$), $3.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{a}\right.$), $3.34-3.28$ (m, $\left.2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}\right), 1.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.31\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.06\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 172.8,166.1,165.8,165.7,155.7,152.0,151.3,137.2,135.1,133.8,133.8,133.4$, 130.2, 129.7, 129.7, 129.3, 129.2, 128.9, 128.8, 128.5, 128.4, 128.0, 127.9, 126.4, 125.0, 119.1, 114.5, 101.9, 101.5, 101.5, 97.7, 76.3, 75.0, 73.8, 73.6, 73.5, 73.3, 73.0, 71.9, 69.7, 69.5, 69.1, 68.0, 67.2, 66.9, 66.4, 55.7, 55.6, 34.6, 31.3, 27.5, 23.4, 22.6, 20.6; HRMS (ESI) m / z : found [$\mathrm{M}+\mathrm{Na}]^{+}$1360.5485, $\mathrm{C}_{74} \mathrm{H}_{87} \mathrm{NO}_{20} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 1360.5483$.

Compound 12

To a solution of donor $\mathbf{1 1}$ (208 mg, 0.259 mmol$)$ and acceptor $\mathbf{1 0}$ ($347 \mathrm{mg}, 0.259 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2$ mL) was added 4 Å molecular sieves (AW-300, 700 mg). After stirring for 1 h at ambient temperature, TMSOTf ($4.7 \mu \mathrm{~L}, 25.9 \mu \mathrm{~mol}$) was added at $0^{\circ} \mathrm{C}$. After stirring for 4 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene $/ \mathrm{CHCl}_{3} / \mathrm{EtOAc}=3 / 1 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene $/ \mathrm{CHCl}_{3} / \mathrm{EtOAc}=5 / 1 / 1$) to give compound 12 ($432 \mathrm{mg}, 84 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+61.5^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-6.72(\mathrm{~m}, 39 \mathrm{H}, 8 \mathrm{Ar}$, $\left.\mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.58-5.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{b}, \mathrm{H}-4^{d}\right), 5.41(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArCH}<), 5.34-5.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-2^{d}, \mathrm{NH}-2^{c}\right), 5.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=\right.$ $\left.3.8 \mathrm{~Hz}, \mathrm{H}-1^{b}\right), 5.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.84\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.3 \mathrm{~Hz}, \mathrm{~J}_{2,3}=11.3 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-1^{d}\right), 4.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 4.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.37(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{a}$), 4.30-4.27(m, 2 H, H-4 ${ }^{c}, \mathrm{H}-6 \mathrm{~b}^{d}$), $4.22\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-3^{b}\right)$, $4.18(\mathrm{br} \mathrm{d}, 1$ $\mathrm{H}, \mathrm{J}_{\text {gem }}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{c}}$), 4.08-4.03 (m, 3 H, H-5 ${ }^{b}, 2 \mathrm{PhCH}_{2}$), $4.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=4.9 \mathrm{~Hz}, \mathrm{H}-5^{d}\right), 3.88(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{a}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.71-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{d}, \mathrm{OCH}_{2}\right), 3.63(\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}-$ 6^{c}), 3.51-3.25 (m, $17 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{a}, \mathrm{H}^{2}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-5^{c}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.33 (s, $\left.9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) δ $171.0,170.7,166.0,166.0,165.9,165.5,164.9,157.4,157.1,155.6,151.5,151.3,137.5,135.5,133.6$, 133.6, 133.3, 133.3, 133.1, 130.3, 129.9, 129.8, 129.7, 129.6, 129.4, 129.4, 128.9, 128.7, 128.5, 128.4, $128.4,128.3,127.7,126.3,124.9,118.9,117.1,114.8,114.4,102.5,101.2,100.8,99.6,98.0,78.9$, $76.0,74.9,74.1,74.0,73.9,73.5,73.2,71.3,71.0,70.8,70.5,70.2,70.1,69.6,69.4,69.0,68.6,68.1$, 68.0, 66.7, 66.5, 66.2, 62.9, 55.6, 54.9, 39.6, 34.6, 31.3, 27.5, 27.3, 23.3, 22.4, 20.9, 20.6; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$1999.7412, $\mathrm{C}_{104} \mathrm{H}_{119} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{31} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1999.7410.

Compound 13

To a solution of compound $12(893 \mathrm{mg}, 0.451 \mathrm{mmol})$ in THF (4.5 mL) was added 1 m TBAHF in THF $(4.51 \mathrm{~mL}, 4.51 \mathrm{mmol})$. After stirring for 14 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=1 / 1$), the reaction mixture was diluted with CHCl_{3} and washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried for 2 h . The residue was dissolved in pyridine (4.5 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(170 \mu \mathrm{~L}, 1.80 \mathrm{mmol})$ and DMAP ($\left.5.5 \mathrm{mg}, 45.1 \mu \mathrm{~mol}\right)$ at $0^{\circ} \mathrm{C}$. After stirring for 20 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=1 / 1$), the reaction was quenched with MeOH at $0{ }^{\circ} \mathrm{C}$ and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=4 / 3$) to give compound 13 (736 $\mathrm{mg}, 85 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+60.3^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-$ 6.73 (m, 39 H, 8 Ar, CF ${ }_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 6.01 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.7 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-2^{a}$), 5.56 (d, $1 \mathrm{H}, \mathrm{J}_{3,4}=$ $\left.3.2 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.49\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=4.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.36-$ 5.33 (m, 2 H, H-3a,$~ A r C H<$), 5.31 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=8.3 \mathrm{~Hz}, J_{2,3}=9.8 \mathrm{~Hz}, \mathrm{H}-2^{d}$), 5.22 (d, $1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-$ $\left.1^{c}\right), 5.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 4.72-4.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{c}\right.$, $\left.H-1^{d}\right), 4.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{a}\right), 4.47-4.44(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-4^{c}$), 4.29 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{d}$), 4.25-4.22 (m, $2 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{PhCH}_{2}$), 4.19 (brd, 1 H , $J_{\text {gem }}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{c}}$), $4.10\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{d}\right), 3.90\left(\mathrm{t}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}\right.$ $=7.0 \mathrm{~Hz}, \mathrm{H}^{-5}$), $3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.72-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{d}, \mathrm{OCH}_{2}\right), 3.58\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 3.52-3.27$ ($m, 16 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}^{c} 5^{c}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), 3.19 (m, $1 \mathrm{H}, \mathrm{H}-2^{c}$), 2.19 (s, $3 \mathrm{H}, \mathrm{Ac}$), 2.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.31\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.1,170.7,170.1,169.9,166.0,165.9,165.8,165.4,164.9,157.4,157.1,155.6,151.7,151.3,137.3$, $135.5,133.6,133.6,133.3,133.1,130.2,129.9,129.7,129.7,129.6,129.5,129.4,128.8,128.7,128.4$, $128.4,127.8,127.7,126.4,125.0,119.0,117.1,114.5,102.5,101.1,101.0,98.4,96.8,78.8,76.2,75.8$, $73.7,73.5,73.2,72.8,72.5,71.3,71.1,70.9,70.5,70.2,70.1,69.7,69.5,68.8,68.6,67.2,66.7,66.5$, 62.9, 61.5, 55.7, 54.7, 39.6, 34.6, 31.3, 29.3, 22.6, 20.9, 20.9, 20.6; HRMS (ESI) m/z: found [M+Na] ${ }^{+}$ 1943.6601, $\mathrm{C}_{100} \mathrm{H}_{107} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{33}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1943.6600.

Compound 14

To a solution of compound $13(736 \mathrm{mg}, 0.383 \mathrm{mmol})$ in 1,4-dioxane/ $\mathrm{MeOH}=1 / 1(19 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}\left(53.8 \mathrm{mg}, 20 \%\right.$ on carbon). After stirring for 16 h at ambient temperature under H_{2} gas as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was filtered through a pad of Celite, the pad was washed with CHCl_{3}, the combined filtrate and washings were concentrated, co-evaporated with toluene, and dried for 2 h . The residue was dissolved in pyridine (3.8 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(145 \mu \mathrm{~L}, 1.53 \mathrm{mmol})$ and DMAP ($4.7 \mathrm{mg}, 38.3$ $\mu \mathrm{mol}$) at $0^{\circ} \mathrm{C}$. After stirring for 20 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right), \mathrm{Ac}_{2} \mathrm{O}(145 \mu \mathrm{~L}, 1.53 \mathrm{mmol})$ was added to complete the reaction. After stirring for another 49 h , the reaction was quenched with MeOH at $0^{\circ} \mathrm{C}$, and the mixture was co-evaporated with toluene, and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=3 / 1$) to give compound $\mathbf{1 4}$ (607 mg , 87%) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+72.7^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-6.78$ (m, 30 H, 6 Ar, CF ${ }_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 5.93 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{a}$), $5.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{H}-4^{d}\right)$, $5.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}^{\mathrm{4}} \mathrm{4}^{c}\right), 5.42\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.29\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-3^{a}\right), 5.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=9.9 \mathrm{~Hz}, \mathrm{H}-2^{d}\right), 5.21\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.17(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{b}\right), 5.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 4.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.62(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-1^{\mathrm{d}}$), 4.50 (near t, $1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.0 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=7.0 \mathrm{~Hz}, \mathrm{H}-5^{c}$), $4.47\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz}, J_{\text {gem }}=11.4\right.$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}^{d}$), 4.43-4.40 (m, $2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-6 \mathrm{a}^{b}$), $4.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.31$ (dd, $1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{d}$), $4.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right)$, 4.02-3.93(m,4H,H-6ba$\left.{ }^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-5^{d}\right), 3.87$ (near t, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, \mathrm{H}^{-5}{ }^{a}$), 3.80-3.75 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{OMe}$), $3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right.$), $3.65(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{d}\right), 3.53\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{c}}\right.$), 3.51-3.23(m,11H,9 OCH $\left.\mathrm{I}_{2}, 2 \mathrm{NHCH}_{2}\right), 3.02$ (m, $1 \mathrm{H}, \mathrm{H}-2^{c}$), $2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$, 1.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,170.6,170.4,170.3,170.0,170.0$, 169.1, 166.2, 166.1, 165.8, 165.2, 165.0, 157.4, 155.7, 151.1, 133.7, 133.6, 133.4, 133.3, 130.0, 129.9, $129.7,129.7,129.6,129.3,128.9,128.7,128.6,128.6,128.5,128.5,128.5,118.8,117.1,114.5,101.7$, $101.0,98.7,98.4,78.6,77.6,74.8,74.6,73.4,72.4,72.0,71.5,71.4,70.8,70.8,70.4,70.2,70.2,70.1$, $70.0,69.4,69.2,68.5,67.7,66.4,62.6,62.0,61.3,61.0,55.7,55.5,39.6,22.2,20.8,20.7,20.6,20.5 ;$

HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 1835.5513, \mathrm{C}_{88} \mathrm{H}_{95} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{36}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1835.5509.

Compound 15

To a solution of compound 14 ($595 \mathrm{mg}, 0.328 \mathrm{mmol}$) in $\mathrm{MeCN} /$ toluene $/ \mathrm{H}_{2} \mathrm{O}=6 / 5 / 3$ (6.6 mL) was added cerium (IV) ammonium nitrate ($1.80 \mathrm{~g}, 3.28 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 4 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right.$, developed twice), the reaction mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=80 / 1\right)$ to give compound 15 ($349 \mathrm{mg}, 62 \%, \alpha: \beta=1: 0.3$) as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.33(\mathrm{~m}, 25 \mathrm{H}, 5 \mathrm{Ph}), 7.17\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.75$ (dd, $1 \mathrm{H}, J_{3,4}=3.0 \mathrm{~Hz}, J_{2,3}=10.9 \mathrm{~Hz}, \mathrm{H}-3^{a}$), 5.71 (near t, $1 \mathrm{H}, J_{1, \mathrm{OH}}=3.0 \mathrm{~Hz}, J_{1,2}=3.4 \mathrm{~Hz}, \mathrm{H}-1^{a}$), 5.61 (dd, $\left.1 \mathrm{H}, \mathrm{H}-2^{a}\right), 5.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{d}\right), 5.51-5.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{H}-4^{c}\right), 5.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.4 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.3 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-2^{b}\right), 5.26-5.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{c}, \mathrm{H}-2^{d}\right), 5.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 4.76$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{3,4}=3.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{d}}\right), 4.50-4.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{d}\right)$, 4.40-4.36 (m, 2 H, H-3 $\left.{ }^{b}, \mathrm{H}-6 \mathrm{a}^{b}\right), 4.33-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-6 \mathrm{~b}^{d}\right), 4.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=\right.$ 11.5 Hz, H-6a ${ }^{a}$), 4.02-3.99 (m, 2 H, H-6b ${ }^{a}, \mathrm{H}^{-6 b^{b}}$), 3.96-3.94 (m, $2 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}-5^{d}$), 3.86 (near t, $1 \mathrm{H}, \mathrm{H}-$ 5^{a}), 3.77-3.64 (m, 3 H, H-6ac $\left., ~ H-3^{d}, \mathrm{OCH}_{2}\right), 3.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, J_{\mathrm{gem}}=11.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 3.51-$ $3.24\left(\mathrm{~m}, 11 \mathrm{H}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}\right), 3.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{c}\right), 2.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}-1^{a}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.12(\mathrm{~s}, 3$ H, Ac), 2.06 (s, $3 \mathrm{H}, \mathrm{Ac}$), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.87 (s, $3 \mathrm{H}, \mathrm{Ac}$), 1.70 (s, $3 \mathrm{H}, \mathrm{Ac}$), 0.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$); HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 1729.5090, \mathrm{C}_{81} \mathrm{H}_{89} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{35}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 1729.5090$.

Compound 16

To a solution of compound $15(32.7 \mathrm{mg}, 19.1 \mu \mathrm{~mol})$ in acetone $(0.38 \mathrm{~mL})$ were added $\mathrm{CF}_{3} \mathrm{C}(=\mathrm{NPh}) \mathrm{Cl}$ $(6.2 \mu \mathrm{~L}, 38.3 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.2 \mathrm{mg}, 95.7 \mu \mathrm{~mol})$. After stirring for 6 h at ambient temperature as
the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=80 / 1\right)$ to give compound 16 ($33.9 \mathrm{mg}, 94 \%, \alpha: \beta=1: 0.3$) as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-6.48\left(\mathrm{~m}, 31 \mathrm{H}, 6 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 6.05\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.87\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{a}\right)$, $5.74\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{a}\right), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.49(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-4^{c}\right), 5.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=4.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.25-5.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-1^{c}, \mathrm{H}-2^{d}\right)$, $5.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 4.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{d}}\right)$, 4.50-4.46 (m, 2 H, H-5 ${ }^{c}, \mathrm{H}-6 \mathrm{a}^{d}$), $4.42\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.39-4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-5^{b}\right), 4.33-4.27(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{d}$), $4.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right), 4.04-3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{~b}^{b}\right)$, 3.95 (near t, $1 \mathrm{H}, \mathrm{H}-5^{d}$), 3.86 (near t, $1 \mathrm{H}, \mathrm{H}-5^{a}$), 3.76 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=6.3 \mathrm{~Hz}, \mathrm{~J}_{\text {gem }}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{c}$), 3.72-3.64 (m, $2 \mathrm{H}, \mathrm{H}-3^{d}, \mathrm{OCH}_{2}$), $3.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 3.50-3.24\left(\mathrm{~m}, 11 \mathrm{H}, 9 \mathrm{OCH}_{2}, 2\right.$ NHCH_{2}), $3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{c}}\right.$), $2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.90$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$1900.5390, $\mathrm{C}_{89} \mathrm{H}_{93} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{35}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 1900.5386$.

