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Abstract: Pemafibrate is the first clinically-available selective peroxisome proliferator-activated
receptor αmodulator (SPPARMα) that has been shown to effectively improve hypertriglyceridemia
and low high-density lipoprotein cholesterol (HDL-C) levels. Global gene expression analysis reveals
that the activation of PPARα by pemafibrate induces fatty acid (FA) uptake, binding, and mitochondrial
or peroxisomal oxidation as well as ketogenesis in mouse liver. Pemafibrate most profoundly induces
HMGCS2 and PDK4, which regulate the rate-limiting step of ketogenesis and glucose oxidation,
respectively, compared to other fatty acid metabolic genes in human hepatocytes. This suggests that
PPARα plays a crucial role in nutrient flux in the human liver. Additionally, pemafibrate induces
clinically favorable genes, such as ABCA1, FGF21, and VLDLR. Furthermore, pemafibrate shows
anti-inflammatory effects in vascular endothelial cells. Pemafibrate is predicted to exhibit beneficial
effects in patients with atherogenic dyslipidemia and diabetic microvascular complications.
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1. Introduction

Although low density lipoprotein cholesterol (LDL-C)-lowering therapy by statins has been
proven to reduce the events of atherosclerotic cardiovascular disease (ASCVD) [1,2], there still remains
a high residual cardiovascular risk from elevated triglycerides (TG) and low HDL cholesterol (HDL-C)
levels [3–6]. Synthetic PPARα ligands and fibrates have been shown to effectively reduce plasma TG
levels by 25–50% and increase HDL-C levels by 5–20% [7–10]. Therefore, theoretically, fibrates are
suitable drugs to use as an add-on statin treatment to improve hypertriglyceridemia and atherogenic
dyslipidemia. However, there is a lack of adequate evidence to support statin-fibrate combination
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therapy for the prevention of definitive mortality rate. In addition, the use of fibrates in patients
with hepatic and renal insufficiency has been limited due to adverse drug reactions (ADRs) such as
plasma transaminase and creatinine elevation, as well as reduced estimated glomerular filtration rates
(eGFRs) [11–14]. Under these circumstances, pemafibrate was developed as a selective peroxisome
proliferator-activated receptorαmodulator (SPPARMα) that enhances the beneficial effects and reduces
the adverse effects of fibrates. To date, 50 papers have been published on this subject and few papers
reported the effect of pemafibrate on target gene expression. Through the limited reports, we describe
the pemafibrate-regulated genes and potential clinical implications.

2. Pemafibrate as a Novel SPPARMα

Pemafibrate (K-877, Parmodia®) was developed as a novel SPPARMα that enhances PPARα
activity and selectivity by introducing a 2-aminobenzoxazolic ring and phenoxyalkyl chain into fibric
acid (Figure 1a) [15–17]. These side-chains confer a Y-shape structure and fill the entire ligand-binding
pocket of PPARα [18] (Figure 1b), thereby allosterically changing the PPARα conformation to enhance
complex formation with coactivators such as peroxisome proliferative activated receptor gamma
coactivator 1α (PGC1α) and exhibiting full agonistic activity. Actually, pemafibrate has greater PPARα
activation potency than fenofibrate, along with a lower EC50 value (1.5 nM) and a higher degree
of subtype selectivity (>2000-fold) (Figure 1c) [19]. In preclinical studies, pemafibrate exhibited
a greater TG-lowering effect than fenofibrate in normolipidemic and hypertriglyceridemic rodent
models [15,20,21]. In addition, in human apoA-I transgenic mice, pemafibrate treatment resulted in a
greater increase in levels of plasma h-apoAI, a major component of HDL, than occurred with fenofibrate
treatment [15,22]. Furthermore, pemafibrate has been shown to reduce atherosclerotic lesion areas in
Ldlr-null mice [17] and western diet-fed APOE2 KI mice [22]. Although fibrates have been specifically
shown to induce peroxisome proliferation and related hepatomegaly and hepatocellular carcinoma in
rodents [23–25], pemafibrate causes less weight gain of the liver than fenofibrate [15]. Under the fed
condition, the liver accumulated the highest concentration of pemafibrate and reached 105 nM after
four weeks of treatment with a 0.0006% (w/w) pemafibrate-containing diet, which is an equivalent or
higher dose than needed to demonstrate pharmacological action [22,26,27]. As indicated in Figure 1c,
pemafibrate was unable to activate PPARγ or PPARδ at this concentration. In addition, the therapeutic
dose of pemafibrate is 0.2–0.4 mg/day, which is equivalent to the dose of 0.004–0.008 mg/kg/day (based
on a 50 kg human); therefore, it is unlikely that pemafibrate shows the other PPARs subtype-mediated
pharmacological effect in clinical use.