Compound 18

To a solution of donor $16(50.0 \mathrm{mg}, 26.6 \mu \mathrm{~mol})$ and acceptor $\mathbf{1 7}^{503}(51.4 \mathrm{mg}, 39.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3$ mL) was added $4 \AA$ Å molecular sieves (AW-300, 130 mg). After stirring for 1 h at ambient temperature, TMSOTf ($0.96 \mu \mathrm{~L}, 5.32 \mu \mathrm{~mol})$ was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=10 / 1 \rightarrow 4 / 1$) to give compound 18 ($51.4 \mathrm{mg}, 65 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+50.7^{\circ}\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-6.66\left(\mathrm{~m}, 42 \mathrm{H}, 9 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.78$ (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{~J}_{4,5}=15.5 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}$), $5.68-5.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{b}, \mathrm{NH}-2^{\text {Cer }}\right.$), 5.53 (d, 1 $\mathrm{H}, J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{e}$), $5.46\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=7.4 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{Cer}}\right.$), $5.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.0 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{c}}\right.$), 5.39 (dd , $1 \mathrm{H}, \mathrm{H}-4^{\mathrm{Cer}}$), 5.34-5.31(m,2 H, H-2 $\left.{ }^{c}, \mathrm{H}-4^{d}\right), 5.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-2^{e}\right), 5.17-5.13$
(m, $2 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}^{-1}$) , $5.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-3^{b}\right), 5.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=7.0 \mathrm{~Hz}, \mathrm{NH}-2^{d}\right)$, $4.94\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.91\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{b}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{gem}}=11.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, 4.62 (d, $1 \mathrm{H}, \mathrm{ArCH}_{2}$), 4.58 (d, $1 \mathrm{H}, \mathrm{H}-1^{e}$), 4.54 (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{d}$), 4.48 (dd, 1 H , $\left.J_{5,6 a}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{e}\right), 4.43-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{d}, \mathrm{ArCH}_{2}\right), 4.37-4.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-4^{b}, \mathrm{H}-\right.$ $3^{c}, \mathrm{H}^{-6 b^{e}}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-2^{\mathrm{Cer}}$), 4.11-4.05 (m, $2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{ArCH}_{2}$), 4.00-3.91 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}^{2}-6 \mathrm{a}^{c}, \mathrm{H}^{2}{ }^{e}, \mathrm{H}-$ $1 b^{C e r}$), 3.83-3.67 (m, $10 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{b}, \mathrm{H}^{\mathrm{C}} 5^{c}, \mathrm{H}-6 \mathrm{a}^{d}, 2 \mathrm{OMe}$), 3.62-3.22 (m, $19 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}$, $\mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-3^{e}, 10 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), $2.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{d}\right), 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$, 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $2.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.96-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}\right.$), 1.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.81 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{Ac}), 1.71-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}\right), 1.38-1.08\left(\mathrm{~m}, 70 \mathrm{H}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}, 2^{\mathrm{t}} \mathrm{Bu}\right), 0.89-0.85\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}\right)$, $0.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,170.5,170.4,170.3,169.9,169.9,169.9,166.2$, $166.0,165.8,165.2,165.1,165.0,165.0,159.3,159.0,157.4,157.1,157.0,156.5,137.1,133.6,133.6$, $133.4,133.3,133.3,130.5,130.1,129.9,129.8,129.7,129.7,129.7,129.6,129.6,129.6,129.5,129.1$, 128.9, 128.8, 128.8, 128.7, 128.5, 128.5, 127.6, 126.8, 125.4, 125.3, 124.9, 117.1, 114.8, 113.9, 113.7, 101.5, 101.1, 100.6, 99.2, 98.4, 79.0, 78.6, 77.6, 75.3, 74.8, 74.7, 74.1, 73.5, 73.4, 73.3, 73.2, 72.5, $72.1,71.5,70.9,70.7,70.4,70.3,70.1,70.1,69.1,68.5,67.7,67.5,67.4,66.3,62.3,61.8,61.1,60.9$, $55.2,50.4,39.6,36.4,35.2,35.0,32.3,31.9,31.1,30.0,29.7,29.7,29.7,29.6,29.6,29.5,29.5,29.4$, 29.3, 29.3, 29.0, 25.6, 22.7, 22.0, 21.6, 20.8, 20.7, 20.7, 20.6, 20.5, 14.1; HRMS (ESI) m / z : found $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1511.1882, \mathrm{C}_{161} \mathrm{H}_{208} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{46}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1511.1883$.

Compound 19

To a solution of compound $18(55.5 \mathrm{mg}, 18.6 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was added TFA ($620 \mu \mathrm{~L}, 8.10$ mmol) at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$, developed twice), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and diluted with CHCl_{3}. The organic layer was washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=4 / 1$) to give compound $19(49.0 \mathrm{mg}, 96 \%)$ as a white amorphous solid; $[\alpha]_{D}+58.7^{\circ}$ (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.03\left(\mathrm{~m}, 34 \mathrm{H}, 7 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), 5.90 (near quin, 1 $\left.\mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{4,5}=15.5 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}\right), 5.80\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{NH}}=10.0 \mathrm{~Hz}, \mathrm{NH}-2^{\mathrm{Cer}}\right), 5.76\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=\right.$
$\left.8.0 \mathrm{~Hz}, J_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.59\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2,3}=J_{3,4}=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\text {Cer }}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{e}\right), 5.50$ (d, $1 \mathrm{H}, \mathrm{J}_{3,4}=3.2 \mathrm{~Hz}, \mathrm{H}-4^{d}$), 5.48-5.41 (m, $3 \mathrm{H}, \mathrm{H}-2^{c}, \mathrm{H}-4^{c}, \mathrm{H}-4^{C e r}$), $5.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{b}\right), 5.23$ (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.7 \mathrm{~Hz}, J_{2,3}=10.3 \mathrm{~Hz}, \mathrm{H}-2^{e}$), $5.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 5.15-5.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{a}\right.$, $\left.\mathrm{NH}-2^{d}\right), 5.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}^{1} \mathrm{1}^{\mathrm{c}}\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 4.76\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{d}\right), 4.61(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 4.50-4.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-2^{\mathrm{Cer}}\right.$), 4.33-4.27(m,3H,H-4b,H-3c, $\mathrm{H}-$ $\left.6 b^{e}\right), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{b}\right), 4.14-4.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{OH}-3^{a}\right), 4.03-3.85$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-5^{e}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}$), $3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right.$), 3.67-3.63(m,2H, H$\left.6 \mathrm{a}^{d}, \mathrm{H}-3^{e}\right), 3.55\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{~b}, 2}=3.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=9.5 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}\right.$), 3.50-3.24(m,13H,H-6a${ }^{a}, \mathrm{H}-6 \mathrm{~b}^{d}, 9 \mathrm{OCH}_{2}$, $2 \mathrm{NHCH}_{2}$), $3.16\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}-5^{a}\right), 3.04-2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-2^{d}\right), 2.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-6^{a}\right), 2.16(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ac}), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.00-1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}\right.$, $\mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}$), $1.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.49-1.22\left(\mathrm{~m}, 70 \mathrm{H}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer},} 2^{\mathrm{t}} \mathrm{Bu}\right), 0.89-0.86(\mathrm{~m}$, $6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}$), $0.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,170.9,170.5,170.4,170.1,170.0$, $169.9,169.0,166.0,165.9,165.6,165.5,165.2,165.0,157.4,157.1,157.0,157.0,138.5,133.7,133.5$, $133.4,133.3,129.8,129.8,129.7,129.7,129.6,129.5,128.9,128.8,128.7,128.6,128.5,128.5,128.5$, $127.3,125.5,125.4,124.9,117.1,114.8,102.2,101.6,99.7,98.8,98.3,80.9,78.6,77.6,77.3,74.6$, $74.2,74.0,74.0,73.5,73.4,72.7,72.6,71.6,71.2,70.8,70.8,70.4,70.2,70.2,70.1,69.3,69.2,69.1$, $68.5,67.6,66.4,66.2,62.5,62.0,61.2,61.0,59.6,55.5,50.4,39.6,36.8,35.2,35.1,32.3,31.9,31.2$, 31.1, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 29.3, 28.9, 25.6, 22.7, 22.0, 20.8, 20.8, 20.7, 20.6, 20.2, 14.1; HRMS (ESI) m / z : found $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1391.1305, \mathrm{C}_{145} \mathrm{H}_{192} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{44}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+}$ 1391.1308.

Compound 20

To a solution of compound $19(37.5 \mathrm{mg}, 13.7 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{THF}=1 / 1(4.6 \mathrm{~mL})$ was added 1 M NaOH aq. ($274 \mu \mathrm{~L}, 0.274 \mathrm{mmol}$). After stirring for 43 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}=5 / 4 / 1 / 0.2\right)$, the reaction mixture was neutralized with Muromac $\left(\mathrm{H}^{+}\right)$, the resin was filtered through cotton, and washed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $=1 / 1$. The combined filtrate and washings were concentrated and co-evaporated with EtOH. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 28 \% \mathrm{NH}_{3}\right.$ aq. $=$

5/1/0.05/0 \rightarrow 5/4/1/0 $\rightarrow 3 / 3 / 1 / 0.1$) to give compound $\mathbf{2 0}$ (22.3 mg , quant.) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+24.0^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right.$) $\delta 5.70$ (near quin, $\left.1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{4,5}=15.4 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}\right)$, $5.45\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\text {Cer }}\right.$), $4.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}\right.$ $\left.=4.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.75-4.29\left(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-1^{b}, \mathrm{H}-1^{d}, \mathrm{H}-1^{e}\right), 4.22-3.27\left(\mathrm{~m}, 44 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}\right.$, $\mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}$, $\mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{H}-2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}, 5 \mathrm{OCH}_{2}$), 2.92$2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CH}_{2}\right), 2.19-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}\right.$), 2.05-2.02(m,2H,H-6a${ }^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}$), 1.99 (s , $3 \mathrm{H}, \mathrm{Ac}), 1.60-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 1.38-1.27 (m,50 H, $25 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}$), 0.90-0.88(m,6H,2 $\mathrm{Me}^{\mathrm{Cer}}$) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1$) $\delta 175.2,174.4,172.6,134.9,130.1,129.4,128.7$, $125.7,105.4,104.6,103.6,103.2,102.3,82.6,80.5,80.5,80.3,80.2,78.7,75.7,75.6,75.4,75.2,74.0$, $74.0,72.5,72.2,71.7,71.5,71.0,70.8,70.3,69.7,69.3,69.2,68.8,68.4,66.3,62.3,62.0,61.2,61.0$, $53.8,52.8,51.9,41.1,39.5,37.0,32.9,32.4,32.1,30.9,30.2,30.2,30.2,30.1,30.1,30.0,29.9,29.9$, 29.9, 29.8, 26.5, 23.2, 23.1, 21.5, 21.0, 14.3, 14.2; HRMS (ESI) m / z : found $[M+H]^{+} 1548.9364$, $\mathrm{C}_{74} \mathrm{H}_{137} \mathrm{~N}_{3} \mathrm{O}_{30}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+} 1548.9360$.

Supporting Scheme 2. Synthesis of Gal donor 21.

Compound S4

To a solution of compound $\mathbf{S 3}^{504}(1.00 \mathrm{~g}, 2.02 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added DMAP (247 mg , $2.02 \mathrm{mmol})$, LevOH ($622 \mu \mathrm{~L}, 6.07 \mathrm{mmol}$) and EDC. $\mathrm{HCl}(1.16 \mathrm{~g}, 6.07 \mathrm{mmol})$. After stirring for 15 h at $30{ }^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right)$, the reaction mixture was diluted with CHCl_{3}. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/EtOAc $=$ $1 / 1 \rightarrow 2 / 3$) to give compound $\mathbf{S 4}(1.37 \mathrm{~g}, 98 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+20.0^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-6.64(\mathrm{~m}, 14 \mathrm{H}, 3 \mathrm{Ar}), 5.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{3,4}=10.5 \mathrm{~Hz}, \mathrm{H}-2\right.$), 5.62 (near $\left.d, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.4 \mathrm{~Hz}, \mathrm{H}-4\right), 5.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3), 5.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1), 4.57\left(\mathrm{dd}, 1 \mathrm{H}, J_{5.6 \mathrm{a}}=8.0 \mathrm{~Hz}, J_{\mathrm{gem}}=11.5\right.$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}$), 4.44 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=5.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 4.22$ (near t, $1 \mathrm{H}, \mathrm{H}-5$), 2.85-2.81 (m,2 H, C(=O)CH 2),
2.79-2.71 (m, 2 H, C (=O) CH 2), 2.69-2.58 (m, $\left.2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.52-2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.21(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}\right)$, $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.0,172.0,171.9,166.0$, $165.2,155.7,151.1,133.4,133.3,129.9,129.8,129.5,129.3,128.5,128.5,118.9,114.4,101.2,71.4$, 71.2, 69.3, 67.4, 62.0, 55.6, 37.9, 37.7, 29.8, 29.5, 27.9, 27.9; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$ 713.2205, $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{13}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 713.2205$.

Compound S5

To a solution of compound $\mathbf{S 4}(127 \mathrm{mg}, 0.184 \mathrm{mmol})$ in $\mathrm{MeCN} /$ toluene $/ \mathrm{H}_{2} \mathrm{O}=6 / 5 / 3(3.7 \mathrm{~mL})$ was added cerium (IV) ammonium nitrate ($1.01 \mathrm{~g}, 1.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 6 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=4 / 1$), the reaction mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=20 / 1 \rightarrow 10 / 1 \rightarrow 8 / 1 \rightarrow 3 / 1$) to give compound S5 ($83.5 \mathrm{mg}, 77 \%, \alpha: \beta=1: 0.3$) as a white foam; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.42(\mathrm{~m}, 20 \mathrm{H}, 2 \mathrm{Ph} \alpha, \beta), 5.71\left(\mathrm{t} .1 \mathrm{H}, J_{1,2}=J_{1, \mathrm{OH}}=2.8 \mathrm{~Hz}\right.$, $\mathrm{H}-1 \alpha$), 5.68-5.64 (m, 2 H, H-3, $\mathrm{H}-4 \alpha$), 5.59 (br d, $1 \mathrm{H}, \mathrm{H}-4 \beta$), 5.40 (dd, $1 \mathrm{H}, \mathrm{J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2 \alpha$), $5.33-$ $5.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \beta, \mathrm{H}-3 \beta), 4.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \beta), 4.67\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 4.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz}, J_{\text {gem }}=11.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a} \beta\right), 4.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a} \alpha\right), 4.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}\right.$, $\mathrm{H}-6 \mathrm{~b} \beta$), 4.32 (dd, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b} \alpha$), 4.16 (dd, $1 \mathrm{H}, \mathrm{H}-5 \beta$), 3.96 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{1, \mathrm{OH}}=8.5 \mathrm{~Hz}, \mathrm{OH}-1 \beta$), 3.03 ($\mathrm{d}, 1 \mathrm{H}$, $\mathrm{OH}-1 \alpha), 2.80-2.40\left(\mathrm{~m}, 16 \mathrm{H}, 2 \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2} \alpha, \beta\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me} \beta\right)$, $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me} \alpha\right)$, 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(=\mathrm{O} \text {) Mea), } 2.03 \text { (} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me} \text {); HRMS (ESI) } \mathrm{m} / \mathrm{z} \text { : found [} \mathrm{M}+\mathrm{Na}\right]^{+}$607.1786, $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{12}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 607.1786$.

Compound 21

To a solution of compound $\mathbf{S 5}(640 \mathrm{mg}, 1.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ were added $\mathrm{CCl}_{3} \mathrm{CN}(2.20 \mathrm{~mL}$, $21.9 \mathrm{mmol})$ and DBU $(32.7 \mu \mathrm{~L}, 0.219 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 3.5 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=12 / 1$) to give compound 21 ($785 \mathrm{mg}, 99 \%$) as a colorless syrup; $[\alpha]_{\mathrm{D}}+89.7^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{NH}) \mathrm{CCl}_{3}\right), 8.02-7.43(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 6.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$
4), 5.69-5.64 (m, 2 H, H-2, H-3), 4.65 (near t, $1 \mathrm{H}, \mathrm{H}-5$), 4.48 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-$ $6 \mathrm{a}), 4.37$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=6.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 2.85-2.60\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.56-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)$, 2.18 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}\right)$, $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}\right.$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.0, 205.9, 171.9, 171.9, 165.9, 165.6, 160.5, 133.6, 133.2, 129.9, 129.7, 129.5, 128.8, 128.5, 93.6, 90.7, 69.4, 67.8, 67.8, 67.4, 62.0, 37.8, 37.7, 29.7, 29.5, 27.8, 27.8; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 750.0882, \mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{NO}_{12}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 750.0882$.

Compound 22

To a solution of donor $\mathbf{2 1}(291 \mathrm{mg}, 0.399 \mathrm{mmol})$ and acceptor $\mathbf{1 0}(446 \mathrm{mg}, 0.333 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.3$ mL) was added 4 Å molecular sieves (AW-300, 1.00 g). After stirring for 1 h at ambient temperature, TMSOTf ($6.0 \mu \mathrm{~L}, 33.3 \mu \mathrm{~mol}$) was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 9 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=5 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=8 / 1 \rightarrow 7 / 1$) to give compound $22(551 \mathrm{mg}, 87 \%)$ as a white amorphous solid; $[\alpha]_{D}$ $+62.4^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-6.72(\mathrm{~m}, 38 \mathrm{H}, 8 \mathrm{Ar}), 5.93\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.7\right.$ $\left.\mathrm{Hz}, J_{2,3}=10.9 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.56\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=4.0 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-\right.$ 4^{d}), 5.43 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.3 \mathrm{~Hz}, \mathrm{H}-2^{d}, 5.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.31$ (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-$ 3^{a}), 5.25-5.23 (m, $2 \mathrm{H}, \mathrm{H}-1^{c}, \mathrm{NH}-2^{c}$), $5.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3^{d}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.87$ (dd, $\left.1 \mathrm{H}, J_{2,3}=11.0 \mathrm{~Hz}, J_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{d}\right), 4.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 4.66$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{c}\right), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.3^{b}, \mathrm{H}-6 \mathrm{~b}^{d}\right), 4.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{c}\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=5.8 \mathrm{~Hz}, \mathrm{H}-5^{d}\right), 4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-5^{b}\right.$, PhCH_{2}), $3.89\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{a}\right.$), $3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{c}}\right.$), 3.54-3.45(m, $\left.4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}\right), 3.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5{ }^{c}\right), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{c}\right), 2.75-2.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)$, 2.56-2.52 (m, 2 H, C(=O) CH 2), 2.38-2.35 (m, $2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}$), $2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}\right), 1.95(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{Me}$), $1.33\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (206.2, 205.9, 171.8, 171.7, 170.9, 166.0, 165.9, 165.5, 164.8, 155.6, 151.6, 151.3, 137.5,
$135.6,133.6,133.5,133.4,133.3,130.3,129.8,129.7,129.6,129.6,129.4,129.4,129.4,129.0,128.9$, $128.7,128.5,128.4,128.3,128.2,127.7,127.7,126.4,125.3,124.9,118.9,114.4,102.4,101.1,100.8$, $99.7,98.0,75.9,75.1,74.1,73.9,73.5,73.2,71.1,71.0,69.6,69.4,69.3,69.0,68.1,68.0,67.5,66.6$, $66.2,62.4,55.6,54.8,37.8,37.7,34.6,31.4,29.7,29.4,28.0,27.8,27.5,27.4,23.3,22.3,20.6 ;$ HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$1926.7271, $\mathrm{C}_{104} \mathrm{H}_{11} 7 \mathrm{NO}_{31} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 1926.7271$.

Compound 23

To a solution of compound $\mathbf{2 2}(118 \mathrm{mg}, 61.9 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{THF}=1 / 5(3.1 \mathrm{~mL})$ was added $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{AcOH}$ $(57.0 \mathrm{mg}, 0.619 \mathrm{mmol})$. After stirring for 1 h at ambient temperature as the progress of the reaction was monitored by TLC (toluene/acetone $=2 / 1$), the reaction mixture was diluted with EtOAc. The organic layer was washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=11 / 3$) to give compound 23 (101 mg, 95\%) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+57.5^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}\right.$, $70^{\circ} \mathrm{C}$) $\delta 8.14-6.82(\mathrm{~m}, 38 \mathrm{H}, 8 \mathrm{Ar}), 5.96\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}\right.$), $5.72\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=\right.$ $\left.3.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.38-5.36(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-1^{a}, \mathrm{NH}-2^{c}$), $5.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.14$ (near t, $1 \mathrm{H}, \mathrm{H}-2^{d}$), $5.04\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1^{c}\right), 4.91\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4^{c}\right)$, 4.81-4.76 (m, 2 H, H-1 $\left.{ }^{d}, \mathrm{H}^{2}-6 \mathrm{a}^{d}\right), 4.54-4.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-6 \mathrm{~b}^{d}\right), 4.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 4.36-$ 4.09 (m, $9 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-3^{b}, \mathrm{H}-5^{b}, \mathrm{H}-3^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-4^{d}, \mathrm{H}-5^{d}, \mathrm{PhCH}_{2}$), 3.94 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{d}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.72-3.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}^{-6 b^{a}}, \mathrm{H}-2^{c}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 3.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{b}\right), 3.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{b}\right)$, 3.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{c}$), 3.06 (brs, $1 \mathrm{H}, \mathrm{OH}-3^{d}, \mathrm{OH}-4^{d}$), $1.32\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.02\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$, 0.84 (br s, $3 \mathrm{H}, \mathrm{Ac}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 7{ }^{\circ} \mathrm{C}$) $\delta 167.9,167.4,167.3,167.2,157.5,153.8$, $152.7,139.8,137.4,135.1,134.9,134.7,134.6,131.9,131.6,131.3,131.1,131.0,130.9,130.8,130.1$, 130.1, 129.9, 129.8, 129.7, 129.1, 127.8, 126.4, 120.3, 116.2, 103.9, 103.3, 102.5, 102.4, 99.4, 79.4, $79.0,77.1,75.5,75.4,75.1,75.0,74.6,74.4,74.3,73.7,71.8,70.9,70.5,70.2,69.9,69.7,68.1,68.0$, 65.4, 56.6, 54.2, 35.6, 31.8, 28.4, 28.2, 24.3, 23.2, 21.6; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$1730.6535, $\mathrm{C}_{94} \mathrm{H}_{105} \mathrm{NO}_{27} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 1730.6535$.

Supporting Scheme 3. Synthesis of Neu donor 28.

Compound S6

To a solution of compound $24^{505}(47.1 \mathrm{mg}, 99.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine $=1 / 1(2.0 \mathrm{~mL})$ was added $\mathrm{TsCl}(28.4 \mathrm{mg}, 0.149 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 18.5 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (n-hexane/acetone $=1 / 1$), the reaction mixture was diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{~m} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=2 / 1$) to give compound S6 (55.2 mg, 88\%) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+65.7^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$) $\delta 7.82-7.36(\mathrm{~m}, 9 \mathrm{H}, 2 \mathrm{Ar}), 6.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=8.5 \mathrm{~Hz}, \mathrm{NH}-5\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4, \mathrm{OH}}=5.5\right.$ $\mathrm{Hz}, \mathrm{OH}-4), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{7,0 \mathrm{OH}}=4.0 \mathrm{~Hz}, \mathrm{OH}-7\right), 4.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{a}}=1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=9.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}\right), 4.12$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{~b}}=5.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}\right), 3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OMe}$), 3.54 (near td, $1 \mathrm{H}, \mathrm{J}_{6,7}=1.6 \mathrm{~Hz}, \mathrm{~J}_{7,8}=4.7 \mathrm{~Hz}, \mathrm{H}-7$), $3.53-3.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{OH}-8), 3.28$ (dd, $1 \mathrm{H}, \mathrm{J}_{5,6}=10.5 \mathrm{~Hz}, \mathrm{H}-6$),
2.84 (dd, $\left.1 \mathrm{H}, J_{\mathrm{gem}}=12.5 \mathrm{~Hz}, J_{3 e q, 4}=5.0 \mathrm{~Hz}, \mathrm{H}-3 e q\right), 2.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArMe}), 1.87$ (dd, $1 \mathrm{H}, J_{3 a x, 4}=11.5 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{ax}), 1.42\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 170.5,159.0,145.6,137.5,134.5,130.9$, $130.8,129.8,129.7,128.7,87.4,80.6,77.4,73.0,70.1,69.5,68.3,54.4,53.3,41.7,28.5,21.5$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 650.1695, \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{11} \mathrm{~S}_{2}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 650.1695$.

Compound S7

To a solution of compound $\mathbf{S 6}(4.21 \mathrm{~g}, 6.71 \mathrm{mmol})$ in DMF (134 mL) were added Drierite (4.21 g), 18-crown-6 ($1.05 \mathrm{~g}, 3.97 \mathrm{mmol}$) and $\mathrm{NaN}_{3}(3.49 \mathrm{~g}, 53.7 \mathrm{mmol})$. After stirring for 2.5 h at $80^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (n-hexane/acetone $=3 / 2$), the reaction mixture was filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were co-evaporated with toluene. The residue was purified by silica gel column chromatography (n hexane/acetone $=2 / 1$) to give compound $\mathbf{S 7}(3.07 \mathrm{~g}, 92 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+56.3^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 7.57-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=8.5 \mathrm{~Hz}, \mathrm{NH}-5\right), 4.57(\mathrm{~d}, 1$ $\left.\mathrm{H}, \mathrm{J}_{4, \text { OH }}=5.5 \mathrm{~Hz}, \mathrm{OH}-4\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{7, \text { OH }}=4.0 \mathrm{~Hz}, \mathrm{OH}-7\right), 3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.68$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}\left(=\mathrm{O}\right.$)OMe), 3.56-3.47 (m, $4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7, \mathrm{H}-9 \mathrm{a}, \mathrm{OH}-8$), 3.32 (dd, $1 \mathrm{H}, \mathrm{J}_{6,7}=1.5 \mathrm{~Hz}, \mathrm{~J}_{5,6}=10.8 \mathrm{~Hz}$, $\mathrm{H}-6), 3.29$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{\text {gem }}=13.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}\right), 2.86$ (dd, $1 \mathrm{H}, J_{3 e q, 4}=4.8 \mathrm{~Hz}, J_{\mathrm{gem}}=12.8 \mathrm{~Hz}, \mathrm{H}-$ 3eq), 1.90 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{3 a x, 4}=11.8 \mathrm{~Hz}, \mathrm{H}-3 a x\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t} B u}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 170.7$, $159.0,137.5,131.0,129.8,129.7,87.3,80.6,77.6,72.0,70.8,68.3,54.5,54.4,53.4,41.7,28.5$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 521.1677, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 521.1677$.

Compound 25

To a solution of compound $\mathbf{S 7}(3.79 \mathrm{~g}, 5.60 \mathrm{mmol})$ in $\mathrm{MeOH}(280 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(7.76 \mathrm{~mL}, 56.0$ $\mathrm{mmol})$, TFAcOMe ($2.78 \mathrm{~mL}, 28.0 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ ($393 \mathrm{mg}, 20 \%$ on carbon). After stirring for 1.5 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=3 / 2$), the reaction mixture was filtered through a pad of Celite, the pad was washed with CHCl_{3}, and the combined filtrate and washings were concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=2 / 1$) to give compound $25(4.12 \mathrm{~g}, 95 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}$
$+70.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.07\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right)$, 7.56-7.36(m,5 $\mathrm{H}, \mathrm{Ph}), 6.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=8.0 \mathrm{~Hz}, \mathrm{NH}-5\right), 4.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{7, \mathrm{OH}}=4.5 \mathrm{~Hz}, \mathrm{OH}-7\right), 4.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4, \mathrm{OH}}=5.5 \mathrm{~Hz}\right.$, OH-4), 3.93 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 3.79-3.67 (m, $5 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-9 \mathrm{a}, \mathrm{C}(=\mathrm{O}) \mathrm{OMe}$), 3.53 (near q, $1 \mathrm{H}, \mathrm{H}-5$), 3.46 (d, $\left.1 \mathrm{H}, \mathrm{J}_{8, \text { OH }}=3.0 \mathrm{~Hz}, \mathrm{OH}-8\right), 3.41-3.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7, \mathrm{H}-9 \mathrm{~b}), 3.31$ (dd, $1 \mathrm{H}, \mathrm{J}_{6,7}=1.5 \mathrm{~Hz}, \mathrm{~J}_{5,6}=10.5 \mathrm{~Hz}, \mathrm{H}-$ 6), 2.85 (dd, $\left.1 \mathrm{H}, J_{3 e q, 4}=4.5 \mathrm{~Hz}, J_{\text {gem }}=12.5 \mathrm{~Hz}, \mathrm{H}-3 e q\right), 1.90$ (dd, $\left.1 \mathrm{H}, J_{3 a x, 4}=11.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}\right), 1.41$ (s, 9 $\left.\mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- d_{6}) $\delta 170.7,158.9,157.6,157.3,137.6,130.9,129.8,129.6$ 118.4, $116.1,87.2,80.5,77.6,72.1,70.1,68.3,54.4,53.3,43.9,41.7,28.5$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$ 591.1591, $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$591.1595.

Compound 26

To a solution of compound $25(3.12 \mathrm{~g}, 5.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mathrm{~mL})$ were added anisole (1.19 mL , $11.0 \mathrm{mmol})$ and TFA $(55 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$, the reaction mixture was concentrated and the resulting amine was dried for 2 h . To a solution of compound $\mathbf{S 8}(6.94 \mathrm{~g}, 22.0 \mathrm{mmol})$ in $\mathrm{MeCN}(110 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(7.65 \mathrm{~mL}, 54.9 \mathrm{mmol})$ and $\operatorname{DSC}(5.75 \mathrm{~g}, 22.0 \mathrm{mmol})$. After stirring for 2 h at room temperature as the progress of the reaction was monitored by TLC (n-hexane/EtOAc $=5 / 1$), the reaction mixture was added to a solution of amine in $\mathrm{MeOH}(110 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 5 h at ambient temperature as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=4 / 1 \rightarrow 3 / 1$) to give compound $26\left(3.75 \mathrm{~g}, 84 \%\right.$) as a white foam; $[\alpha]_{D}+57.8^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.14$ (br s, $1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 7.57-7.36 (m,5 H, Ph), 6.74 (d, $1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=8.5 \mathrm{~Hz}, \mathrm{NH}-5$), 4.64-4.61 (m, $2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}, \mathrm{OH}-4$), 4.43 (d, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0$ $\mathrm{Hz}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}$), $4.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{7, \mathrm{OH}}=5.5 \mathrm{~Hz}, \mathrm{OH}-7\right), 3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.84-3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$
 (m, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 e q), 2.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{3 a x, 4}=\right.$ $11.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{ax}$), $1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{OSi}\left({ }^{t} \mathrm{Bu}\right) \mathrm{Me}_{2}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OSi}\left({ }^{t} \mathrm{Bu}\right) \mathrm{Me}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) \delta 170.6,157.8,157.7,157.4$, $137.6,130.9,129.7,129.6,118.4,116.1,92.0,87.2,77.1,72.3,72.2,70.3,68.4,63.4,54.9,53.3,44.8$, 44.1, 41.7, 33.3, 26.3, 26.0, 25.3, 18.8, -5.2; HRMS (ESI) m/z: found $[\mathrm{M}+\mathrm{Na}]^{+} 831.2099$, $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{SSi}$ calcd for [M+Na] ${ }^{+} 831.2099$.

Compound S9

To a solution of compound $26(2.10 \mathrm{~g}, 2.59 \mathrm{mmol})$ in pyridine $(26 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}(985 \mu \mathrm{~L}, 10.4$ $\mathrm{mmol})$ and DMAP ($31.6 \mathrm{mg}, 0.259 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 4 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=2 / 1$), $\mathrm{Ac}_{2} \mathrm{O}(491 \mu \mathrm{~L}, 5.18 \mathrm{mmol})$ was added to complete the reaction. After stirring for another 2 h at ambient temperature, the reaction was quenched with MeOH at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was co-evaporated with toluene and diluted with CHCl_{3}. . The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=5 / 1$) to give compound $\mathbf{S 9}\left(2.22 \mathrm{~g}, 92 \%\right.$) as a white foam; $[\alpha]_{D}+16.3^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.29\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.14\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{a}}=\mathrm{J}_{8,9 \mathrm{~b}}=2.6\right.$ $\left.\mathrm{Hz}, J_{7,8}=9.5 \mathrm{~Hz}, \mathrm{H}-8\right), 5.09\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,7}=1.5 \mathrm{~Hz}, \mathrm{H}-7\right), 4.82\left(\mathrm{td}, 1 \mathrm{H}, J_{3 e q, 4}=4.5 \mathrm{~Hz}, J_{3 a x, 4}=J_{4,5}=11.0\right.$ $\mathrm{Hz}, \mathrm{H}-4), 4.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=10.0 \mathrm{~Hz}, \mathrm{NH}-5\right)$, $4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}\right), 4.30(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}$), 4.27 (ddd, $1 \mathrm{H}, J_{9 \mathrm{a}, \mathrm{NH}}=8.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=14.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}$), 3.87 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6}=10.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.79 (near q, $1 \mathrm{H}, \mathrm{H}-5$), $3.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\left({ }^{(} \mathrm{Bu}\right) \mathrm{Me}_{2}\right.$), 3.54 (s, $3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OMe}$), 2.95 (dt, $1 \mathrm{H}, \mathrm{J}_{9 b, \mathrm{NH}}=$ $3.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 2.88$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=13.0 \mathrm{~Hz}, \mathrm{H}-3 e q\right), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.05-$ 2.00 (m, $4 \mathrm{H}, \mathrm{H}-3 a x, \mathrm{Ac}$), 1.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.66 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.56 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.40(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Me}_{2}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left({ }^{(}{ }^{(B u}\right) \mathrm{Me}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.2, 170.7, $169.7,167.5,158.0,157.7,154.9,136.1,130.0,129.0,129.0,128.5,128.2,125.3,117.0,114.8,90.0$, 87.5, 74.1, 71.8, 69.3, 68.5, 67.9, 62.9, 52.8, 51.5, 44.1, 38.4, 38.3, 32.5, 26.0, 25.3, 24.5, 21.1, 20.9, 20.7, 18.4, -5.3; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 957.2415, \mathrm{C}_{38} \mathrm{H}_{55} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{SSi}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 957.2415.

Compound S10

To a solution of compound $\mathbf{S 9}(3.46 \mathrm{~g}, 3.70 \mathrm{mmol})$ in pyridine $(74 \mathrm{~mL})$ was added Lil $(2.48 \mathrm{~g}, 18.5$ mmol) at $0^{\circ} \mathrm{C}$. After stirring for 38 h at $100^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=5 / 1\right)$, the reaction mixture was co-evaporated with toluene and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and
concentrated. The residue was purified by silica gel column chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH}=60 / 1 \rightarrow$ $20 / 1)$ to give compound S10 (3.20 g, 94\%) as a white foam; $[\alpha]_{\mathrm{D}}+26.3^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right) \delta 7.64-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.32\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}_{7,8}=4.0 \mathrm{~Hz}, \mathrm{H}-7\right), 5.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 8), $4.95\left(\mathrm{td}, 1 \mathrm{H}, J_{3 e q, 4}=4.5 \mathrm{~Hz}, J_{3 a x, 4}=J_{4,5}=11.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}\right)$, 4.27 (d, $1 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}$), 4.07-4.02 (m, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-9 \mathrm{a}$), $3.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Me}_{2}\right.$), 3.57-3.51 (m, 2 H, H-5, H-9b), 2.84 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.3 \mathrm{~Hz}, \mathrm{H}-3 e q\right), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi}\left({ }^{t} \mathrm{Bu}\right) \mathrm{Me}_{2}\right), 0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left({ }^{(t} \mathrm{Bu}\right) \mathrm{Me}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right) \delta 171.7,171.5,171.4,158.7,156.2,136.7,130.3,129.9,129.2,117.7,115.4,90.9$, 88.7, 74.8, 72.4, 71.9, 71.1, 69.2, 63.5, 51.5, 44.5, 39.7, 38.6, 32.9, 26.2, 25.7, 25.0, 21.1, 20.9, 20.8, 18.7, -5.2; HRMS (ESI) m / z : found $[M-H]^{-} 919.2294, \mathrm{C}_{37} \mathrm{H}_{53} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{SSi}$ calcd for [M-H] 919.2294 .