Pemafibrate was approved in Japan 2017 for the treatment of dyslipidemia [28–38]. A phase
II study showed that 0.05–0.4 mg/day pemafibrate significantly reduced plasma TG levels (−30.9%
to −42.7%) and increased HDL-C levels (11.9% to 21.0%) [29]. Although the difference was not
statistically significant, the improvement of these parameters was more significant with pemafibrate
than fenofibrate. The incidence of adverse events (AEs) in the pemafibrate treatment group was
comparable to those in the placebo and 100 mg/day fenofibrate groups. However, the incidence of ADRs
in the pemafibrate treatment group was lower than those in the placebo and 100 mg/day fenofibrate
groups [29,31]. In addition, when compared to placebo and fenofibrate treatment, pemafibrate
significantly increased the level of plasma FGF21, which is an endocrine factor regulating glucose
uptake, metabolism, and energy expenditure [39]. Therefore, pemafibrate could replace fibrates as
the first clinically-available SPPARMα to improve atherogenic dyslipidemia and prevent macro- and
microvascular risks.
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Figure 1. Structure and PPARα selectivity of pemafibrate. (a) Structure of pemafibrate and fenofibrate.
(b) Binding mode of the ligand with human PPARα. Pemafibrate in magenta and fenofibrate in
blue. The binding pocket is divided into three pharmacophore regions according to the interactions
with the ligands. While fenofibric acid occupies the magenta cavity, 2-aminobenozoxazole ring and
phenoxyalkyl group of Y-shaped pemafibrate occupies the green cavity and yellow cavity, respectively.
Therefore, pemafibrate fills all the areas of the ligand-binding pocket. Reprinted from Yamamoto Y, et al.
with permission from Elsevier [18]. (c) Transactivation profile of pemafibrate. Transactivation curves
for human PPARα, PPARδ, and PPARγ are shown. Reproduced Raza-Iqbal S., et al. with permission
from authors [19].

3. Pemafibrate Regulates the Availability of FA and Glucose Oxidation

Species differences have been well documented for PPARα-regulated genes, such as those involved
in peroxisome biogenesis and peroxisomal FA β-oxidation [40–42]. In addition, whether PPARα
mediates gene expression regulation by pemafibrate and whether human exposure to pemafibrate
regulates the same target genes as those found in mice are still a matter of debate. To predict the mode
of action and untoward effects of pemafibrate in humans, we carried out microarray analyses and
compared the data of pemafibrate-treated primary human hepatocytes and mouse livers [19].