Compound 27

To a solution of compound S10 ($1.50 \mathrm{~g}, 1.63 \mathrm{mmol}$) in THF (33 mL) were added AcOH ($290 \mu \mathrm{~L}, 4.88$ mmol) and 1 M TBAF in THF ($4.88 \mathrm{~mL}, 4.88 \mathrm{mmol}$). After stirring for 36 h at ambient temperature as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=3 / 1\right)$, the reaction mixture was diluted with EtOAc. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=40 / 1 \rightarrow 10 / 1\right)$ to give compound $27(1.15 \mathrm{~g}, 87 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+31.0^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1$) $\delta 7.59-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=10.0 \mathrm{~Hz}\right.$, $\mathrm{NH}-5), 5.26$ (dd, $1 \mathrm{H}, \mathrm{J}_{6,7}=1.5 \mathrm{~Hz}, \mathrm{~J}_{7,8}=6.5 \mathrm{~Hz}, \mathrm{H}-7$), $5.17\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{a}}=3.0 \mathrm{~Hz}, \mathrm{~J}_{8,9 b}=6.5 \mathrm{~Hz}, \mathrm{H}-8\right)$, 4.92 (td, $\left.1 \mathrm{H}, \mathrm{J}_{3 e q, 4}=4.7 \mathrm{~Hz}, J_{3 a x, 4}=J_{4,5}=10.9 \mathrm{~Hz}, \mathrm{H}-4\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.5 \mathrm{~Hz}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}\right), 4.29$ (d, 1 H, NHC(=O)OCH ${ }_{2}$), 4.01 (br d, $1 \mathrm{H}, \mathrm{J}_{5,6}=10.5 \mathrm{~Hz}, \mathrm{H}-6$), 3.93 (dd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=14.8 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}$), 3.633.57 (m, 3 H, H-5, CH2OH), 3.40 (dd, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}$), 2.86 (dd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{H}-3 e q$), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.18 (m, $2 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-3 a x), 1.68(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right) \delta 171.0$, $170.1,170.1,168.8,157.7,157.4,155.2,155.2,135.7,129.1,128.4,128.2,118.8,116.6,114.3,89.7$, $86.5,73.4,70.8,69.5,69.5,67.8,61.1,50.4,50.3,43.5,43.4,38.4,37.5,31.5,24.5,23.9,19.8,19.5 ;$ HRMS (ESI) m / z : found $[\mathrm{M}-\mathrm{H}]^{-} 805.1429, \mathrm{C}_{31} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{~S}$ calcd for $[\mathrm{M}-\mathrm{H}]^{-} 805.1429$.

Compound 28

To a solution of $\mathrm{PPh}_{3}(1.52 \mathrm{~g}, 5.79 \mathrm{mmol})$ in THF $(659 \mathrm{~mL})$, a solution of compound $27(1.17 \mathrm{~g}, 1.45$ mmol) and DMEAD ($1.36 \mathrm{~g}, 5.79 \mathrm{mmol}$) in THF (181 mL) were added at ambiente temperature over a period of 2 h via cannula, followed by washing the flask containing compound $\mathbf{2 7}$ and DMTST with THF (66 mL) and transfer to the reaction mixture. After stirring for 1 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=2 / 1, \mathrm{CHCl}_{3} / \mathrm{MeOH}=3 / 1$), the reaction was quenched with MeOH and AcOH and the mixture was concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=4 / 1 \rightarrow 3 / 1$) to give compound $\mathbf{2 8}$ $(1.04 \mathrm{~g}, 91 \%)$ as a white foam; $[\alpha]_{\mathrm{D}}+19.5^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 9{ }^{\circ} \mathrm{C}$) $\delta 7.58-$ 7.37 (m, 5 H, Ph), 7.09 (br s, $1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 5.49 (td, $1 \mathrm{H}, \mathrm{J}_{3 e q, 4}=5.0 \mathrm{~Hz}, J_{3 a x, 4}=J_{4,5}=10.7 \mathrm{~Hz}, \mathrm{H}-4$), 5.41 (br s, $1 \mathrm{H}, \mathrm{NH}-5$), 5.37 (br d, $1 \mathrm{H}, \mathrm{J}_{7,8}=5.9 \mathrm{~Hz}, \mathrm{H}-7$), 5.18 (td, $1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{a}}=3.2 \mathrm{~Hz}, \mathrm{~J}_{8,9 b}=5.8 \mathrm{~Hz}, \mathrm{H}-8$), $4.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{NHC}(=\mathrm{O}) \mathrm{OCH}_{2}\right.$), 4.49-4.44 (m, 3 H, H-6, NHC(=O)OCH ${ }_{2}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 4.00 (m, 1 H, C(=O) OCH_{2}), 3.92 (m, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{a}$), 3.58 (near dt, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=14.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}$), 3.01 (dd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}$ $=13.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}), 2.95\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=6.8 \mathrm{~Hz}, \mathrm{~J}_{5,6}=10.4 \mathrm{~Hz}, \mathrm{H}-5\right), 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.26(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.00(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Ac}), 1.89-1.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}, \mathrm{CH}_{2}\right), 1.65-1.56(\mathrm{~m}, 4$ $\mathrm{H}, 2 \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 90^{\circ} \mathrm{C}$) $\delta 172.7,171.7,171.6,169.6,158.9,158.6,155.6,138.0$, $131.4,130.4,130.3,116.5,91.4,88.7,74.7,72.2,71.6,70.9,69.2,66.6,54.6,46.6,41.1,39.8,28.3$, 25.9, 24.1, 21.0, 20.8; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 811.1288, \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 811.1289.

Compound 30

To a solution of donor $\mathbf{2 8}$ ($297 \mathrm{mg}, 0.376 \mathrm{mmol}$) and acceptor $\mathbf{2 3}$ (214 mg, 0.125 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) were added NIS ($101 \mathrm{mg}, 0.451 \mathrm{mmol}$) and $3 \AA$ Å molecular sieves (511 mg). After stirring for 1 h at ambient temperature, $\mathrm{TfOH}(2.2 \mu \mathrm{~L}, 25.0 \mu \mathrm{~mol})$ was added at $-50^{\circ} \mathrm{C}$. After stirring for 10 h at
$-50^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (n-hexane $/ \mathrm{CHCl}_{3} /$ acetone $=2 / 1 / 1$, developed twice; $\mathrm{CHCl}_{3} /$ acetone $=7 / 1$, developed twice), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by gel filtration ($\mathrm{LH} 2 \mathrm{O} ; \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$), then silica gel column chromatography (n-hexane $/ \mathrm{CHCl}_{3} /$ acetone $=2 / 1 / 1$) to give compound 30 ($223 \mathrm{mg}, 75 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+60.7^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C}$) $\delta 8.14-6.81\left(\mathrm{~m}, 39 \mathrm{H}, 8 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), 5.96 (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=$ $\left.10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.43$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArCH}<$), 5.37-5.27 (m, $7 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-1^{b}, \mathrm{H}-4^{e}, \mathrm{H}-7^{e}, \mathrm{H}-8^{e}, \mathrm{NH}-2^{c}, \mathrm{NH}-5^{e}$), 5.23 (near t, $1 \mathrm{H}, \mathrm{H}-2^{d}$), $5.03\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{c}\right), 4.89\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4^{c}\right), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.0 \mathrm{~Hz}\right.$, $\left.J_{\text {gem }}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.61-4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-3^{c}, \mathrm{H}-3^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-6^{e}, 2 \mathrm{PhCH}_{2}, 2\right.$ $\mathrm{NHCO}(=\mathrm{O}) \mathrm{CH}_{2}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 4.18-4.10 (m, $4 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-5^{d}$), 4.06 (br s, $1 \mathrm{H}, \mathrm{H}-4^{d}$), 3.963.88 (m, $2 \mathrm{H}, \mathrm{H}-9 \mathrm{a}^{e}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 3.80-3.77 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{OMe}$), 3.71-3.61 (m,3H,H-6a${ }^{a}, \mathrm{H}^{\mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-}$ 2^{c}), $3.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{b}\right), 3.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{b}\right), 3.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right), 3.33\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{8,9 b}=\right.$ $\left.J_{9 b, N H}=5.9 \mathrm{~Hz}, J_{\mathrm{gem}}=14.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}^{e}\right), 2.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4, \mathrm{OH}}=3.5 \mathrm{~Hz}, \mathrm{OH}-4^{d}\right), 2.85\left(\mathrm{td}, 1 \mathrm{H}, J_{5, \mathrm{NH}}=6.8 \mathrm{~Hz}\right.$, $\left.J_{4,5}=J_{5,6}=10.3 \mathrm{~Hz}, \mathrm{H}-5^{e}\right), 2.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{3 e q, 4}=5.3 \mathrm{~Hz}, J_{\mathrm{gem}}=12.8 \mathrm{~Hz}, \mathrm{H}-3 e q^{e}\right), 2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.79-1.69 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-$ $3 a x^{e}, \mathrm{CH}_{2}{ }^{e}$), 1.63-1.49 (m, $4 \mathrm{H}, 2 \mathrm{CH}_{2}{ }^{e}$), $1.32\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.01\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.91(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C}$) $\delta 172.8,172.1,171.4,169.4,167.8,167.5,167.3,167.2$, $166.7,159.2,158.9,157.6,155.7,153.8,152.8,139.8,137.4,135.0,134.8,134.7,134.6,131.9,131.8$, 131.6, 131.4, 131.2, 131.1, 130.9, 130.8, 130.1, 130.1, 129.9, 129.7, 129.0, 129.0, 127.7, 126.3, 120.4, $116.4,116.2,103.7,103.4,102.5,99.7,99.3,91.4,79.1,77.0,75.7,75.6,75.4,75.2,75.0,74.4,73.8$, $72.3,71.9,71.4,70.6,70.2,69.9,69.7,69.0,68.2,68.0,66.7,65.2,56.6,54.2,46.3,41.1,38.1,35.6$, 31.8, 29.9, 28.4, 28.2, 28.1, 25.5, 24.3, 23.9, 23.2, 21.6, 21.4, 20.9, 20.8; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 2408.7742, \mathrm{C}_{119} \mathrm{H}_{136} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{39} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$2408.7742.

Compound 31

To a solution of compound $30(315 \mathrm{mg}, 0.132 \mathrm{mmol})$ in THF (1.3 mL) was added 1 m TBAHF in THF $(1.32 \mathrm{~mL}, 1.32 \mathrm{mmol})$. After stirring for 9 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=1 / 1$), the reaction mixture was diluted with CHCl_{3} and washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried for 2 h . The residue was dissolved in pyridine (1.3 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(50.0 \mu \mathrm{~L}, 0.528 \mathrm{mmol})$ and DMAP ($1.6 \mathrm{mg}, 13.2 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. After stirring for 3.5 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=$ $1 / 1)$, the reaction was quenched with MeOH at $0^{\circ} \mathrm{C}$ and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{~m} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane $/ \mathrm{CHCl}_{3} /$ acetone $=3 / 2 / 2$) to give compound 31 ($303 \mathrm{mg}, 97 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+42.3^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C}$) $\delta 8.17-6.78$ (m, $39 \mathrm{H}, 8 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 6.01 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5$ $\left.\mathrm{Hz}, \mathrm{H}-2^{a}\right), 5.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.48-5.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{b}\right.$, $\left.\mathrm{H}-8^{e}, \mathrm{ArCH}<\right), 5.39-5.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-1^{b}, \mathrm{H}-4^{d}, \mathrm{H}-4^{e}, \mathrm{NH}-5^{e}\right.$), 5.24-5.20 (m, $2 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-7^{e}$), 4.97 $\left.\left(\mathrm{d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}^{-1}\right)^{\mathrm{d}}\right), 4.90\left(\mathrm{brd}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}^{c} \mathrm{I}^{c}\right), 4.83\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.0 \mathrm{~Hz}, J_{2,3}=10.0 \mathrm{~Hz}\right.$, $\mathrm{H}-3^{d}$), 4.70-4.04 ($\mathrm{m}, 17 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-3^{b}, \mathrm{H}-5^{b}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-6^{e}, 2 \mathrm{PhCH}_{2}$, $2 \mathrm{NHCO}(=\mathrm{O}) \mathrm{CH}_{2}, 2 \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), $3.91\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=14.8 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}^{e}\right), 3.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=13.5 \mathrm{~Hz}, \mathrm{H}-\right.$ $6 b^{c}$), 3.76 (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.71-3.62\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}\right.$), $3.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right.$) , 3.25 (near d, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}^{e}$), $2.80\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{4,5}=J_{5,6}=10.3 \mathrm{~Hz}, \mathrm{H}-5^{e}\right.$), $2.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{3 e q, 4}=4.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-3 e q^{e}\right), 2.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.08$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.84-1.46\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-3 a x^{e}, 3 \mathrm{CH}_{2}{ }^{e}, \mathrm{Ac}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.00(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}, 80^{\circ} \mathrm{C}\right) \delta 173.1,172.6,172.2,171.8,169.5,167.8,167.7,167.5,167.0$, $157.8,154.1,153.2,140.1,137.7,135.3,135.1,135.0,132.0,131.9,131.6,131.3,131.3,131.1,130.3$, $130.2,130.0,129.3,129.2,127.9,126.7,120.5,116.5,104.0,102.7,98.4,91.8,79.9,77.0,75.9,75.3$, $74.7,74.5,73.6,72.9,72.5,72.3,72.2,72.1,70.5,70.4,70.1,69.6,68.6,67.1,64.4,56.9,41.1,39.0$, 35.9, 32.1, 28.5, 25.9, 24.4, 21.9, 21.3, 21.2, 21.1, 21.0; HRMS (ESI) m / z : found [$\mathrm{M}+\mathrm{Na}]^{+}$2394.7036, $\mathrm{C}_{117} \mathrm{H}_{126} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{42}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 2394.7037$.

Compound 32

To a solution of compound $31(282 \mathrm{mg}, 0.119 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{AcOH}=4 / 1(12 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}$ $(2.4 \mathrm{~mL})$ and zinc powder ($3.11 \mathrm{~g},<50 \mathrm{~nm}$ particle size). After stirring for 2.5 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right.$, developed twice; toluene/acetone $=2 / 1$), the reaction mixture was filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3}, washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=4 / 1 \rightarrow 3 / 1$) to give compound 32 ($249 \mathrm{mg}, 90 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+72.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.11-6.79(\mathrm{~m}, 39 \mathrm{H}, 8$ $\mathrm{Ar}_{1} \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), $6.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=9.5 \mathrm{~Hz}, \mathrm{NH}-5^{e}\right), 5.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{a}\right)$, $5.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{NH}}=9.0 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 5.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{b}\right)$, $5.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8^{e}\right), 5.38-5.34\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{b}, \mathrm{ArCH}<\right), 5.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{d}\right.$), 5.22-5.21 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{Cl}\right), 5.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=1.0 \mathrm{~Hz}, \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{Cl}\right), 5.13-5.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-7^{e}\right), 4.85$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}$) , 4.83-4.76 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1^{c}, \mathrm{H}-3^{d}, \mathrm{H}-4^{e}$), 4.57 (near t, $1 \mathrm{H}, \mathrm{H}-5^{d}$), 4.53-4.49 (m, $\left.2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.27-4.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4^{c}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{PhCH}_{2}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}\right), 4.20$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 4.14-4.11(m,2 H, H-5 $\left.{ }^{b}, \mathrm{H}-6 \mathrm{a}^{c}\right), 4.02\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}\right.$), $3.96(\mathrm{br} \mathrm{d}$, $1 \mathrm{H}, \mathrm{H}-3^{c}$), 3.86 (near q, $1 \mathrm{H}, \mathrm{H}-5^{e}$), 3.78-3.70 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-6^{e}, \mathrm{H}-9 \mathrm{a}^{e}, \mathrm{OMe}$), 3.61-3.47 (m,5H, H$\left.6 a^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}\right), 3.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right), 3.10\left(\mathrm{dt}, 1 \mathrm{H}, J_{8,9 \mathrm{~b}}=J_{9 b, \mathrm{NH}}=6.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=15.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.9 b^{e}\right), 2.42\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3 \mathrm{eq}, 4}=4.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=12.8 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}^{e}\right), 3.47\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{ClCH}_{2}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$, $2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$, 1.65 (m, 2 H, C(=O) $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.58-1.48 (m, 3 H, H-3axe, C(= CH_{2}) $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.43-1.30 (m, 11 H , $\mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2},{ }^{\mathrm{t}} \mathrm{Bu}$), $0.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 172.0, 171.6, 171.2, 171.1, $170.8,170.7,170.7,170.5,168.3,166.7,166.6,166.4,166.4,166.1,158.6,158.3,158.1,156.6,153.0$, $152.0,143.9,139.0,136.8,134.7,134.6,134.5,134.3,134.3,131.1,131.0,131.0,130.9,130.6,130.5$, $130.5,130.3,130.3,130.1,129.7,129.7,129.6,129.6,129.5,129.3,128.6,128.5,127.1,126.1,119.4$, $118.6,115.9,115.5,113.0,103.5,102.0,101.6,101.0,98.4,97.3,79.3,79.1,76.0,74.6,74.0,73.7$, $73.5,72.8,72.0,71.9,71.2,70.9,70.4,70.2,69.7,69.4,68.8,68.2,67.3,67.2,63.4,62.9,56.2,54.6$, $51.9,49.1,40.7,39.3,38.0,35.3,31.5,28.5,27.5,25.4,23.0,22.5,21.6,21.4,21.3,21.2,21.0,20.9$, 20.7; HRMS (ESI) m / z : found [$\mathrm{M}+\mathrm{Na}]^{+} 2358.7633, \mathrm{C}_{118} \mathrm{H}_{129} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{41}$ calcd for [M+Na] 2358.7634 .

Compound 33

To a solution of compound $32(37.9 \mathrm{mg}, 16.2 \mu \mathrm{~mol})$ in 1,4 -dioxane $/ \mathrm{MeOH}=1 / 1(0.80 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}\left(75.8 \mathrm{mg}, 20 \%\right.$ on carbon). After stirring for 3.5 h at ambient temperature under H_{2} gas as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was filtered through a pad of Celite, the pad was washed with CHCl_{3}, the combined filtrate and washings were concentrated, and dried for 2 h . The residue was dissolved in pyridine (0.32 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(7.7 \mu \mathrm{~L}, 81.0 \mu \mathrm{~mol})$ and DMAP ($\left.0.2 \mathrm{mg}, 1.62 \mu \mathrm{~mol}\right)$ at $0^{\circ} \mathrm{C}$. After stirring for 55 h at ambient temperature, the reaction was quenched with MeOH at $0^{\circ} \mathrm{C}$, and the mixture was coevaporated with toluene, and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 1\right)$ to give compound $33(29.1 \mathrm{mg}, 82 \%)$ as a white amorphous solid; $[\alpha]_{D}+58.7^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.97-6.74$ ($\mathrm{m}, 30 \mathrm{H}, 6 \mathrm{Ar}$, $\left.\mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=9.5 \mathrm{~Hz}, \mathrm{NH}-5^{e}\right), 5.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.4 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.58$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{2, \mathrm{NH}}=9.0 \mathrm{~Hz}, \mathrm{NH}-2^{c}\right), 5.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.9 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.27-$ $5.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{b}, \mathrm{H}-4^{c}, \mathrm{H}-8^{e}\right), 5.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1^{b}\right)$, 4.95-4.90 (m, 2 H, H-2 $\left.{ }^{d}, \mathrm{H}-7^{e}\right), 4.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.68-4.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{d}, \mathrm{H}-4^{e}\right), 4.60(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}_{1,2}=8.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.46\left(\right.$ near $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right), 4.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-3^{b}\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right)$, $4.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, J_{\mathrm{gem}}=10.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, J_{\text {gem }}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right)$, 4.09 (dt, $1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 4.05-3.96 (m, $4 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-3^{c}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{~b}^{d}$), 3.92-3.81(m,4H,H-6ba, $\mathrm{H}-$ $6 \mathrm{a}^{b}, \mathrm{H}-6^{e}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 3.71-3.55 (m, $9 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-5^{e}, \mathrm{H}-9 \mathrm{a}^{e}, \mathrm{OMe}$), 3.51 (dd, 1 H , $\left.J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 2.90\left(\mathrm{dt}, 1 \mathrm{H}, J_{8,9 \mathrm{~b}}=J_{9 b, \mathrm{NH}}=5.8 \mathrm{~Hz}, J_{\mathrm{gem}}=15.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}^{e}\right), 2.30(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}_{3 e q, 4}=4.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq} q^{\mathrm{e}}$), $1.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.92(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Ac}), 1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.76$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.58 (s, $3 \mathrm{H}, \mathrm{Ac}), 1.49\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.35\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3 a x, 4}=12.3 \mathrm{~Hz}, \mathrm{H}-3 a x^{\mathrm{e}}\right.$), 1.21-1.16(m,8H, $\mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Me}$), 0.79 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $0.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}\right.$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 172.1,171.5,171.4,171.0,171.0,170.9,170.9,170.8,170.6,170.6,170.2$, $168.3,166.5,166.5,166.4,166.2,165.9,158.5,158.2,156.6,151.9,134.7,134.6,134.4,134.3,134.3$, $131.0,130.9,130.9,130.6,130.4,130.3,130.1,129.6,129.6,129.6,119.1,118.6,115.9,115.5,102.5$, $102.2,100.9,98.7,98.2,79.1,78.0,75.5,73.9,73.8,73.5,72.7,72.2,72.0,71.5,71.4,71.0,70.9,70.2$,
$70.0,69.1,68.8,68.7,67.5,63.6,62.9,62.7,62.3,56.2,52.4,49.0,40.3,38.0,32.3,29.6,28.8,26.4$, 23.3, 23.0, 22.2, 21.5, 21.2, 21.1, 21.1, 20.9, 20.9, 20.9, 20.8, 20.8, 14.3; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$2218.7088, $\mathrm{C}_{106} \mathrm{H}_{120} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{44}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$2218.7089.

Compound 34

To a solution of compound $33(28.0 \mathrm{mg}, 12.7 \mu \mathrm{~mol})$ in $\mathrm{MeCN} /$ toluene $/ \mathrm{H}_{2} \mathrm{O}=6 / 5 / 3(0.26 \mathrm{~mL})$ was added cerium (IV) ammonium nitrate ($69.6 \mathrm{mg}, 0.127 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 3 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right.$, developed twice $)$, the reaction mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=60 / 1 \rightarrow 50 / 1\right)$ to give compound $34(17.4 \mathrm{mg}, 65 \%, \alpha: \beta=1: 0.3)$ as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.05-7.35\left(\mathrm{~m}, 26 \mathrm{H}, 5 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right)$, $5.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5, \mathrm{NH}}=9.5 \mathrm{~Hz}, \mathrm{NH}-5^{e}\right), 5.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=10.5 \mathrm{~Hz}, J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=\right.$ $9.0 \mathrm{~Hz}, \mathrm{NH}-2^{c}$), $5.55\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2}=J_{1, \mathrm{OH}}=3.8 \mathrm{~Hz}, \mathrm{H}-1^{a}\right), 5.49-5.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-4^{b}\right), 5.36-5.32(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{H}-4^{c}, \mathrm{H}-8^{e}\right), 5.28-5.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-2^{b}, \mathrm{H}-4^{d}\right), 5.04-4.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-7^{e}\right), 4.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=\right.$ 8.0 Hz, H-1 ${ }^{d}$), 4.76-4.69 (m, 4 H, H-1 ${ }^{c}, \mathrm{H}-3^{d}, \mathrm{H}-4^{e}, \mathrm{OH}-1^{d}$), 4.53 (near t, $1 \mathrm{H}, \mathrm{H}-5^{c}$), 4.43-4.32 (m, 3 H , $\left.\mathrm{H}-4^{a}, \mathrm{H}-3^{b}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.23\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right), 4.17\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}\right), 4.12-$ 3.90 ($\mathrm{m}, 7 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-3^{c}, \mathrm{H}^{d} \mathrm{5}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 3.79-3.59(m,8H,H-5${ }^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}$, $\mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-5^{e}, \mathrm{H}-6^{e}, \mathrm{H}-9 \mathrm{a}^{e}$), 2.99 ($\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{8,9 \mathrm{~b}}=J_{9 \mathrm{~b}, \mathrm{NH}}=5.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=15.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}^{e}$), 2.38 (dd, 1 $\left.\mathrm{H}, J_{3 e q, 4}=4.5 \mathrm{~Hz}, J_{\text {gem }}=12.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq} q^{e}\right), 2.11-1.58(\mathrm{~m}, 30 \mathrm{H}, 10 \mathrm{Ac}), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $1.44\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3 a x, 4}=12.3 \mathrm{~Hz}, \mathrm{H}-3 a x^{e}\right), 1.27-1.24\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$, $\mathrm{CH}_{2} \mathrm{Me}$), 0.86 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), 0.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$); HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$2112.6671, $\mathrm{C}_{99} \mathrm{H}_{114} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{43}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$2112.6670.

Compound 35

To a solution of compound $34(72.5 \mathrm{mg}, 34.7 \mu \mathrm{~mol})$ in acetone (0.69 mL) were added $\mathrm{CF}_{3} \mathrm{C}(=\mathrm{NPh}) \mathrm{Cl}$ $(11.2 \mu \mathrm{~L}, 69.3 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(23.9 \mathrm{mg}, 0.173 \mathrm{mmol})$. After stirring for 10 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ $80 / 1$) to give compound 35 ($73.6 \mathrm{mg}, 94 \%, \alpha: \beta=1: 0.3$) as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.05-6.54\left(\mathrm{~m}, 31 \mathrm{H}, 6 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), $6.13\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.95(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{5, \mathrm{NH}}=9.5 \mathrm{~Hz}, \mathrm{NH}-5^{e}\right), 5.88\left(\right.$ near $\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-3^{a}\right), 5.73\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-2^{a}\right), 5.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=9.0 \mathrm{~Hz}, \mathrm{NH}-\right.$ $\left.2^{c}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.35-5.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{c}, \mathrm{H}-8^{e}\right), 5.29-5.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-2^{b}\right), 5.19$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{d}$), 5.02-4.98 (m, $2 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-7^{e}$), $4.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right.$), 4.75-4.66 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-1^{c}, \mathrm{H}-3^{d}, \mathrm{H}-4^{e}$), 4.55 (near $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5^{c}\right), 4.45-4.28\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-3^{b}, \mathrm{H}-6 \mathrm{a}^{d}\right.$), $4.16\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}{ }^{e}\right.$), 4.11-4.04 (m, $3 \mathrm{H}, \mathrm{H}-3^{c}, \mathrm{H}^{2} 5^{d}, \mathrm{H}-6 \mathrm{~b}^{d}$), 3.98-3.88 (m, $4 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-$ $6 b^{b}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 3.79-3.60 (m, $7 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}-2^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-5^{e}, \mathrm{H}-6^{e}, \mathrm{H}-9 \mathrm{a}^{e}$), 2.98 (dt, $1 \mathrm{H}, \mathrm{J}_{8,9 b}=$ $\left.J_{9 b, N H}=6.0 \mathrm{~Hz}, J_{\mathrm{gem}}=14.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}^{e}\right), 2.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{3 e q, 4}=5.0 \mathrm{~Hz}, J_{\mathrm{gem}}=12.3 \mathrm{~Hz}, \mathrm{H}-3 e q^{e}\right), 2.14-1.55$ $\left(\mathrm{m}, 32 \mathrm{H}, 10 \mathrm{Ac}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.41\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3 a x, 4}=12.0 \mathrm{~Hz}, \mathrm{H}-3 a x^{e}\right), 1.26-1.20\left(\mathrm{~m}, 8 \mathrm{CH}_{2}{ }^{e}\right), 0.86(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}^{\text {Cer }}$), 0.63 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$); HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 2283.6966, \mathrm{C}_{107} \mathrm{H}_{118} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{43}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 2283.6966$.

Compound 36

To a solution of donor $35(127 \mathrm{mg}, 56.1 \mu \mathrm{~mol})$ and acceptor $17^{503}(108 \mathrm{mg}, 84.1 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8$ mL) was added $4 \AA$ Å molecular sieves (AW-300, 280 mg). After stirring for 1 h at ambient temperature, TMSOTf ($2.0 \mu \mathrm{~L}, 11.2 \mu \mathrm{~mol}$) was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 8 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=5 / 2$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=10 / 1 \rightarrow 4 / 1$) to give compound $36(129 \mathrm{mg}, 68 \%)$ as a white amorphous solid; $[\alpha]_{\mathrm{D}}+65.7^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-6.67\left(\mathrm{~m}, 42 \mathrm{H}, 9 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.78$
(near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, J_{4,5}=15.4 \mathrm{~Hz}, \mathrm{H}^{\mathrm{Cer}}$), $5.68-5.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{b}, \mathrm{NH}-2^{\text {Cer }}\right.$), $5.46(\mathrm{t}, 1$ $\mathrm{H}, J_{2,3}=J_{3,4}=7.3 \mathrm{~Hz}, \mathrm{H}-3^{C e r}$), $5.42\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{c}}\right.$), 5.39 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\mathrm{Cer}}$), 5.34-5.30(m,2 H, $\left.\mathrm{H}-2^{c}, \mathrm{H}-8^{f}\right), 5.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.17-5.09\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-3^{b}, \mathrm{H}-1^{c}, \mathrm{H}-2^{e}, \mathrm{H}-4^{e}\right.$), 5.02-5.00 (m, $\left.2 \mathrm{H}, \mathrm{NH}-2^{d}, \mathrm{NH}^{f} \mathrm{5}^{f}\right), 4.95-4.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-1^{d}, \mathrm{H}-7^{f}\right), 4.80-4.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{e}, \mathrm{H}-4^{f}\right), 4.66(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.3 \mathrm{~Hz}, \mathrm{ArCH}_{2}$), $4.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.0 \mathrm{~Hz}, \mathrm{H}-3^{e}\right), 4.45-$ $4.32\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-3^{d}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-2^{\text {Cer }}, \mathrm{ArCH}_{2}\right), 4.30-4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{c}, \mathrm{H}-5^{c}\right), 4.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=\right.$ $2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}$), 4.20-3.90 (m, $11 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-6^{b}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-5^{f}, \mathrm{H}-9 \mathrm{a}^{f}, \mathrm{H}-1 \mathrm{a}^{C e r}, \mathrm{H}-1 \mathrm{~b}^{C e r}$, ArCH_{2}, $\mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), 3.83-3.69 (m, $\left.9 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-6 \mathrm{a}^{d}, 2 \mathrm{OMe}\right), 3.65-3.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{c}}, \mathrm{H}-6 \mathrm{~b}^{d}\right), 3.52-$ 3.37 (m, 5H, H-6a $\left.{ }^{a}, \mathrm{H}^{-6 b^{a}}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-6^{f}\right), 3.26\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}-5^{a}\right), 3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{d}\right.$), 2.73 (near dt, $\left.1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}^{f}\right), 2.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3 e q, 4}=4.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq} \mathrm{q}^{f}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.03$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.95-1.92\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{Ac}\right), 1.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac})$, $\left.1.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.70-1.58\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-3 a x^{f}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}, \mathrm{Ac}\right), 1.38-1.08(\mathrm{~m}, 78 \mathrm{H}, 4$ $\mathrm{CH}_{2}{ }^{f}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}, 2{ }^{\mathrm{t}} \mathrm{Bu}$), 0.89-0.86(m,9 H, CH $2 \mathrm{Me}^{f}, 2 \mathrm{Me}^{\mathrm{Cer}}$), $0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,172.5,170.7,170.5,170.4,170.3,170.3,170.3,169.9,169.9,169.1,167.3,166.2$, $165.8,165.6,165.3,165.1,165.0,164.8,159.3,159.1,158.1,157.8,157.0,156.4,137.1,133.6,133.4$, $133.2,133.1,130.5,130.2,130.1,130.0,130.0,129.9,129.8,129.6,129.5,129.4,129.1,128.9,128.9$, $128.8,128.7,128.6,128.5,128.5,128.4,128.3,127.6,126.8,125.4,125.3,124.9,117.0,114.8,113.9$, $113.7,101.1,100.9,100.6,99.4,98.3,96.9,79.2,79.1,77.6,75.3,74.8,74.1,74.0,73.5,73.4,73.2$, $72.3,72.1,71.8,71.3,71.2,70.8,70.6,70.5,70.3,70.2,70.1,69.3,68.8,67.7,67.5,67.4,67.3,66.9$, $66.7,62.3,61.3,61.2,61.0,55.2,55.2,54.8,50.4,48.9,38.6,37.4,36.4,35.1,35.0,32.3,31.9,31.7$, 31.1, 29.7, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.3, 29.3, 29.0, 28.8, 28.1, 25.7, 25.6, 23.1, 22.7, 22.5, 22.0, 21.1, 20.8, 20.8, 20.7, 20.6, 20.5, 14.1, 14.1; HRMS (ESI) m / z : found $[\mathrm{M} / 2+\mathrm{Na}]^{+}$1702.7669, $\mathrm{C}_{179} \mathrm{H}_{233} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{54}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1702.7673$.