Global gene expression profiling clearly demonstrated that pemafibrate regulates the entire FA
catabolism in mouse liver. Pemafibrate significantly induces Vldlr, TG hydrolysis (Lpl), FA cellular
uptake (Cd36/Fat, Slc27a1, and Slc27a4), FA binding (Fabp2 and Fabp4), FA activation (Acsl1, Acsl3,
Acsl5, and Acot1), FAω-oxidation (Cyp4a14, Cyp4a31, and Aldh3a2), and peroxisomal (Abcd2, Abcbd3,
Ech1, Decr2, Acox1, Ehhadh, Hsd17b4, Acaa1, Crat, Acot3, Acot4, and Acot8) and mitochondrial (Cpt1,
Cpt2, Slc25a20, Acadvl, Acadl, Acads, Acadm, Acad11, Ehhadh, Hadha, Hadhb, and Decr1) FA β-oxidation,
and ketogenesis (Acat1, Hmgcs2, and Hmgcl). In addition, pemafibrate induces peroxisome biogenesis
genes (Pex1, Pex3, Pex11a, Pex14, and Pex19). The upregulation of these genes was not observed in
the pemafibrate-treated Ppara-null mouse liver [19]. In accordance with our results, Takei et al. also
reported that the effect of pemafibrate was abolished in Ppara-null mice [21]. Thus, these observations
indicate that PPARα is crucial for the regulation of FA catabolic genes in mouse liver following
pemafibrate treatment.

Similarly, pemafibrate induced VLDLR, FABP1, and mitochondrial FA β-oxidation gene (ACSL1,
ACSL5, CPT1A, CPT2, SLC25A20, ACADVL, HADHA, HADHB, and ACAA2) expression in human
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hepatocytes, as seen in the livers of pemafibrate-treated mice. However, the induction of these genes
was much lower in the human hepatocytes (Figure 2). Additionally, pemafibrate did not induce
almost all FA ω-oxidation, peroxisomal FA β-oxidation, and peroxisome biogenesis genes expressions.
The first step of FAω-oxidation isω-hydroxylation, which is catalyzed by the CYP4A family. Generated
products are further metabolized to dicarboxylic acid by cytosolic aldehyde dehydrogenase, which is
encoded by ALDH3A2, and they are efficiently metabolized by peroxisomal FA β-oxidation [43,44].
Numerous reports clearly indicated that the CYP4A family of enzymes are regulated by PPARα in
rodent livers and are shown to parallel the induction of peroxisomal fatty acidβ-oxidation enzymes and
peroxisome proliferation [45]. In contrast, respect to the induction of CYP4A subtype is controversial
in humans. Some studies showed that fibrates induce CYP4A11 mRNA expression in primary human
hepatocytes and PPARα overexpressed HepG2 cells [46,47]. However, 100 µM of fenofibric acid, a
concentration which is equal with our previous study, has been reported to fail induction of CYP4A11
expression in HepG2 cells [41]. Although it is difficult to declare the possibility to induce FAω-oxidation
enzyme in humans at present, peroxisome proliferation and related liver toxicities would not occur
following a clinical dose of pemafibrate treatment.

Interestingly, pemafibrate most profoundly induced PDK4 and HMGCS2 gene expression in
the primary human hepatocytes. Robust induction of PDK4 indicated inactivation of pyruvate
dehydrogenase (PDH) and glucose oxidation [48–50]. In contrast, HMGCS2 expression has been
reported to control not only ketogenesis but also mitochondrial fatty acid oxidation in HepG2 cells [51].
In addition, this report also showed that the expression of FGF21 (another target of pemafibrate) is
upregulated by HMGCS2 activity or acetoacetate, which is the oxidized form of the ketone bodies.
Furthermore, the ketone body,β-hydroxybutyrate, as an inhibitor of class I histone deacetylases (HDAC),
and β-hydroxybutyrate-integrated histone H3 lysine 9 (H3K9bhb) are associated with the upregulation
of genes involved in the starvation-responsive pathways, including the PPAR signaling pathway [52].
Thus, PPARα activation by pemafibrate cooperatively regulates nutrient availability through the
induction of the key target genes, namely PDK4 and HMGCS2, which suppress the availability of
carbohydrate oxidation and enhance acyl-CoA flux. This thereby facilitates mitochondrial long-chain
fatty acid β-oxidation and ketogenesis in human hepatocytes. As a result, pemafibrate reduces the
availability of acetyl-CoA for de novo lipogenesis and VLDL secretion.
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Figure 2. Effect of pemafibrate on fatty acid metabolism-related gene expression. Heat map illustrating
the genes regulated by pemafibrate treatment in mouse liver and primary hepatocytes. Gray boxes
represent the absence call or no probe of the genes from microarray data.