Compound 37

To a solution of compound $36(167 \mathrm{mg}, 49.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ was added TFA ($1.70 \mathrm{~mL}, 22.2$ mmol) at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$, developed twice), the reaction mixture was neutralized with satd. aq.
NaHCO_{3} and diluted with CHCl_{3}. The organic layer was washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=4 / 1$) to give compound $37(149 \mathrm{mg}, 96 \%)$ as a white amorphous solid; $[\alpha]_{D}+73.1^{\circ}$ (c 1.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07-7.10\left(\mathrm{~m}, 34 \mathrm{H}, 7 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), 5.90 (near quin, 1 $\left.\mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, J_{4,5}=15.0 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}\right), 5.80\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{NH}}=10.0 \mathrm{~Hz}, \mathrm{NH}-2^{\text {Cer }}\right.$), $5.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=\right.$ $\left.8.2 \mathrm{~Hz}, J_{2,3}=10.9 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.59\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\text {Cer }}\right), 5.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{c}\right)$, 5.47-5.42 (m, 3 H, H-2 ${ }^{c}, \mathrm{H}-4^{d}, \mathrm{H}-4^{\text {Cer }}$), 5.34 (near dt, $1 \mathrm{H}, \mathrm{J}_{7,8}=10.0 \mathrm{~Hz}, \mathrm{H}-8^{f}$), 5.26 (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=2.5$ $\left.\mathrm{Hz}, \mathrm{H}-3^{b}\right), 5.21-5.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{d}, \mathrm{H}-2^{e}\right), 5.15-5.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-4^{e}, \mathrm{NH}-2^{d}, \mathrm{NH}-5^{f}\right), 5.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}\right.$ $\left.=3.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6,7}=2.5 \mathrm{~Hz}, \mathrm{H}-7 f\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{b}}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{e}\right)$, $4.79\left(\mathrm{td}, 1 \mathrm{H}, J_{3 e q, 4}=4.2 \mathrm{~Hz}, J_{3 a q, 4}=J_{4,5}=11.3 \mathrm{~Hz}, \mathrm{H}-4^{f}\right), 4.68\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.3 \mathrm{~Hz}, J_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-3^{d}\right)$, $4.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, J_{2,3}=10.0 \mathrm{~Hz}, \mathrm{H}-3^{e}\right), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{a}\right), 4.44-4.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $5^{d}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-2^{\mathrm{Cer}}$), 4.33-4.29 (m, $2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{H}-3^{c}$), 4.23-4.11 (m,5 H, H-6a ${ }^{b}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{OH}-3^{a}$, $\mathrm{C}(=0) \mathrm{OCH}_{2}{ }^{f}$), 4.03-3.84 (m, $11 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-5^{e}, \mathrm{H}-5^{f}, \mathrm{H}-9 \mathrm{a}^{f}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Ce}}$, $\mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2}$), $3.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=7.5 \mathrm{~Hz}, J_{\mathrm{gem}}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{d}}\right.$), $3.56\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1 \mathrm{~b}, 2}=3.0 \mathrm{~Hz}, J_{\mathrm{gem}}=9.0\right.$ $\mathrm{Hz}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}$), 3.49 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6}=11.0 \mathrm{~Hz}, \mathrm{H}-6^{f}$), 3.36 (dd, $1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{d}$), 3.29 (brt, $1 \mathrm{H}, \mathrm{H}-$ $6 a^{a}$), $3.17\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}-5^{a}\right), 3.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{d}\right), 3.02\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{a}\right), 2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}-6^{a}\right), 2.75$ (near $\left.\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}-9 \mathrm{~b}^{f}\right), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{gem}}=12.5 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{eq}^{f}\right.$), $2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.05(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ac}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.00-1.95\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}, 2 \mathrm{Ac}\right), 1.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.83$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.69-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3 a x^{f}, \mathrm{Ac}\right), 1.60-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.50-$ $1.17\left(\mathrm{~m}, 78 \mathrm{H}, 4 \mathrm{CH}_{2} \mathrm{f}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}, 2{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.89-0.86\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}^{f}, 2 \mathrm{Me}^{\mathrm{Cer}}\right.$), $0.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,172.4,170.6,170.5,170.5,170.3,170.2,170.0,169.9,169.9,169.1,167.3$, $166.0,165.9,165.6,165.6,165.5,165.1,164.8,158.3,158.0,157.7,157.0,156.9,138.5,137.9,133.7$, $133.4,133.1,133.1,130.3,130.1,129.9,129.8,129.7,129.7,129.4,129.0,128.9,128.8,128.7,128.6$, $128.5,128.5,128.4,128.3,128.2,127.3,127.2,125.5,125.4,125.3,125.0,119.3,117.0,114.7,112.5$, $102.2,101.0,99.6,99.0,98.2,97.0,81.0,79.0,77.7,74.2,74.0,74.0,73.9,73.5,73.4,72.7,72.6,71.8$, $71.3,71.2,71.2,70.4,70.1,69.5,69.3,69.2,68.8,67.6,67.4,67.3,66.9,66.8,66.1,62.5,61.3,61.3$, $61.1,59.6,55.3,50.4,48.8,38.6,37.3,36.8,35.2,35.1,32.3,31.9,31.6,31.1,31.1,29.7,29.7,29.7$, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 29.3, 28.9, 28.8, 28.1, 25.7, 25.6, 23.0, 22.7, 22.5, 22.0, 21.4, 21.1, 20.8, 20.7, 20.6, 20.2, 14.1, 14.1; HRMS (ESI) m / z : found [M/2+Na] ${ }^{+} 1582.7097, \mathrm{C}_{163} \mathrm{H}_{217} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{52}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1582.7098$.

Compound 38

To a solution of compound $37(138 \mathrm{mg}, 44.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{THF}=1 / 1(15 \mathrm{~mL})$ was added 1 M NaOH aq. ($884 \mu \mathrm{~L}, 0.884 \mathrm{mmol}$). After stirring for 48 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / 5 \%\right.$ aq. $\mathrm{CaCl}_{2}=5 / 4 / 1$), 1 m NaOH aq. ($442 \mu \mathrm{~L}, 0.442$ mmol) was added to complete the reaction. After stirring for another 45 h , the reaction mixture was neutralized with Muromac $\left(\mathrm{H}^{+}\right)$, the resin was filtered through cotton, and washed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $=1 / 1$. The combined filtrate and washings were concentrated and co-evaporated with EtOH. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 28 \% \mathrm{NH}_{3}\right.$ aq. $=$ $5 / 2 / 0.2 / 0 \rightarrow 5 / 5 / 0.5 / 0 \rightarrow 3 / 3 / 1 / 0.1$) to give compound $38(69.3 \mathrm{mg}, 92 \%)$ as a white amorphous solid; $[\alpha]_{\mathrm{D}}+14.2^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right.$) $\delta 5.71$ (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=7.0 \mathrm{~Hz}, J_{4,5}=15.2 \mathrm{~Hz}, \mathrm{H}_{-5}{ }^{\text {Cer }}$), 5.46 ($\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\text {Cer }}$), 4.99 (d, $1 \mathrm{H}, J_{1,2}$ $\left.=3.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.94-2.88\left(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-2^{a}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-1^{b}, \mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}\right.$, $\mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-1^{d}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-1^{e}$, $\mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-3 e q^{f}, \mathrm{H}-4^{f}, \mathrm{H}-5^{f}, \mathrm{H}-6^{f}, \mathrm{H}-7^{f}, \mathrm{H}-8^{f}, \mathrm{H}-9 a^{f}, \mathrm{H}-9 \mathrm{~b}^{f}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{H}-$ $2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}$), 2.19-2.16 (m, 2 H, NHC(=O)CH2), 2.04-2.00 (m,5 H, H-6a $\left.{ }^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}, 2 \mathrm{Ac}\right), 1.73(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{\text {gem }}=11.3 \mathrm{~Hz}, \mathrm{H}-3 a x^{f}\right)$, $1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.38-1.28\left(\mathrm{~m}, 50 \mathrm{H}, 25 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}\right.$), 0.90-0.88(m, $6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}$); ${ }^{13} \mathrm{C}$ NMR (200 MHz, $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1$) $\delta 175.3,175.1,174.6,135.0,130.0,104.1$, $103.6,102.7,77.1,76.3,75.7,75.6,75.1,75.0,74.0,73.8,72.5,71.8,71.4,69.4,69.2,69.1,68.8,68.7$, $68.5,68.1,67.9,62.2,61.0,60.8,54.2,53.8,53.1,43.7,41.5,37.0,32.9,32.5,30.2,30.2,30.2,30.2$, 30.1, 30.1, 29.9, 29.9, 29.9, 29.8, 26.6, 23.6, 23.2, 22.5, 14.3; HRMS (ESI) m / z : found $[M-H]^{-}$ 1705.9382, $\mathrm{C}_{79} \mathrm{H}_{142} \mathrm{~N}_{4} \mathrm{O}_{35}$ calcd for $[\mathrm{M}-\mathrm{H}]^{-} 1705.9382$.

Supporting Scheme 4. Synthesis of Gal donor 39.

Compound S13

To a solution of compound $\mathbf{S 1 1}{ }^{506}(300 \mathrm{mg}, 1.10 \mathrm{mmol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$ were added $n-\mathrm{Bu}_{2} \mathrm{SnO}$ (411 $\mathrm{mg}, 1.65 \mathrm{mmol}$) and Drierite (599 mg). After stirring for 7.5 h under reflux, the reaction mixture was cooled to ambient temperature and filtered through a pad of Celite. The pad was washed with MeOH . The combined filtrate and washings were concentrated, and dried for 12 h . The residue was dissolved in 1,4-dioxane (11 mL), followed by the addition of compound $\mathbf{S} 12^{507}$ ($786 \mathrm{mg}, 3.30 \mathrm{mmol}$) and TBAI $(1.22 \mathrm{~g}, 3.30 \mathrm{mmol})$. After stirring for 89 h at $80^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$, the reaction was quenched with MeOH and the mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=30 / 1\right)$. The resulting mixture was dried for 2 h , dissolved in $\mathrm{MeOH}(37 \mathrm{~mL})$, followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(1.52 \mathrm{~mL}, 11.0$ $\mathrm{mL})$, TFAcOMe ($546 \mu \mathrm{~L}, 5.50 \mathrm{~mL}$) and $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(77.2 \mathrm{mg}, 20 \%$ on carbon). After stirring for 4 h at ambient temperature under H_{2} gas as the progress of the reaction was monitored by TLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1\right)$, the reaction mixture was filtered through a pad of Celite, the pad was washed with MeOH , the combined filtrate and washings were concentrated, and dried for 2 h . The residue was dissolved in MeCN (11 mL), followed by the addition of BDA ($332 \mu \mathrm{~L}, 2.20 \mathrm{mmol}$) and CSA (25.6 $\mathrm{mg}, 0.110 \mathrm{mmol})$. After stirring for 50 min at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 1\right)$ to give compound $\mathbf{S 1 3}(404 \mathrm{mg}, 63 \%)$ as a white amorphous solid; $[\alpha]_{\mathrm{D}}-39.7^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), 7.67-7.23 (m, $10 \mathrm{H}, 2 \mathrm{Ph}$),
5.50 (s, $1 \mathrm{H}, \mathrm{PhCH}<$), 4.56 (d, $1 \mathrm{H}, \mathrm{J}_{1,2}=9.4 \mathrm{~Hz}, \mathrm{H}-1$), 4.47 (br s, $1 \mathrm{H}, \mathrm{OH}-2$), 4.38 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=1.5 \mathrm{~Hz}$, $\left.J_{\text {gem }}=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.04-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{OCH}_{2}\right), 3.96(\mathrm{brt}, 1 \mathrm{H}$, $\left.J_{2,3}=9.3 \mathrm{~Hz}, \mathrm{H}-2\right), 3.74-3.66\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.65-3.45\left(\mathrm{~m}, \mathrm{H}-3, \mathrm{H}-5,7 \mathrm{OCH}_{2}\right), 3.40-3.29(\mathrm{~m}, 2 \mathrm{H}, 2$ $\left.\mathrm{NHCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,157.2,137.8,133.5,131.5,129.2,129.0,128.8,128.2$, $128.2,127.8,126.6,125.3,117.2,114.9,101.3,86.4,83.7,74.5,70.7,70.4,70.1,70.1,70.0,69.5$, 68.9, 67.2, 39.8; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 610.1690, \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 610.1693$.

Compound 39

To a solution of compound $\mathbf{S 1 3}(391 \mathrm{mg}, 0.665 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ were added DMAP (81.2 mg , $0.665 \mathrm{mmol})$, LevOH ($102 \mu \mathrm{~L}, 0.998 \mathrm{mmol}$) and EDC. HCl ($191 \mathrm{mg}, 0.998 \mathrm{mmol}$). After stirring for 12.5 h at $30^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 2$, developed twice), the reaction mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=4 / 1$) to give compound 39 ($398 \mathrm{mg}, 87 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}-3.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.14\left(\mathrm{~m}, 11 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right)$, $5.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}<\right.$), $5.25\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1,2}=J_{2,3}=9.9 \mathrm{~Hz}, \mathrm{H}-2\right), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1), 4.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=1.3\right.$ $\mathrm{Hz}, J_{\text {gem }}=12.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), $4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4\right), 4.04$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{~b}}=1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.76(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{OCH}_{2}$), 3.65-3.56 (m, 6 H, H-3, $5 \mathrm{OCH}_{2}$), 3.53-3.43 (m,5 H, H-5, $4 \mathrm{OCH}_{2}$), 3.38-3.25 (m, $2 \mathrm{H}, 2$ NHCH_{2}), 2.87-2.59 (m, $\left.4 \mathrm{H}, 4 \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3$) \delta 206.5$, $171.2,157.3,157.0,137.6,133.5,131.6,129.2,128.7,128.1,128.0,126.6,117.1,114.8,101.3,85.2$, $79.8,73.3,70.6,70.4,70.3,70.0,69.7,69.3,68.6,68.4,39.6,37.9,29.9,28.1$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 708.2064, \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{NO}_{10} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} 708.2061$.

Compound 40

To a solution of donor 39 ($79.2 \mathrm{~g}, 0.116 \mathrm{mmol}$) and acceptor $\mathbf{1 0}(51.5 \mathrm{~g}, 38.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$
were added NIS ($34.5 \mathrm{~g}, 0.154 \mathrm{mmol}$) and $4 \AA$ Å molecular sieves (AW-300, 120 mg). After stirring for 1 h at ambient temperature, $\mathrm{TfOH}(1.0 \mu \mathrm{~L}, 11.6 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring for 4 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} /\right.$ acetone $=4 / 1$, developed twice $)$, the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=5 / 1 \rightarrow 4 / 1 \rightarrow 2 / 1$) to give compound 40 ($53.2 \mathrm{~g}, 72 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+89.7^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-6.72\left(\mathrm{~m}, 34 \mathrm{H}, 7 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 6.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{\mathrm{c}}\right.$), $5.96(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}$), $5.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<)$, $5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}<\right.$), $5.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.33\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.24-5.20(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-2^{d}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.82-4.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{H}-3^{c}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right)$, $4.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}^{\mathrm{H}} 4^{c}\right), 4.36\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right), 4.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-3^{b}\right), 4.27$ (br d, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{c}$), $4.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{d}\right.$), 4.11-4.04(m,5H,H-5${ }^{b}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-$ $\left.6 b^{d}, 2 \mathrm{PhCH}_{2}\right), 3.90\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{a}\right), 3.77-3.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OMe}, \mathrm{OCH}_{2}\right), 3.64-3.31(\mathrm{~m}$, $18 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}^{2}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-5^{c}, \mathrm{H}-3^{d}, \mathrm{H}^{d} 5^{d}, 9 \mathrm{OCH}_{2}, \mathrm{NHCH}_{2}$), $3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right.$), 2.85 ($\left.\mathrm{m}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.54-2.45\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(=\mathrm{O}) \mathrm{Me})$, 1.32-1.31 (m, $12 \mathrm{H}, \mathrm{Ac},{ }^{t} \mathrm{Bu}$), $1.03\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.3$, $171.2,171.0,166.2,165.9,165.5,157.3,157.0,155.6,151.3,151.2,137.7,137.6,135.6,133.6,133.2$, $133.2,130.5,129.9,129.8,129.7,129.4,129.1,128.9,128.7,128.5,128.4,128.4,128.2,127.8,127.7$, $126.5,126.3,124.7,119.0,117.1,114.8,114.4,101.7,101.3,101.2,100.7,100.0,98.1,78.5,76.3$, $75.2,74.3,74.2,74.0,73.8,73.6,73.3,73.2,70.8,70.6,70.5,70.4,69.7,69.6,69.4,69.3,68.4,68.2$, 68.0, 66.7, 66.4, 66.2, 55.6, 54.9, 39.6, 37.6, 34.6, 31.4, 29.9, 29.7, 27.8, 27.5, 27.4, 27.2, 23.3, 23.0, 22.7, 20.6; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 1935.7461, \mathrm{C}_{100} \mathrm{H}_{119} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{30} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 1935.7461.

Compound 41

To a solution of compound $40(66.3 \mathrm{mg}, 34.6 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{THF}=1 / 5(1.7 \mathrm{~mL})$ was added $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{AcOH}$ ($31.9 \mathrm{mg}, 0.346 \mathrm{mmol}$). After stirring for 40 min at ambient temperature as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 2$), the reaction mixture was diluted with EtOAc. The organic layer was washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=2 / 1$) to give compound 41 ($58.9 \mathrm{mg}, 94 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+74.8^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-6.72$ ($\left.\mathrm{m}, 34 \mathrm{H}, 7 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.97$ (dd, $1 \mathrm{H}, \mathrm{J}_{1,2}=7.7 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.9 \mathrm{~Hz}$, $\mathrm{H}-2^{a}$), 5.72-5.69 (m, 2 H, H-2 ${ }^{b}, \mathrm{NH}-2^{c}$), $5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}<), 5.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-1^{c}\right), 5.33\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1^{b}\right), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.81-$ $4.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{H}-3^{c}\right), 4.42-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-4^{c}\right), 4.36-4.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{d}, \mathrm{H}-6^{d}\right), 4.31-4.25(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-6 \mathrm{a}^{c}\right), 4.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 4.12-4.03\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-6 \mathrm{~b}^{d}, 2 \mathrm{PhCH}_{2}\right)$, 3.92-3.82 (m, $3 \mathrm{H}, \mathrm{H}^{2} 5^{a}, \mathrm{H}-2^{d}, \mathrm{OCH}_{2}$), 3.74-3.41 ($\mathrm{m}, 18 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-5^{d}, \mathrm{OMe}$, $9 \mathrm{OCH}_{2}$), $3.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{c}}\right.$), $3.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-3^{d}\right), 3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.10(\mathrm{~m}, 1 \mathrm{H}$, NHCH_{2}), $2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}-2^{d}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.98\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,166.0,165.7,165.4,157.5,157.2,156.9,156.6,155.5,151.5$, $151.1,137.8,137.7,137.4,135.3,133.5,133.2,133.2,130.3,129.7,129.5,129.4,129.2,128.9,128.8$, $128.6,128.5,128.3,128.2,128.1,128.1,127.7,126.4,126.3,125.2,124.7,124.4,118.9,117.0,114.7$, $114.3,104.0,101.0,100.3,98.0,80.5,77.3,77.2,77.0,76.7,76.1,75.8,74.2,74.0,73.9,73.8,73.7$, $73.5,73.1,70.5,70.2,70.1,69.9,69.6,69.5,69.4,69.2,69.2,68.1,68.0,67.8,66.5,66.3,55.5,54.9$, 39.4, 34.4, 31.6, 31.2, 27.4, 27.3, 23.3, 22.7, 21.3, 20.5; HRMS (ESI) m / z : found [$\mathrm{M}+\mathrm{Na}]^{+}$1837.7094, $\mathrm{C}_{95} \mathrm{H}_{113} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{28} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1837.7093.

Compound 43

To a solution of donor 42^{508} ($186 \mathrm{mg}, 0.354 \mathrm{mmol}$) and acceptor $41(428 \mathrm{mg}, 0.236 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CPME}=1 / 1(5.9 \mathrm{~mL})$ were added NIS $(95.0 \mathrm{mg}, 0.424 \mathrm{mmol})$ and $4 \AA$ molecular sieves (600 $\mathrm{mg})$. After stirring for 1 h at ambient temperature, $\mathrm{TfOH}(2.1 \mu \mathrm{~L}, 23.6 \mu \mathrm{~mol})$ was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 29 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The
pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by gel filtration ($\mathrm{LH} 2 \mathrm{O} ; \mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$), then silica gel column chromatography (toluene/acetone $=7 / 1 \rightarrow 4 / 1$) to give compound 43 ($430 \mathrm{mg}, 82 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+64.0^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-6.72(\mathrm{~m}, 49 \mathrm{H}, 10 \mathrm{Ar}$, $\left.\mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 5.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.7 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.86\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.7 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-2^{b}\right), 5.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 5.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<), 5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}<), 5.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-1^{c}\right), 5.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{b}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=\right.$ 7.0 Hz, NH-2 ${ }^{c}$), 4.89-4.86 (m, $2 \mathrm{H}, \mathrm{H}-4^{b}, \mathrm{PhCH}_{2}$), $4.83\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=3.3 \mathrm{~Hz}, \mathrm{~J}_{3,4}=11.3 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.78$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=13.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.60-4.55(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{PhCH} 2), 4.44$ (d, $1 \mathrm{H}, \mathrm{H}-4^{a}$), 4.33-4.31 (m, $4 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-4^{c}, 2 \mathrm{PhCH}_{2}$), $4.27\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{d}\right.$), 4.21 (d, $1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}$), 4.15-4.11 (m, 4 H, H-5 $\left.{ }^{b}, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-4^{d}, \mathrm{H}-5^{e}\right), 4.08-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{PhCH}_{2}\right.$), $4.00\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{c}\right), 3.97-3.89\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-2^{d}, \mathrm{H}-2^{e}\right.$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.66-3.18 (m, $20 \mathrm{H}, \mathrm{H}-$ $6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-5^{c}, \mathrm{H}-3^{d}, \mathrm{H}-5^{d}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, 10 \mathrm{OCH}_{2}$), 3.09-3.05 ($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{NHCH}_{2}$), $1.30\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.04\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 0.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 0.55\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6^{e}\right)$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 171.2,166.2,165.9,165.5,157.7,157.4,155.6,152.0,151.3,139.6$, $138.7,138.6,137.8,137.5,136.1,133.7,133.3,133.3,130.5,129.8,129.7,129.6,129.4,129.0,128.9$, $128.8,128.7,128.5,128.4,128.4,128.2,128.1,127.9,127.8,127.8,127.7,127.5,127.1,126.9,126.7$, $126.1,124.8,119.1,117.1,114.8,114.4,101.2,101.1,101.1,100.6,100.5,97.9,95.1,82.2,77.9,76.1$, $75.8,75.7,75.5,74.4,74.1,73.7,73.6,73.2,72.2,71.0,70.8,70.5,70.1,70.0,69.8,69.7,69.4,69.2$, $68.1,67.9,66.7,66.5,66.2,55.7,55.6,39.6,34.6,31.4,29.7,27.6,27.4,23.5,22.6,20.6,15.4$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$2253.9080, $\mathrm{C}_{122} \mathrm{H}_{141} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{32} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$2253.9081.

Compound 44

To a solution of compound $43(426 \mathrm{mg}, 0.191 \mathrm{mmol})$ in THF $(3.8 \mathrm{~mL})$ was added 1 m TBAHF in THF ($1.91 \mathrm{~mL}, 1.91 \mathrm{mmol}$). After stirring for 13 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=1 / 1$), the reaction mixture was diluted with EtOAc and washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
concentrated and dried for 2 h . The residue was dissolved in pyridine (1.9 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(72.4 \mu \mathrm{~L}, 0.764 \mathrm{mmol})$ and DMAP ($2.3 \mathrm{mg}, 19.1 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. After stirring for 2 h at ambient temperature as the progress of the reaction was monitored by TLC (n-hexane/acetone $=$ $1 / 1), \mathrm{Ac}_{2} \mathrm{O}(72.4 \mu \mathrm{~L}, 0.764 \mathrm{mmol})$ was added to complete the reaction. After stirring for another 2 h , the reaction was quenched with MeOH at $0^{\circ} \mathrm{C}$ and diluted with EtOAc. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=2 / 1 \rightarrow 3 / 2$) to give compound 44 ($386 \mathrm{mg}, 93 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+69.5^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.12-6.72 (m, 49 H, $10 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}$), 6.07 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.7 \mathrm{~Hz}, \mathrm{H}-2^{a}$), $5.73(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 5.65-5.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{b}, \mathrm{NH}-2^{c}\right), 5.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}<)$, 5.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{PhCH}<$), $5.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.5 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.38\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}\right.$ $\left.=3.5 \mathrm{~Hz}, \mathrm{H}-1^{b}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 4.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}\right.$, $\left.\mathrm{PhCH}_{2}\right), 4.64-4.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{b}, 2 \mathrm{PhCH}_{2}\right), 4.54\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=\mathrm{J}_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, \mathrm{H}-5^{b}\right), 4.51-4.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-4^{a}, \mathrm{H}-3^{c}$), $4.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.36-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{d}}, \mathrm{PhCH}_{2}\right), 4.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-4^{c}\right), 4.28-4.24\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{c}, 2 \mathrm{PhCH}_{2}\right), 4.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 4.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5\right.$ $\mathrm{Hz}, \mathrm{PhCH}_{2}$), 4.06-3.90 (m, $6 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-2^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-2^{e}, \mathrm{H}-5^{e}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.67(\mathrm{~m}, 1 \mathrm{H}$, OCH_{2}), 3.56-3.18 ($\mathrm{m}, 19 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-5^{c}, \mathrm{H}-3^{d}, \mathrm{H}-5^{d}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, 9 \mathrm{OCH}_{2}$), 3.08-3.05 (m, $2 \mathrm{H}, 2 \mathrm{NHCH}_{2}$), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.25\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.52$ $\left(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6^{e}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,170.1,170.1,165.9,165.9,165.5,157.6$, $157.4,155.6,151.8,151.4,139.3,138.9,138.8,137.7,137.4,135.8,133.7,133.3,130.3,129.7,129.7$, $129.6,129.4,128.9,128.8,128.7,128.5,128.4,128.4,128.1,128.1,128.1,128.0,127.9,127.8,127.7$, $127.5,127.2,126.5,126.1,124.8,119.1,117.0,114.8,114.4,101.8,101.3,101.1,100.7,99.6,96.7$, $95.5,82.1,79.0,78.8,76.2,75.6,75.4,73.8,73.7,73.5,73.2,72.8,72.5,72.2,71.9,70.2,70.0,69.9$, $69.8,69.6,69.3,68.8,68.1,68.0,67.4,67.3,66.7,66.4,61.8,55.6,55.2,39.6,34.6,31.3,29.3,23.1$, 21.0, 20.6, 15.3; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+} 2197.8274, \mathrm{C}_{118} \mathrm{H}_{129} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{34}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ 2197.8271.

Compound 45

To a solution of compound $44(57.5 \mathrm{mg}, 26.4 \mu \mathrm{~mol})$ in 1,4 -dioxane $/ \mathrm{MeOH}=1 / 1(1.3 \mathrm{~mL})$ was added
$\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}\left(115 \mathrm{mg}, 20 \%\right.$ on carbon). After stirring for 5 h at ambient temperature under H_{2} gas as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=5 / 1\right)$, the reaction mixture was filtered through a pad of Celite, the pad was washed with CHCl_{3}, the combined filtrate and washings were concentrated, co-evaporated with toluene, and dried for 2 h . The residue was dissolved in pyridine (0.26 mL), followed by the addition of $\mathrm{Ac}_{2} \mathrm{O}(30.0 \mu \mathrm{~L}, 0.317 \mathrm{mmol})$ and DMAP ($0.3 \mathrm{mg}, 2.64$ $\mu \mathrm{mol}$) at $0^{\circ} \mathrm{C}$. After stirring for 7 h at ambient temperature as the progress of the reaction was monitored by $\operatorname{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction was quenched with MeOH at $0{ }^{\circ} \mathrm{C}$, and the mixture was co-evaporated with toluene, and diluted with CHCl_{3}. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (n-hexane/acetone $=1 / 1$) to give compound 45 (44.4 $\mathrm{mg}, 88 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+46.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-$ $6.75\left(\mathrm{~m}, 20 \mathrm{H}, 4 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 6.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.5 \mathrm{~Hz}, \mathrm{NH}-2^{\mathrm{c}}\right.$), $5.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=7.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=\right.$ $\left.10.5 \mathrm{~Hz}, \mathrm{H}-2^{a}\right), 5.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.0 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5\right.$ $\left.\mathrm{Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{c}\right), 5.36-5.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-4^{d}\right), 5.27(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{b}\right), 5.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.20-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}\right), 5.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{e}\right), 5.11(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{a}\right), 5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.60-4.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-5^{c}\right), 4.50-4.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-\right.$ $\left.5^{e}\right), 4.40\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.34\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-4^{a}\right), 4.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=5.3 \mathrm{~Hz}, J_{\text {gem }}=\right.$ $11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}$), 4.12-4.07 (m, $3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}$), 4.03-3.95 (m,3H,H-5 ${ }^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}$), 3.85 (dd, $1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\text {gem }}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{c}}$), 3.76-3.67 (m, 6 H, H-6b ${ }^{c}, \mathrm{H}-5^{d}, \mathrm{OMe}, \mathrm{OCH}_{2}$), 3.63-3.33 ($\mathrm{m}, 13 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}^{\mathrm{d}}{ }^{d}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), $3.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{c}\right.$), $2.14(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Ac}), 2.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.10$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.89$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.10\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6^{e}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,171.3$, $170.8,170.6,170.6,170.5,170.4,170.1,169.8,169.6,166.2,166.0,165.2,157.5,157.2,155.7,151.1$, $133.7,133.6,133.4,130.2,129.9,129.7,129.2,129.0,128.7,128.6,128.6,128.5,118.7,117.1,114.8$, $114.5,101.8,101.0,99.0,98.4,95.1,81.5,74.8,73.3,73.2,72.1,71.6,71.3,71.1,70.9,70.8,70.6$, $70.4,70.4,70.2,70.2,70.1,69.5,69.4,69.3,68.7,68.5,67.9,67.5,66.1,64.3,62.5,61.8,61.6,61.3$, $56.1,55.6,53.8,39.8,31.7,29.7,29.3,22.6,20.8,20.8,20.7,20.7,20.7,20.6,20.6,20.6,20.5,15.7 ;$ HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{Na}]^{+}$1941.5987, $\mathrm{C}_{93} \mathrm{H}_{109} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{41}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1941.5986.

Compound 46

To a solution of compound $45(44.4 \mathrm{mg}, 23.1 \mu \mathrm{~mol})$ in $\mathrm{MeCN} /$ toluene $/ \mathrm{H}_{2} \mathrm{O}=6 / 5 / 3(0.46 \mathrm{~mL})$ was added cerium (IV) ammonium nitrate ($127 \mathrm{~g}, 0.231 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 2 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was diluted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=60 / 1\right)$ to give compound $46(27.4 \mathrm{mg}, 65 \%, \alpha: \beta=1: 0.3)$ as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-7.33\left(\mathrm{~m}, 16 \mathrm{H}, 3 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right.$), $6.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=6.0\right.$ $\left.\mathrm{Hz}, \mathrm{NH}-2^{c}\right), 5.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{~J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.70\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{J}_{1,2}=J_{1, \mathrm{OH}}=3.3 \mathrm{~Hz}, \mathrm{H}-1^{a}\right)$, $5.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.4 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 5.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{a}\right), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 5.49\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}\right.$ $\left.=3.5 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, \mathrm{H}-4^{c}\right), 5.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.30(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-1^{b}$), $5.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.22-5.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=10.8 \mathrm{~Hz}\right.$, $\mathrm{H}-2^{e}$), $5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.60-4.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-5^{c}\right), 4.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{e}\right), 4.41-4.37$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-1^{d}\right), 4.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4^{a}\right), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{a}\right), 4.12-3.99$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}$), 3.83 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{c}$), 3.78-3.68(m,3H,H-6b${ }^{c}, \mathrm{H}-5^{d}$, OCH_{2}), 3.64-3.34(m, $13 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), $3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{c}\right), 2.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}-1^{a}\right)$, 2.15-2.08 (m, $18 \mathrm{H}, 6 \mathrm{Ac}$), 1.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.70 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.38 (s, $3 \mathrm{H}, \mathrm{Ac}), 1.09\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6{ }^{e}\right.$); HRMS (ESI) m/z: found [M+Na] ${ }^{+} 1835.5567, \mathrm{C}_{81} \mathrm{H}_{99} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{41}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$1835.3368.

Compound 47

To a solution of compound $46(12.7 \mathrm{mg}, 7.00 \mu \mathrm{~mol})$ in acetone $(0.14 \mathrm{~mL})$ were added $\mathrm{CF}_{3} \mathrm{C}(=\mathrm{NPh}) \mathrm{Cl}$ ($2.3 \mu \mathrm{~L}, 14.0 \mu \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.8 \mathrm{mg}, 35.0 \mu \mathrm{~mol})$. After stirring for 8 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$, the reaction mixture was concentrated. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=80 / 1\right)$ to give compound 47 ($13.2 \mathrm{mg}, 95 \%, \alpha: \beta=1: 0.3$) as a white amorphous solid; α isomer; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 8.11-6.47 (m, 22 H, $4 \mathrm{Ph}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}, \mathrm{NH}-2^{c}$), $6.06\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{a}\right), 5.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2^{a}), $5.78\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.3 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-3^{a}\right), 5.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.3 \mathrm{~Hz}, \mathrm{H}-1^{e}\right), 5.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}\right.$
$=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}$), $5.49\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}\right), 5.40\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=3.2 \mathrm{~Hz}, \mathrm{H}-4^{c}\right), 5.33-$ $5.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{b}, \mathrm{H}-4^{d}\right), 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 5.22-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}\right), 5.13(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{e}\right), 5.03\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.3 \mathrm{~Hz}, \mathrm{H}-3^{c}\right), 4.55-4.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{b}, \mathrm{H}-5^{c}\right), 4.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.5^{e}\right)$, 4.42-4.39 (m, $\left.2 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-1^{d}\right), 4.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{b}\right), 4.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.6 a^{a}\right)$, 4.13-4.00 (m, 6H, H-5 $\left.{ }^{a}, \mathrm{H}^{-6 b^{a}}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}\right), 3.84\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{gem}}=11.5\right.$ $\left.\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}^{c}\right), 3.79-3.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}^{\mathrm{C}} \mathrm{S}^{d}, \mathrm{OCH}_{2}\right), 3.63-3.33\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, 9 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}\right)$, $3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{c}}\right.$), 2.15-2.07(m,18H,6Ac), $1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.75$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), $1.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.10\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6^{e} \text {); HRMS (ESI) } \mathrm{m} / \mathrm{z} \text { : found [} \mathrm{M}+\mathrm{Na}\right]^{+}$2006.5864, $\mathrm{C}_{89} \mathrm{H}_{103} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{41}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$2006.5863.