4. Pharmacologically Favorable Target Genes of Pemafibrate as a SPPARMα

As shown in Figure 3, compared to fenofibrate, pemafibrate effectively induces the expression
of pharmacologically favorable genes, such as very-low-density lipoprotein receptor (VLDLR),
ATP binding cassette subfamily A member 1 (ABCA1), and fibroblast growth factor 21 (FGF21),
by maximizing PPARα activation [19]. VLDLR is a member of the LDL-receptor family and is expressed
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in many tissues, including skeletal muscles, heart, and adipose tissues, whereas its expression is
very low in the liver, under normal conditions [53,54]. VLDLR binds TG-rich lipoproteins such as
chylomicron and VLDL and mediates the uptake of TG-rich lipoproteins by peripheral tissues through
LPL-dependent lipolysis or receptor-mediated endocytosis. Importantly, Gao et al. [55] reported that
fenofibrate induces liver Vldlr expression in a PPARα-dependent manner and that the TG-lowering effect
of fenofibrate was abolished in Vldlr-null mice. In addition, although LPL is typically not expressed in
the adult liver [56], pemafibrate PPARα dependently induced the expression of Lpl in the mouse liver.
Thus, pemafibrate enhances TG-rich lipoprotein hydrolysis and uptake by coordinated regulation of
Vldlr, Lpl, and Cd36 expression. ABCA1, a member of the superfamily of ATP-binding cassette (ABC)
transporters, regulates the formation and function of HDL by facilitating the efflux of cholesterol and
phosphatidylcholine to lipid-poor apoAI [57,58]. In fact, pemafibrate significantly induced ABCA1
and ABCG1 in human primary macrophages and enhanced HDL stimulated cholesterol efflux [22].
ABCA1 not only plays an important role in the initial step of reverse cholesterol transport (RCT)
but is also involved in the anti-inflammatory action to suppress the expression of pro-inflammatory
factors [59,60]. Therefore, pemafibrate-mediated increased ABCA1 expression could contribute to
HDL-C elevation as well as anti-inflammatory and anti-atherosclerotic activities. FGF21 is a member
of the fibroblast growth factor family [39,61], and its administration has been shown to reduce fasting
plasma glucose, TG, insulin, and glucagon levels in diabetic rhesus monkeys [62]. FGF21 is a direct
target of PPARα [63,64], and pemafibrate increases fasting and postprandial FGF21 levels along with
improving dyslipidemia in humans [65]. Interestingly, CREBH [66] and HMGCS2 [51], the liver target
genes of pemafibrate, have been reported to regulate FGF21 gene expression. Moreover, similar
upregulation of Abca1, Crebh, and Fgf21 was observed in pemafibrate-treated Ldlr knockout mice
liver [26]. Thus, pemafibrate enhances the combination of PPARα, CREBH, and HMGCS2 for the
regulation of FGF21 expression.

Beyond regulation of nutrient oxidation, pemafibrate induces mannose-binding lectin 2 (MBL2)
and glutamyl aminopeptidase (ENPEP) only in human hepatocytes (Figure 4). MBL is a soluble
pattern recognition molecule involved in the humoral innate immune system [67,68]. In consecutive
non-diabetic men, the serum MBL concentration was reduced in obese individuals accompanied by low
insulin sensitivity and increased levels of inflammatory markers [69]. ENPEP encodes aminopeptidase
A (APA), a member of the M1 endopeptidase family, involved in the catabolic pathway of the
renin-angiotensin-aldosterone system that converts angiotensin II to angiotensin III [70–72]. In an
animal study, the loss of function of ENPEP led to hypertension, and recombinant APA reduced the
systolic blood pressure (SBP) [73]. Moreover, a rare nonsense variant in ENPEP is reported to be
associated with increased SBP [74]. Therefore, these additional pemafibrate targets are likely to reduce
cardiovascular disease risks.



Int. J. Mol. Sci. 2019, 20, 5682 7 of 18
Int. J. Mol. Sci. 2019, 20, x 6 of 17 

 

 

Figure 3. Pemafibrate effectively induces VLDLR, FGF21, and ABCA1 mRNA expression in primary 
human hepatocytes. Data represent ± s.e.m. * P < 0.05; ** P < 0.01. Reproduced Raza-Iqbal S., et al. with 
permission from authors [19] 

Beyond regulation of nutrient oxidation, pemafibrate induces mannose-binding lectin 2 (MBL2) 
and glutamyl aminopeptidase (ENPEP) only in human hepatocytes (Figure 4). MBL is a soluble 
pattern recognition molecule involved in the humoral innate immune system [67,68]. In consecutive 
non-diabetic men, the serum MBL concentration was reduced in obese individuals accompanied by 
low insulin sensitivity and increased levels of inflammatory markers [69]. ENPEP encodes 
aminopeptidase A (APA), a member of the M1 endopeptidase family, involved in the catabolic 
pathway of the renin-angiotensin-aldosterone system that converts angiotensin II to angiotensin III 
[70–72]. In an animal study, the loss of function of ENPEP led to hypertension, and recombinant APA 
reduced the systolic blood pressure (SBP) [73]. Moreover, a rare nonsense variant in ENPEP is 
reported to be associated with increased SBP [74]. Therefore, these additional pemafibrate targets are 
likely to reduce cardiovascular disease risks. 

Figure 3. Pemafibrate effectively induces VLDLR, FGF21, and ABCA1 mRNA expression in primary
human hepatocytes. Data represent ± s.e.m. * P < 0.05; ** P < 0.01. Reproduced Raza-Iqbal S., et al.
with permission from authors [19].

Int. J. Mol. Sci. 2019, 20, x 7 of 17 

 

 

Figure 4. Pemafibrate effectively induces MBL2 and ENPEP mRNA expression in primary human 
hepatocytes. Data represent ± s.e.m. * P < 0.05; ** P < 0.01. Reproduced Raza-Iqbal S., et al. with 
permission from authors [19]. 

Dysfunction and injury of vascular endothelial cells play a critical role in the pathogenesis of 
ASCVD and chronic kidney disease (CKD) [75–77]. ASCVD and CKD share common risk factors 
including hypertension, hyperglycemia, obesity, and dyslipidemia and are associated with 
endothelial activation and dysfunction. In particular, high glucose-induced reactive oxygen species 
(ROS) have been shown to be involved in vascular dysfunction via a diacylglycerol (DAG)-protein 
kinase C (PKC)-dependent activation of nicotinamide adenine dinucleotide phosphate NAD(P)H 
oxidase pathway. Pemafibrate has been reported to reduce Fn1, Tgfb1, Nox4, and Ncf1 expression, 
and reduce DAG level, PKC activity, and oxidative stress marker (urinary 8-OHdG excretion) level 
in kidneys of diabetic db/db mice [78]. Pemafibrate also reduces serum starvation induced monocyte 
chemoattractant protein-1(MCP-1), regulated on activation, normal T cell expressed and secreted 
(RANTES), interleukin 6 (IL6), and interferon gamma (IFNγ) expression and secretion in human 
coronary endothelial cells (HCECs) [79]. Besides its role in inflammation and ROS production, we 
found that pemafibrate suppresses high glucose-induced endothelial-mesenchymal transition 
(EndMT) in human umbilical vein endothelial cells (HUVECs). EndMT has emerged as an important 
process in the pathobiology of valve calcification, myocardial fibrosis, macrovascular complications, 
and microvascular complications such as diabetic nephropathy and retinopathy [80–82]. 
Experimental evidence demonstrated that TGFβ and Wnt/β-catenin signaling play a role in EndMT 
and may further contribute to tissue fibrosis [83–85]. Interestingly, pemafibrate reduces high glucose-
induced TGFB2, COL1A2, CX3CL1, VCAM1 and DKK1 expression in HUVECs (Tanaka et al. personal 
communication). Likewise, fenofibrate has been reported to inhibit TGFβ-induced endothelin-1 (ET-
1) expression in human microvascular endothelial cells [86]. ET-1 is a major vasoactive peptide that 
has been implicated in organ fibrosis through stimulation of EndMT [87,88]. In addition, fenofibrate 
has been reported to reduce progression of albuminuria and improve diabetic retinopathy [89–91]. 

Figure 4. Pemafibrate effectively induces MBL2 and ENPEP mRNA expression in primary human
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Dysfunction and injury of vascular endothelial cells play a critical role in the pathogenesis of
ASCVD and chronic kidney disease (CKD) [75–77]. ASCVD and CKD share common risk factors
including hypertension, hyperglycemia, obesity, and dyslipidemia and are associated with endothelial
activation and dysfunction. In particular, high glucose-induced reactive oxygen species (ROS) have
been shown to be involved in vascular dysfunction via a diacylglycerol (DAG)-protein kinase C
(PKC)-dependent activation of nicotinamide adenine dinucleotide phosphate NAD(P)H oxidase
pathway. Pemafibrate has been reported to reduce Fn1, Tgfb1, Nox4, and Ncf1 expression, and reduce
DAG level, PKC activity, and oxidative stress marker (urinary 8-OHdG excretion) level in kidneys of
diabetic db/db mice [78]. Pemafibrate also reduces serum starvation induced monocyte chemoattractant
protein-1(MCP-1), regulated on activation, normal T cell expressed and secreted (RANTES), interleukin
6 (IL6), and interferon gamma (IFNγ) expression and secretion in human coronary endothelial cells
(HCECs) [79]. Besides its role in inflammation and ROS production, we found that pemafibrate
suppresses high glucose-induced endothelial-mesenchymal transition (EndMT) in human umbilical
vein endothelial cells (HUVECs). EndMT has emerged as an important process in the pathobiology of
valve calcification, myocardial fibrosis, macrovascular complications, and microvascular complications
such as diabetic nephropathy and retinopathy [80–82]. Experimental evidence demonstrated that TGFβ
and Wnt/β-catenin signaling play a role in EndMT and may further contribute to tissue fibrosis [83–85].
Interestingly, pemafibrate reduces high glucose-induced TGFB2, COL1A2, CX3CL1, VCAM1 and DKK1
expression in HUVECs (Tanaka et al. personal communication). Likewise, fenofibrate has been
reported to inhibit TGFβ-induced endothelin-1 (ET-1) expression in human microvascular endothelial
cells [86]. ET-1 is a major vasoactive peptide that has been implicated in organ fibrosis through
stimulation of EndMT [87,88]. In addition, fenofibrate has been reported to reduce progression of
albuminuria and improve diabetic retinopathy [89–91]. Therefore, pemafibrate would be expected to
prevent endothelial activation and dysfunction, thereby revealing protective effects against diabetic
retinopathy, nephropathy, neuropathy, and ASCVD.

5. Possible Mechanism for the Gene Expression Regulation Induced by Pemafibrate?

Finally, we will discuss a potential mechanism for transcriptional regulation of hepatic target
genes via PPARα activation by pemafibrate. As described in the text, PPARα activation by
pemafibrate not only activates transcription of hepatic lipid metabolism genes, but also represses
transcription of pro-inflammatory and EndMT-related genes. From the numerous observations,
several models have been proposed for gene transcriptional regulation induced by PPARα [92–94].
In particular, PPARα functions as obligate heterodimers with retinoid X receptor (RXR). Ligand
activated PPARα-RXR heterodimer mainly binds to DR1 elements termed PPAR response elements
(PPREs) and recruits numerous coactivators, including CBP/p300 and SRC/p160 family, which contain
histone acetyl transferase (HAT) activity, mediators, and the transcriptional preinitiation complex
(PIC) [95–98]. This mechanism explains the main PPARα-dependent transactivation because DNA
binding domain (DBD) mutant of PPARα (PPARαDISS), which maintains heterodimerization and
coactivator interaction ability, lost PPRE binding and transactivation of PPRE-driven reporter
genes [99]. On the other hand, transcriptional repression by PPARα is mainly mediated through
protein-protein interactions. Ligand-activated PPARα has been reported to directly interact
with pro-inflammatory transcription factor p65 and c-Jun, thereby suppressing their target genes
such as IL6 and TNFα [100–102]. Interestingly, transcriptional repression ability is retained in
PPARαDISS, indicating PPARα-dependent transrepression of the pro-inflammatory signaling pathway
is PPRE-independent [99]. In addition, ligand-activated PPARα binds to coactivator of GRIP1/TIF2,
thereby interfering with the C/EBPβ-induced fibrinogen-β gene transcription [103]. Furthermore,
several nuclear receptors such as HNF4s, COUP-TFs, and RXR homodimer bind DR1 PPREs and
may modulate PPARα-regulated gene expression [104–107]. Therefore, pemafibrate-induced gene
expression appears as a combination of these multiple mechanisms.
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6. Conclusions

PPARα regulates many hepatic metabolic genes along with lipid and glucose metabolism during
prolonged starvation at the transcription levels and produces ketone bodies to provide metabolic fuel for
the extrahepatic tissues. Despite accumulating evidence of the residual cardiovascular risks resulting
from elevated TGs and lower HDL-C levels, low potent synthetic PPARα agonists (fibrates) have not
shown enough evidence to reduce the definitive mortality rate when combined with statin treatment,
despite an improvement in dyslipidemia. To overcome this issue, pemafibrate, a more potent and
subtype-selective SPPARMα, was developed. By maximizing PPARα activation, pemafibrate effectively
enhances TG hydrolysis, FA uptake, FA β-oxidation, and ketogenesis and thereby stimulates plasma
TG hydrolysis and reduces VLDL secretion. In addition, pemafibrate enhances ABCA1-mediated
HDL neogenesis and prevents the transfer of HDL-cholesteryl esters into TG-rich lipoproteins through
the TG-lowering effect of pemafibrate. Through these mechanisms, pemafibrate effectively improves
hypertriglyceridemia and low HDL-C levels. Importantly, PPARα activation by pemafibrate induces
not only the generation of FAs via TG hydrolysis but also the generation of ketone bodies via FA
β-oxidation and ketogenesis. In turn, the FAs could further activate PPARα, and the ketone bodies
could promote the transcriptional activity of PPARα. Therefore, pemafibrate is expected to exert strong
pharmacological effects and novel therapeutic action through a positive feedback loop and cooperative
target gene regulation (Figure 5). In fact, pemafibrate induces clinically favorable key target genes
(VLDLR, FGF21, ABCA1, MBL2, and ENPEP) and thereby has the therapeutic potential to address the
residual cardiovascular risk. In addition, pemafibrate would expect to show vascular endothelial cell
protective effects and prevent diabetic microvascular complications. Currently, a major outcome study,
PROMINENT (Pemafibrate to Reduce cardiovascular OutcoMes by reducing triglycerides IN diabetic
patiENTs), is underway to investigate whether pemafibrate reduces cardiovascular events in type 2
diabetic patients with atherogenic dyslipidemia [108]. This study will evaluate the role of pemafibrate
in the management of residual cardiovascular risk as an add-on therapy to statins.
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