Compound 48

To a solution of donor $\mathbf{4 7}(50.0 \mathrm{mg}, 25.2 \mu \mathrm{~mol})$ and acceptor $17^{503}(48.7 \mathrm{mg}, 37.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3$ mL) was added $4 \AA$ Å molecular sieves (AW-300, 130 mg). After stirring for 1 h at ambient temperature, TMSOTf ($0.91 \mu \mathrm{~L}, 5.04 \mu \mathrm{~mol}$) was added at $0^{\circ} \mathrm{C}$. After stirring for 16.5 h at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and filtered through a pad of Celite. The pad was washed with CHCl_{3}. The combined filtrate and washings were diluted with CHCl_{3} and washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=10 / 1 \rightarrow 4 / 1$) to give compound 48 ($58.6 \mathrm{mg}, 75 \%$) as a white amorphous solid; $[\alpha]_{\mathrm{D}}+31.1^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-6.67\left(\mathrm{~m}, 32 \mathrm{H}, 7 \mathrm{Ar}, \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 6.40$ (d, $1 \mathrm{H}, J_{2, \mathrm{NH}}=7.0 \mathrm{~Hz}, \mathrm{NH}-2^{d}$), 5.77 (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, J_{4,5}=15.0 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{Cer}}$), 5.68 (dd, 1 $\mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, J_{2,3}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{b}$), $5.63\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{NH}}=9.5 \mathrm{~Hz}, \mathrm{NH}-2^{\text {Cer }}\right.$), $5.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 1^{f}), 5.48-5.36 (m, 4 H, H-2 $\left.2^{c}, \mathrm{H}-4^{c}, \mathrm{H}-3^{\text {Cer }}, \mathrm{H}-4^{\text {Cer }}\right), 5.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{e}\right), 5.26-5.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.1^{c}, \mathrm{H}-4^{d}\right), 5.16-5.09\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-3^{b}, \mathrm{H}-2^{f}, \mathrm{H}-3^{f}, \mathrm{H}-4^{f}\right), 5.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{d}\right), 4.91(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-1^{b}$), $4.84\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.3 \mathrm{~Hz}, J_{2,3}=11.3 \mathrm{~Hz}, \mathrm{H}-3^{d}\right), 4.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.61(\mathrm{~d}, 1 \mathrm{H}$, ArCH_{2}), 4.50 (near t, $1 \mathrm{H}, \mathrm{H}-5^{d}$), 4.45-4.41 (m, 3 H, H-3 ${ }^{c}, \mathrm{H}-5^{f}, \mathrm{ArCH}_{2}$), 4.36-4.30 (m, 4H,H-1 ${ }^{a}, \mathrm{H}-1^{e}$, $\mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-2^{\text {Cer }}$), $4.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-4^{b}\right), 4.14-4.05\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4^{a}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{ArCH}_{2}\right)$, 4.02-3.97 (m, 2 H, H-6a ${ }^{c}, \mathrm{H}^{\left.-1 \mathrm{a}^{C e r}\right)}$, 3.85-3.80 (m, 2 H, H-6b $\left.{ }^{b}, \mathrm{H}-6 \mathrm{a}^{d}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.74-3.68(\mathrm{~m}$,
$\left.7 \mathrm{H}, \mathrm{H}-3^{a}, \mathrm{H}-6 \mathrm{~b}^{d}, 2 \mathrm{OCH}_{2}, \mathrm{OMe}\right), 3.65-3.30\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-5^{b}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-\right.$ $1 b^{\text {Cer }}, 8 \mathrm{OCH}_{2}, 2 \mathrm{NHCH}_{2}$), 3.25 (near dt, $1 \mathrm{H}, \mathrm{H}-5^{a}$), $2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{d}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.11(\mathrm{~s}, 3 \mathrm{H}$, Ac), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.95-1.89 (m, $11 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}$, $\mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer},}, 3 \mathrm{Ac}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 1.70-1.66 (m, $2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}$), 1.35-1.05 (m,76 H, H-6f, $26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}$, $\left.2{ }^{t} \mathrm{Bu}, \mathrm{Ac}\right), 0.89-0.86\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.6, 171.7, 171.3, 170.6, 170.5, $170.5,170.4,170.4,169.9,169.8,169.6,169.5,166.1,165.9,165.2,165.1,165.0,159.3,159.1,157.5$, $157.2,157.0,156.4,137.1,133.6,133.6,133.4,130.5,130.1,129.8,129.7,129.6,129.5,129.5,129.1$, $128.9,128.8,128.7,128.5,128.5,127.6,126.8,125.4,125.3,124.9,117.1,114.8,113.9,113.7,101.7$, $101.1,100.6,99.2,98.4,95.1,81.6,79.1,77.6,75.4,74.8,74.1,73.5,73.4,73.4,73.2,72.9,72.2,71.4$, $71.1,71.1,70.7,70.6,70.4,70.3,70.2,70.1,70.1,69.3,68.7,68.5,67.8,67.5,67.4,66.0,64.3,62.0$, $61.6,61.3,61.1,55.9,55.2,55.2,50.3,39.8,36.4,35.1,35.0,32.3,31.9,31.1,29.7,29.7,29.6,29.6$, $29.5,29.5,29.4,29.3,29.3,29.0,25.6,22.7,22.5,20.8,20.8,20.7,20.6,20.6,20.5,20.5,15.7,14.1 ;$ HRMS (ESI) m/z: found [M/2+Na] ${ }^{+} 1564.2121, \mathrm{C}_{161} \mathrm{H}_{218} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{52}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1564.2121$.

Compound 49

To a solution of compound $48(154 \mathrm{mg}, 49.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ was added TFA (1.70 mL , 22.2 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$ as the progress of the reaction was monitored by TLC (toluene/acetone $=3 / 1$, developed twice), the reaction mixture was neutralized with satd. aq. NaHCO_{3} and diluted with CHCl_{3}. The organic layer was washed with satd. aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography (toluene/acetone $=4 / 1$) to give compound $49(138 \mathrm{mg}, 97 \%)$ as a white amorphous solid; $[\alpha]_{D}+38.2^{\circ}$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.16\left(\mathrm{~m}, 24 \mathrm{H}, 5 \mathrm{Ar}^{2} \mathrm{CF}_{3} \mathrm{C}(=\mathrm{O}) \mathrm{NH}\right), 6.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=\right.$ $6.5 \mathrm{~Hz}, \mathrm{NH}-2^{d}$), 5.89 (near quin, $1 \mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5 \mathrm{~Hz}, \mathrm{~J}_{4,5}=15.4 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{Cer}}$), $5.78-5.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $2^{b}, \mathrm{NH}-2^{\text {Cer }}$), $5.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=3.0 \mathrm{~Hz}, \mathrm{H}-1^{f}\right), 5.58\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2,3}=J_{3,4}=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{Cer}}\right.$), 5.54-5.52(m,2 H, $\left.\mathrm{H}-2^{c}, \mathrm{H}-4^{c}\right), 5.43\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{Cer}}\right), 5.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{d}\right), 5.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-4^{e}\right), 5.28$ (dd, $1 \mathrm{H}, \mathrm{J}_{3,4}=2.8 \mathrm{~Hz}, \mathrm{~J}_{2,3}=10.8 \mathrm{~Hz}, \mathrm{H}-3^{b}$), 5.20-5.16 (m,3H,H-1d $\left.\mathrm{H}-3^{f}, \mathrm{H}-4^{f}\right), 5.14-5.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ $\left.2^{a}, \mathrm{H}-1^{c}, \mathrm{H}-2^{f}\right), 5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, \mathrm{H}-3^{d}\right), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{b}\right), 4.51-4.37(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}-1^{a}, \mathrm{H}-3^{c}, \mathrm{H}-5^{d}, \mathrm{H}-1^{e}, \mathrm{H}-5^{f}, \mathrm{H}-2^{\mathrm{Cer}}$), 4.29-4.24 (m, 3H, H-4 $, \mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{a}^{e}$), 4.14-4.07 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{b}$,
$\mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-5^{e}, \mathrm{OH}-3^{a}$), 4.03-3.97 (m, $3 \mathrm{H}, \mathrm{H}-5^{b}, \mathrm{H}-5^{c}, \mathrm{H}-6 \mathrm{~b}^{e}$), 3.93-3.86 (m,3H, H-3 ${ }^{a}, \mathrm{H}-4^{a}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}$), 3.76-3.68 (m, $3 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}^{2}-6 \mathrm{a}^{d}, \mathrm{OCH}_{2}$), $3.62-3.26\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}, 9 \mathrm{OCH}_{2}\right.$, $2 \mathrm{NHCH}_{2}$), $3.15\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}-5^{a}\right), 3.02-2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-2^{d}\right), 2.85\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{OH}-6^{a}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}$, Ac), 2.12-2.11 (m, $9 \mathrm{H}, 3 \mathrm{Ac}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$), 2.00-1.97 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{Cer}}$, $\mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}$), $1.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.50-1.22(\mathrm{~m}, 73$ $\mathrm{H}, 26 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}, 2{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{Ac}$), 1.08 (d, $3 \mathrm{H}, \mathrm{J}_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6^{f}$), 0.89-0.85 (m, $6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,172.1,171.2,170.6,170.4,170.2,170.1,169.8,169.6,169.5,166.0,165.9,165.7$, $165.6,165.2,157.8,157.5,157.2,157.0,157.0,138.5,137.9,133.7,133.4,130.0,129.8,129.8,129.6$, $129.4,129.0,128.9,128.8,128.8,128.7,128.6,128.5,128.4,128.2,127.3,127.2,125.5,125.4,125.3$, $124.9,119.4,117.1,114.8,102.2,101.8,99.6,99.2,98.1,95.1,81.5,81.0,74.3,74.0,73.9,73.5,73.3$, $73.0,72.8,72.5,71.9,71.5,71.2,70.8,70.6,70.4,70.3,70.3,70.2,70.1,69.5,69.3,69.2,68.7,68.5$, $67.8,67.5,66.1,64.3,62.3,61.9,61.5,61.4,59.6,56.0,53.8,50.4,39.8,36.8,35.2,35.1,32.3,31.9$, 31.1 31.1, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 29.3, 28.9, 25.6, 22.7, 22.6, 20.8, 20.8, 20.7, 20.7, 20.7, 20.6, 20.6, 20.3, 15.7, 14.1; HRMS (ESI) m / z : found $[\mathrm{M} / 2+\mathrm{Na}]^{+} 1444.1546, \mathrm{C}_{145} \mathrm{H}_{202} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{50}$ calcd for $[\mathrm{M} / 2+\mathrm{Na}]^{+}$1444.1546.

Compound 50

To a solution of compound $49(129 \mathrm{mg}, 45.4 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{THF}=1 / 1(15 \mathrm{~mL})$ was added 1 M NaOH aq. ($908 \mu \mathrm{~L}, 0.908 \mathrm{mmol}$). After stirring for 18 h at ambient temperature as the progress of the reaction was monitored by $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}=5 / 4 / 1 / 0.2\right)$, the reaction mixture was neutralized with Muromac $\left(\mathrm{H}^{+}\right)$, the resin was filtered through cotton, and washed with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $=1 / 1$. The combined filtrate and washings were concentrated and co-evaporated with EtOH. The residue was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 28 \% \mathrm{NH}_{3}\right.$ aq. $=$ 5/1/0.05/0 $\rightarrow 5 / 4 / 1 / 0 \rightarrow 3 / 3 / 1 / 0.1$) to give compound $50(75.3 \mathrm{mg}, 98 \%)$ as a white amorphous solid; $[\alpha]_{\mathrm{D}}+13.2^{\circ}$ (c 1.0, $\mathrm{CHCl}_{3} / \mathrm{MeOH}=1 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1\right.$) $\delta 5.70$ (near quin, 1 $\mathrm{H}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.8 \mathrm{~Hz}, J_{4,5}=15.2 \mathrm{~Hz}, \mathrm{H}-5^{\text {Cer }}$), $5.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3,4}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\text {Cer }}\right.$), $5.30\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.5\right.$ $\left.\mathrm{Hz}, \mathrm{H}-1^{f}\right), 4.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=4.0 \mathrm{~Hz}, \mathrm{H}-1^{c}\right), 4.61-4.30\left(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{H}-1^{a}, \mathrm{H}-1^{b}, \mathrm{H}-1^{d}, \mathrm{H}-1^{e}\right), 4.24-3.31(\mathrm{~m}$, $48 \mathrm{H}, \mathrm{H}-2^{a}, \mathrm{H}-3^{a}, \mathrm{H}-4^{a}, \mathrm{H}-5^{a}, \mathrm{H}-6 \mathrm{a}^{a}, \mathrm{H}-6 \mathrm{~b}^{a}, \mathrm{H}-2^{b}, \mathrm{H}-3^{b}, \mathrm{H}-4^{b}, \mathrm{H}-5^{b}, \mathrm{H}-6 \mathrm{a}^{b}, \mathrm{H}-6 \mathrm{~b}^{b}, \mathrm{H}-2^{c}, \mathrm{H}-3^{c}, \mathrm{H}-4^{c}, \mathrm{H}-5^{c}$,
$\mathrm{H}-6 \mathrm{a}^{c}, \mathrm{H}-6 \mathrm{~b}^{c}, \mathrm{H}-2^{d}, \mathrm{H}-3^{d}, \mathrm{H}-4^{d}, \mathrm{H}-5^{d}, \mathrm{H}-6 \mathrm{a}^{d}, \mathrm{H}-6 \mathrm{~b}^{d}, \mathrm{H}-2^{e}, \mathrm{H}-3^{e}, \mathrm{H}-4^{e}, \mathrm{H}-5^{e}, \mathrm{H}-6 \mathrm{a}^{e}, \mathrm{H}-6 \mathrm{~b}^{e}, \mathrm{H}-2^{f}, \mathrm{H}-3^{f}, \mathrm{H}-4^{f}$, $\mathrm{H}-5^{f}, \mathrm{H}-1 \mathrm{a}^{\mathrm{Cer}}, \mathrm{H}-1 \mathrm{~b}^{\mathrm{Cer}}, \mathrm{H}-2^{\mathrm{Cer}}, \mathrm{H}-3^{\mathrm{Cer}}, 5 \mathrm{OCH}_{2}$), 3.18 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}$), 2.19-2.16 (m, $2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2}$), 2.05-2.01 (m, 5 H, H-6a ${ }^{\text {Cer }, ~ H-6 b ~}{ }^{\text {Cer }}, \mathrm{Ac}$), 1.60-1.58 (m, $2 \mathrm{H}, \mathrm{NHC}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.37-1.24 (m,53 H, H$6^{f}, 25 \mathrm{CH}_{2}{ }^{\mathrm{Cer}}$), 0.91-0.88 (m, $6 \mathrm{H}, 2 \mathrm{Me}^{\mathrm{Cer}}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}=1 / 1$) δ 175.3, 174.1, 134.9, 130.2, 104.7, 104.5, 103.6, 103.1, 102.3, 99.9, 83.3, 80.4, 80.3, 78.8, 75.6, 75.5, 75.4, 75.3, $75.1,74.1,72.7,72.5,72.3,71.8,71.1,70.8,70.5,69.7,69.5,69.3,69.0,68.6,67.7,67.2,66.0,62.3$, $62.0,61.2,61.1,58.0,53.9,52.5,50.1,40.2,37.0,32.9,32.5,32.1,30.9,30.2,30.2,30.2,30.2,30.1$, 30.1, $30.1,30.0,29.9,29.9,29.9,29.8,26.6,26.2,23.4,23.2,18.1,16.3,14.3$; HRMS (ESI) m / z : found $[\mathrm{M}+\mathrm{H}]^{+} 1694.9937, \mathrm{C}_{80} \mathrm{H}_{147} \mathrm{~N}_{3} \mathrm{O}_{34}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$1694.9939.
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for new compounds

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

DTBSi-O
Troco $\underbrace{0}_{\mathrm{OBZ}}$
OBz

जiver
\circ
\vdots
i

$\stackrel{\circ}{\circ}$

[^0]

${ }^{\circ}$

[^1]

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

1

$\stackrel{\square}{6}$	$\mathrm{J}_{\mathrm{W}}^{5} \mathrm{~m}$		
$\stackrel{\circ}{\circ}$	inis		

ल゙

s9

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | ppm |
| :--- |

[^2]

[^3]

3. References

(S01) Gold, H.; Boot, R. G.; Aerts, J. M. F. G.; Overkleeft, H. S.; Codée, J. D. C.; van der Marel, G. A. A concise synthesis of globotriaosylsphingosine. Eur. J. Org. Chem. 2011, 1652-1663.
(S02) Panchadhayee, R.; Misra, A. K. Regioselective reductive ring opening of benzylidene acetals using triethylsilane and iodine. Synlett 2010, 1430-1430.
(S03) Asano, S.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Ando, H. p-tert-Butyl groups improve the utility of aromatic protective groups in carbohydrate synthesis. Org. Lett. 2019, 21, 4197-4200.
(S04) Gu, G.; Du, Y.; Pan, J. Concise synthesis of a buffalo milk pentasaccharide derivative. Carbohydr. Res. 2002, 337, 1313-1317.
(S05) Tanaka, H.; Ando, H.; Ishihara, H.; Koketsu, M. Sialylation reactions with 5-N,7-O-carbonylprotected sialyl donors: unusual stereoselectivity with nitrile solvent assistance. Carbohydr. Res. 2008, 343, 1585-1593.
(S06) Hossain, M. I.; Hanashima, S.; Nomura, T.; Lethu, S.; Tsuchikawa, H.; Murata, M.; Kusaka, H.; Kita, S.; Maenaka, K. Synthesis and Th1-immunostimulatory activity of α-galactosylceramide analogues bearing a halogen-containing or selenium-containing acyl chain. Bioorg. Med. Chem. 2016, 24, 3687-3695.
(S07) Lu, G.; Burgess, K. A diversity oriented synthesis of 3'-O-modified nucleoside triphosphates for DNA 'sequencing by synthesis'. Bioorg. Med. Chem. Lett. 2006, 16, 3902-3905.
(S08) Mandal, S. S.; Liao, G.; Guo, Z. Chemical synthesis of the tumor-associated Globo-H antigen. RSC Adv. 2015, 5, 23311-23319.

[^0]:

[^1]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^2]:

[^3]:

