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Abstract: Nonalcoholic steatohepatitis (NASH) is becoming a public health problem worldwide.
While the number of research studies on NASH progression rises every year, sometime their findings
are controversial. To identify the most important and commonly described findings related to NASH
progression, we used an original bioinformatics, integrative, text-mining approach that combines
PubMed database querying and available gene expression omnibus dataset. We have identified a
signature of 25 genes that are commonly found to be dysregulated during steatosis progression to
NASH and cancer. These genes are implicated in lipid metabolism, insulin resistance, inflammation,
and cancer. They are functionally connected, forming the basis necessary for steatosis progression
to NASH and further progression to hepatocellular carcinoma (HCC). We also show that five of
the identified genes have genome alterations present in HCC patients. The patients with these
genes associated to genome alteration are associated with a poor prognosis. In conclusion, using
an integrative literature- and data-mining approach, we have identified and described a canonical
pathway underlying progression of NASH. Other parameters (e.g., polymorphisms) can be added to
this pathway that also contribute to the progression of the disease to cancer. This work improved
our understanding of the molecular basis of NASH progression and will help to develop new
therapeutic approaches.
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1. Introduction

Liver is a major integrator of metabolism and plays a key role in lipid metabolism including fatty
acid oxidation, lipogenesis, cholesterol synthesis, and production of triglycerides and lipoproteins [1–3].
A variety of conditions result in dysregulation of lipid metabolism which leads to fat accumulation in
the liver and then to nonalcoholic fatty liver disease (NAFLD). NAFLD is a pathological condition,
exhibiting a wide range of lesions starting with the accumulation of lipid droplets in the liver also
known as hepatic steatosis or nonalcoholic fatty liver (NAFL). NAFL may progress to nonalcoholic
steatohepatitis (NASH) and then to hepatocellular carcinoma (HCC) [4–6]. Furthermore, NAFLD is a
systemic disease associated with obesity, type 2 diabetes mellitus, and metabolic syndrome [7–10] that
are dramatically increasing worldwide and currently present a major public health problem [11–14].

The hallmark of NAFLD is the intra-cellular accumulation of lipids, particularly triglycerides
cholesteryl esters and phospholipids resulting in the formation of lipid droplets in hepatocytes [15–17].
Fatty liver is a reversible and asymptomatic lesion that has long been considered benign. However,
we have previously demonstrated that progressive intrahepatic inflammation could be present from
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the beginning of the disease, potentially driven by the specific types of accumulated lipids [18].
Certain lipids have been shown to be specifically linked to the inflammatory process and NASH
progression [19–23]. Therefore, the progression of fatty liver to NASH is related to the lipid
composition [19,24–28]. Our previous studies revealed alterations in homeostasis of triglycerides,
cholesterol, phospholipids, and long-chain fatty acids during the progression of NASH [19,20]. Indeed,
an increase in lipid species such as saturated fatty acids and phospholipids, as well as disturbances
in ceramide-signaling or alterations in cholesterol content are associated with pro-inflammatory and
pro-apoptotic properties [16,19,20,29–34]. Moreover, alterations in lipid metabolism during NASH
progression have been associated with gene expression changes and single nucleotide polymorphisms
in genes involved not only in lipid metabolism but also in genes associated with inflammatory and
cancerous processes [18,19,28,35–46].

Since 1980, when Ludwig and colleagues at Mayo Clinic (Rochester, MN) described NASH for
the first time [47], NASH and more generally NAFLD have received increasing attention over the
years. More than 2000 manuscripts on “NASH” and “lipid” have been published in PubMed and the
number of studies is growing. However, the pathogenesis of NAFLD remains incompletely understood,
especially the conditions that lead to progression from NAFL to NASH, and then to cirrhosis or cancer,
but only in a subset of patients.

Scientific literature has become the key distribution channel for novel findings and hypotheses
from the exponential number of research studies in this area. As a result of the continuous increase
in the number of publications, retrieving relevant scientific information and identifying connections
between pieces of scientific knowledge have become challenging but necessary tasks. As a consequence,
automated literature analysis is now frequently a part of complex biomedical research and often
delivers crucial background knowledge [48]. A plethora of publicly available biomedical resources do
currently exist and are constantly increasing. In parallel, specialized repositories have been developed,
indexing numerous clinical and biomedical tools. Natural Language Processing research in the clinical
domain has been active since the 1960s. In addition to maintaining the GenBank®nucleic acid sequence
database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval
resources for the data in GenBank®and other biological data made available through the NCBI
website [49–54].

Here we used text-mining and data-mining bioinformatic approaches by investigating Medical
Subject Headings (MeSH) and gene expression omnibus dataset (NCBI) combined with different
databases (e.g., Kyoto Encyclopedia Gene and Genome/KEGG or InnateDB) to determine specific and
global mechanisms involved in NASH progression. We identified a set of at least twenty-five (n =

25) genes that play a role either in lipid synthesis and excretion, inflammatory cells recruitment and
activation, insulin signaling pathway, or hepatic cancer development. These genes are orchestrated
by a new player YWHAZ and they are dysregulated in most cases of pathological NAFL progression.
Importantly, for the first time these combined approaches used together connected mechanisms that
can be described as the core pathway, the “canonical pathway”, involved in progression of NASH
from hepatic steatosis and insulin resistance to HCC.

2. Results

2.1. A Subset of Lipid-Related Genes is Differentially Expressed in NASH vs Healthy Obese Human
Liver Samples

Natural language processing is performed to discover semantic relationships with scientific
literature [51], and to connect literature to databases like RefSeq gene symbol identifiers [55]. The most
important resource for text-mining applications is currently the PubMed database developed by
the National Center for Biotechnology Information (NCBI) at the National Library of Medicine
(NLM) (https://www.nlm.nih.gov/pubmed) [49,50,52–54,56]. Text-mining analysis by connecting the
PubMed database using MeSH described by the workflow on Figure 1 allowed us to find 320,794
co-occurrence connections between gene symbol and lipid-related terms: “Non-esterified Fatty acids”

https://www.nlm.nih.gov/pubmed
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(29,003connections), “lipids” (193,087 connections), “cholesterol” (13,680 connections), “ceramides”
(18,142 connections), “sphingolipids”(51,827 connections), and “phospholipids” (15,055 connections)
related to “NASH” (Figure 2A).

Figure 1. Workflow of analysis implemented from text-mining integration in transcriptome to
pathophysiological hypothesis. CTD: comparative Toxicogenomics database; GEO: gene expression
omnibus; GSE: genomic spatial event database, MeSH: medical subject headings; NAFLD: nonalcoholic
fatty liver disease; NASH nonalcoholic steatohepatitis; ROC: receiver operating characteristic; SAM:
statistical analysis of microarray.

False discovery rate correction performed on genes selected by text-mining allowed us to find 87
lipid-related genes that show significant association in scientific literature (Figure 2B and Supplementary
Datasets Table S1 online). Mathematical dimensional reduction of matrix in transcriptome analysis,
such as using gene set enrichment analysis (GSEA), allowed us to improve discovery by reducing the
false positive discovery rate [57]. We applied text-mining dimensional reduction on normalized gene
expression matrix from dataset GSE61260 in order to find differentially expressed lipid-related genes
with improved accuracy. Significance Analysis for Microarray (SAM) algorithm was employed on
reduced matrix (87 genes × 48 samples) between liver samples from NASH patients (n = 24) and liver
samples from healthy obese (HO) subjects. Twenty-five genes were found to be differentially expressed
between samples with an FDR threshold set to less than five percent (FDR < 5%; Supplementary Datasets
Table S2 online). Expression heatmap revealed that 22 of 25 differentially expressed lipid-related genes
were over-expressed in NASH liver samples compared to healthy obese liver samples and three were
down-regulated (PPARA, PPARGC1A, and CNPB) associated with misclassification error rate of 16.6%
(Figure 2C). LPL gene encoding for lipoprotein lipase was the most over-expressed gene in NASH
with a fold change of +1.93, followed by chemokine CCL2 (fold change = +1.61) and the enzyme
FADS2 (fatty acid desaturase 2, fold change = +1.57) as summarized in Supplementary Datasets Table
S2 online.

Transcriptome expression matrix was increased by addition of 25 liver samples of patients with
NAFL (resulting lipid related matrix dimensions: 87 genes× 73 samples). Principal component analysis
(PCA) was performed on this increased expression matrix. Text-mining for lipid related genes allowed
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us to significantly and progressively discriminate between liver samples from HO subjects, NAFL and
NASH patients (p-value = 9.32 × 10-9, Figure 2D) on the first principal axis (i.e., first dimension) of the
unsupervised analysis.

Thus, with this first approach we identified 25 genes that can be used to discriminate between
three groups of patients: HO subjects, obese with NAFL or NASH patients. Moreover, this analysis
identified a precancerous pathway led by YWHAZ.

Figure 2. Lipid-related genes differentially expressed between NASH and healthy obese liver samples.
(A) Text-mining summary of connections observed between genes and lipid terms, number of gene
co-occurrence of gene symbol with language terms in scientific literature. (B) qqplot of q-values
obtained by false discovery rate correction of text-mining results (87 genes are still significant after
correction, q-values < 0.05). (C) Expression heatmap of lipid related genes found differential expressed
between NASH liver samples (n = 24) and Healthy obese liver samples (n = 24) in transcriptome
dataset GSE21260 (D) unsupervised principal component analysis performed with lipid related genes
found differentially expressed between NASH and Healthy obese in GSE21260 and impact of their
prediction to predicted NAFL samples (n = 23), p-value was calculated by correlation of sample group
discrimination on first principal axis.
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2.2. NASH is Associated with Impaired Function of Genes Implicated in Lipid Metabolism, Insulin-Resistance,
Inflammation and Tumorigenesis

We further examined the relationship between lipid genes and HCC, and found that differentially
expressed lipid-related genes (Supplementary Datasets Table S2 online) were enriched on the
Comparative Toxicogenomics Database which connects genes to disease phenotypes [58]. As expected,
this enrichment confirmed that these genes have a well association with phenotypic manifestations
of NASH such as lipid metabolism perturbations linked to fatty liver, hypercholesterolemia, and
hypertriglyceridemia. They are also associated with Type 1 and Type 2 diabetes, insulin resistance, and
impairment in clinical parameters such as body weight and atherosclerosis (Figure 3A). These results
suggest that the lipid text-mining approach for analysis of the transcriptome that we developed is well
adapted to study the altered gene-expression signature of NASH (Figure 3B).

Figure 3. Disease enrichment network of lipid related genes deregulated in NASH liver samples.
(A) Bar plot of functional enrichment performed with lipid related genes deregulated in NASH on CTD
disease database: red bars represent number of genes implicated by function and blue bars respective
Z-scores of the enrichments. (B) Functional enrichment network performed with lipid related genes
deregulated in NASH (CTD disease database).
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The 25 differentially expressed lipid-related genes identified earlier (Supplementary Datasets Table
S2 online) were also analyzed by their functionalities using Gene Ontology Biological Process database.
As expected, functional enrichment in this database revealed that these genes are mostly implicated
in lipid metabolism, especially cholesterol storage (LPL, CD36, and transcription factor SREBF2
were significantly up-regulated), fatty acid oxidation (PPARA and PPARGC1A were down-regulated),
long-chain fatty acid import (transporters SLC27A4 and CD36 were up-regulated), and triglyceride
biosynthesis (FASN, DGAT1, and LPL were all upregulated) as summarized in Figure 4.

Figure 4. Ontologic functional enrichment network of lipid-related genes deregulated in NASH liver
samples. (A) Bar plot of functional enrichment performed with lipid related genes deregulated in
NASH on Gene Ontology Biological Process database: red bars represent number of genes implicated
by function and blue bars respective Z-scores of the enrichments. (B) Functional enrichment network
performed with lipid related genes deregulated in NASH (Gene ontology biological process).

Interestingly, we observed that some lipid-related genes altered in NASH are also enriched in
other important biological pathways such as circadian rhythm (Figure 4A) which is represented
by down-regulation of PPAR pathway (PPARA and PPARGC1A). Down regulation of PPARA and
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PPARGC1A genes also share other functionalities such as response to hypoxia, gluconeogenesis, and
mitochondrial functions such as regulation of β-oxidation. These analyses also highlighted that lipid
related genes altered in NASH samples affect processes linked to monocyte/macrophage infiltration
into the tissue and to inflammation (Figure 4B), especially by up-regulating cytokines/chemokines such
as TNF and CCL2. At the same time CD36, a receptor of oxLDL, led to increased flux of phospholipids
and long-chain fatty acids into the hepatocytes increasing formation of lipid droplets and ceramides
that are chemo-attractants for macrophages (Figures 3 and 4).

Thus, this analysis showed the hard connection between early non-specific inflammation processes
and the progression of NAFL to NASH.

2.3. Connecting Lipid Related Genes Altered in NASH to Immunity, Inflammation and Liver Pathogenesis
Progression

As observed above in functional enrichment performed with Gene Ontology Biological Process,
lipid-related genes altered in NASH also showed implication of monocyte/macrophage cells and
inflammation (Figure 4). Responses to hypoxia, gluconeogenesis, and circadian rhythm were also
found to be affected by down-regulation of PPAR genes. So, these results showed that inflammation and
progression of liver pathogenesis could be affected by lipid related genes in NASH, as demonstrated
above. In order to cross-reference this information, we wanted to verify the role these molecules may
play in immunity, inflammation, and liver pathogenesis progression through the PubMed database.
Candidate gene prioritization approach allowed to focus on important affected genes with literature
relevance [59]. Connection with NCBI database allowed to select the 10 best lipid-related genes that
are important in the liver (Figure 5A and Supplementary Datasets Table S3 online).

For these 10 liver-related genes, we applied PubMed filtering with secondary terms related
to immunity, inflammation, and liver pathogenesis progression such as stroma, hepatocellular
carcinoma, liver cancer, cirrhosis, hepatic macrophage, B-lymphocyte, T-lymphocyte, inflammation,
and immunomodulation. This analysis showed a good literature prioritization for CD36 and TNF, and
also highlighted LIPA gene which is well-known to play a role in liver pathophysiology, (Figure 5B and
Supplementary Datasets Table S4 online). Among these 10 prioritized genes, individual ROC-curves
and expression boxplots (Figure 5C) were performed with transcriptome matrix for genes that were
found also deregulated in NASH liver samples (Supplementary Datasets Table S2 online). One of
them, PPARA was found to be down-regulated in NASH samples as compared to healthy obese
samples. PPARA had an area under curve (AUC) of 0.82 (Figure 5C) and a significant individual
down-regulation in NASH compared to HO subjects (two-tailed Student t-test p-value = 7.46 × 10-5).
Among up-regulated prioritized genes, we found PLIN1 with an AUC of 0.75 (two-tailed Student t-test
p-value = 0.00017), APP with an AUC of 0.71 (two-tailed Student t-test p-value = 0.014), LPL with an
AUC of 0.90 (two-tailed Student t-test p-value = 7.51 × 10-7), and FASN with an AUC of 0.65 (two-tailed
Student t-test p-value = 0.038).

Taken together, depending on the relative contribution of LIPA and the other nine genes’ expression
levels, the fate of the disease will be inflammatory response associated to CD36, LPL, and SCD leading
to NASH progression into liver cancer or cirrhosis and HCC as shown in Figure 5B.
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Figure 5. Lipid related genes found to be deregulated in NASH liver samples are also implicated
in inflammation, immunity and liver pathogenesis progression. (A) Bar plot of connection numbers
obtained by text-mining on first prioritization term: liver. (B) Circoplot representing connection
numbers during text-mining prioritization between lipid related genes altered in NASH and terms
around immunity, inflammation and liver disease progression. (C) individual ROC-curves (AUC and
its confident intervals) testing expression regulation between NASH and healthy obese liver samples
for lipid related genes and prioritized on inflammation-immunity and liver pathogenesis progression,
Expression boxplot with inclusion of NAFL samples (p-value was calculated by two-tailed Student
t-test between NASH and Healthy obese liver samples).

2.4. The 14-3-3 Protein Family is the Cornerstone between Dysregulated Lipid Metabolism, Inflammatory and
Insulin Pathways during NASH Progression to HCC

Thus, with the first analysis, genes implicated in inflammation, lipid metabolism, and progression
to cancer were highlighted, and the second analysis showed connection between lipid dysregulation
and insulin resistance and inflammation. We then focused on the YWHAZ gene identified in Figure 2A,
a member of 14-3-3 protein family, which has been associated with liver cancer [60].

A total of 399 YWHAZ-protein partners were identified based on InnateDB database. Significance
analysis of microarray (SAM) of the 399 protein partners performed on GSE61260 [61] identified
44 genes that discriminated between NAFL patients and NASH patients as shown by the heatmap
(Figure 6A and Supplementary Datasets Table S5 online) and by PCA analysis (Figure 6B).
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Figure 6. 14-3-3 protein family is at the center of the metabolic, inflammatory and dysregulated
insulin pathways. (A) Significance Analysis of Microarray identified 44 genes up-regulated linked with
YWHAH gene belonging to 14-3-3 protein family and represented by heatmap discriminating NAFL
and NASH patients with FDR < 5%. (B) Principal component analysis discriminates NAFLD and
NASH patients based on 44 genes up-regulated with a global p-value of 0.00037. (C) YWHAZ a 14-3-3
protein family and its protein partners (n = 399) linked to insulin signaling (44 proteins) based on Kyoto
Encyclopedia Gene and Genome (KEGG) associated to FDR of q-value = 2 × 10-19. Partners of YWHAZ
up-regulated in NASH based on (D) GO-BP and (E) KEGG pathways. FDR: false discovery rate.

The 44 genes are up-regulated in the group of NASH patients demonstrating their connection
(Figure 6C) with inflammatory processes, cell proliferation, metabolism, and especially cell–cell
adhesion based on GO-BP and KEGG pathway analysis (Figure 6D and 6E). One of these 44 genes,
YWHAH (Figure 6A and Supplementary Datasets Table S5 online) belongs also to the 14-3-3 proteins
family and it has also been associated to insulin function [62] and liver cancer [63].
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Taken together, these data show that 14-3-3 protein family has an important role in the progression
of NAFL to NASH through the dysregulation of metabolism and inflammatory processes associated
with cell proliferation and dysregulation in cell–cell adhesion, making the link to the progression
to HCC.

2.5. Connecting Lipid Dysregulation, Insulin Resistance, Inflammatory Processes and HCC: a NASH
Canonical Pathway

The main results of these analyses are summarized in the Figure 7 and connect lipid dysregulation,
insulin resistance, inflammatory processes, and HCC development based on the 25 genes found after
text-mining and in silico analyses.

Figure 7. NASH canonical pathway defined based on the 25 genes that were found using text-mining
analysis. Draw of pathophysiologic hypothesis connected to altered-lipid related genes expression in
liver samples of NASH and associated to immunity, inflammation and liver pathogenesis progression.

A decrease in PPARA leads to an increase in FGF21 [64], PLEK, and IRS2 which will result in the
increase of FASN, SCD, SLC27A2, and FADS2 all of which participate in de novo fatty acid synthesis.

At the same time, expression of CNPB, an inhibitor of SREBP2 expression, decreases. This leads to
an increase in SREBP2 expression and results in increased cholesterol synthesis.

Also, LPL and VLDR expression are increased (likely due to the lipid-rich diet), leading to an
accumulation of lipids in the cell. In addition, expression of APP and LIPA is increased, promoting
triglyceride synthesis and release of cholesteryl ester. Altogether, this leads to an increase in expression
of genes implicated in the synthesis of droplets such as CIDEC, PLIN1, and PLIN2 to create lipid
droplets. In parallel, we showed increase in expression of CD36, SMPD2, and CCL2 which control
phospholipid metabolism and vesicle assembly and are also implicated in inflammatory processes
and inflammatory cell chemo-attraction. Finally, the down-regulation of PPARA leads to a decrease in
PPARG1A that leads to a decrease in PPARGC1A (i.e., PGC1-α), a major player in the β-oxidation, thus
contributing to an increased accumulation of FFA in the cell by disturbing mitochondrial function.
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Our analysis also showed an increase in BCL2A1, an anti-apoptotic player, usually implicated in
cancer progression. In association with an increase in expression of YWHAZ and YWHAH, IRS2 is
also up-regulated. This group of genes participates in development of the insulin resistance as well as
hepatocellular carcinoma.

For the first time, using text-mining, bioinformatics, and statistics, a precise picture of the
progression of NAFL to NASH and then HCC has been shown, describing a canonical pathway shown
in Figure 7.

2.6. Confirmation of the NASH Canonical Pathway Using Independent Illumina Gene Expression Beadchip

To confirm our findings and demonstrate that the “canonical signature” based on the 25 genes
identified after the text-mining approach is applicable to other groups of NAFL and NASH patients,
we used these set of genes to a new group of healthy control subjects, NAFL, and NASH patients, for
which gene expression analyses were performed using a completely different approach than that used
to establish this signature. The gene expression analyses were performed in 44 human liver surgical
samples (normal n = 13; steatosis n = 19; steatohepatitis n = 12), which were processed with Illumina
HumanWG-6 v3.0 expression beadchip technology and referenced as GSE33814 [65]. Two genes, PLIN1
and PLIN2 implicated in lipid droplet synthesis, were not annotated in the Illumina beadchip.

We performed an unsupervised clustering analysis and showed that the three groups of patients
are perfectly separated (Figure 8A) and from 25 genes in our established gene signature, six are
significantly differentially expressed between the three groups as shown by the first dimension on the
PCA analysis (Figure 8B, p-value = 0.29 × 10-6). The six main genes are involved in the cancer and
inflammatory processes (YWHAZ, CCL2 and SMPD2) and lipid droplet formation and metabolism
(CIDEC, VLDLR and FASN) and significantly increased in NASH patients compared to control or
NAFL groups (Figure 8C).

Then we also looked at the 44 partners of YWHAZ proteins linked to the canonical pathway.
The unsupervised clustering analysis showed that the three groups of patients are perfectly separated
(Figure 8D) and that among the 44 genes encoding for YWHAZ partners, five genes significantly
discriminate among the three groups of patients on the first dimension of the PCA (Figure 8E, p-value
= 5.3 × 10-6). The five genes emphasized that the cancer pathway is associated with a significant
increase in YWHAH and BRCA1 expression, as well as an increase in expression of ACLY, a gene
implicated in the first step of the lipid metabolism. The cancer pathway is also associated with two
genes implicated in the cytoskeletal remodeling and network, ANXA2 and TUBA1A, linked to HCC
and cell migration (i.e., metastasis development) as shown previously [66,67], thus predicting the fate
of the NASH (Figure 8F).

In conclusion, we were able to confirm that the pathway that includes 25 dysregulated genes
is common in patients who developed NAFL and then NASH, leading to the concept of a common
signature of genes connected together that might seal the fate of NAFL to progress to NASH and then
insulin-resistance, inflammation, and finally cancer. We also confirm that other genes might emphasize
the fate of the NASH progression to a worst outcome in some patients.
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Figure 8. The NASH canonical pathway confirmed by independent Illumina gene expression beadchip.
(A) Heatmap, (B) principal component analysis (PCA) and (C) boxplots of the main genes discriminating
the three groups of patients of the PCA (B) based on the 25 genes of the canonical pathway applied
to independent Illumina gene expression beadchip. (D) Heatmap, (E) principal component analysis
(PCA) and (F) boxplots of the main genes discriminating the three groups of patients of the PCA
(E) based on the 44 genes partners of the YWHAZ proteins linked to the canonical pathway applied
to independent Illumina HumanWG-6 v3.0 gene expression beadchip (GSE33814) [65]. The groups
of healthy control (n = 13), nonalcoholic fatty liver (NAFL, n = 19) and nonalcoholic steatohepatitis
(NASH, n = 12) patients are significantly different: * p < 0.05; ** p < 0.01, *** p < 0.005, **** p < 0.0005
based on ANOVA-one-way analysis.
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2.7. Genes Implicated in Progression of NASH are Part of the Progression to Hepatocellular Carcinoma

We identified 25 genes implicated in the progressions of steatosis to NASH, particularly
genes implicated in lipid metabolism, inflammation processes, and five more genes implicated
in cancer development.

Thus, to dissect the role of these 30 genes in the progression of NASH to HCC, we used the
data provided by the GSE14323 [68] including biopsies for which gene expression was analyzed from
19 controls, 41 cirrhosis, and 38 HCC using [HG-U133A] Affymetrix Human Genome U133A Array.
PCA showed that the three groups of patients separated significantly on the first dimension (p-value
= 2.255952 × 10-11) and second dimension (p-value = 0.001885) implicating 13 genes (Figure 9A,B).
These 13 genes include genes involved in regulation of fatty acid and cholesterol metabolism such as
LPL, VLDLR, LIPA, ANXA2, and PLEK; lipid accumulation (CIDEC, PLIN1); and metabolism (PPARA
and BCL2A1); and especially genes implicated in inflammatory and cancer processes such as CCL2,
CD36, TUBA1A, and YWHAZ (Figure 9C). Most of the latter are significantly up-regulated in cirrhosis
and hepatocellular carcinoma samples, while genes implicated in lipid accumulation such as CIDEC
and PLIN1 are significantly down-regulated. This may explain changes in the energy metabolism,
particularly lipid metabolism, that is modified in hepatocellular carcinoma with down-regulation
of triglycerides and ceramides leading to a decrease in lipid droplets due to the increase in lipid
metabolism turn-over [69]. This is in concordance with what was shown less than a decade ago about
hepatocellular carcinoma that can evolve from NASH [70,71].

Thus, we went further to analyze the role that 30 genes found in NASH which may play a role in
the development of hepatocellular carcinoma. We investigated genomic data of a liver cancer cohort
from TCGA consortium (http://www.cbioportal.org) [72]. Indeed, we used this approach because it
is well known that, in cancer progression, genomic instability could affect genes through mutation
but also through the copy number variation. It is also known that, in liver cancer, mutation profile
acquired in the tumor tissue is not enough to explain all the classification of the cohort of patients with
HCC. The average number of acquired mutations in each HCC patients could range from 50 to 60 [73].

Among the 353 patients with HCC, 231 patients have genetic alterations (e.g., mutations, fusion,
deletions, amplifications, or single nucleotide polymorphisms) in 29 genes, but for one gene (BLC2A1)
no alteration was observed in these patients based on the genomic landscape of liver HCC and
mutational signatures results (Figure 10A). Interestingly, among the 29 genes, alterations in five genes
-DGAT1, FASN, YWHAZ, LPL, IRS2- have been found in more than 4% of patients with HCC. The data
analyses showed that genetic alterations included amplifications, missense mutations, and deletions.
We showed that presence of mutations in these five genes in patients (n = 9) was associated with a higher
chance of relapse or progression of the disease compared to patients (n = 89) with fewer alterations
(less than 4% for the other 24 genes, Figure 10A,B), having a poor prognosis with a significantly shorter
time without progression or recurrence (11.25 months vs. 68.2 months, respectively, Figure 10B,C,
Kaplan-Meier analysis with log-rank test p-value = 0.0117).

In summary, we have shown that the genes previously identified as key players in the NASH
progression were also implicated in liver cancer. These genes were involved in lipid metabolism and
regulation, inflammation, and cancer development. Changes in expression of these genes are linked
to the progression of NASH to cancer. Additionally, genetic alterations in these genes are strongly
involved, especially mutations in five genes (DGAT1, FASN, LPL, IRS2, and YWHAZ), in lipid synthesis,
insulin resistance, and cancer progression. Therefore, these genomic alterations playing gene regulatory
role for driving the progression of HCC has been shown to be significant in NASH progression.

http://www.cbioportal.org
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Figure 9. The genes involved in NASH progression are also involved in hepatocellular carcinoma.
(A) Principal component analysis (PCA) based on the 30 genes implicated in NASH progression and
run with the dataset of GSE14323 implicating control (n = 19), cirrhosis (n = 41) and HCC (n = 38) liver
biopsies separated significantly on the first dimension and second dimension. (B) Venn diagram based
on the genes (i.e. variables) implicated of the separation of the three groups of patients from the PCA
(A) leading to a total of 13 genes. (C) Boxplots of the expression of the 13 genes in the in each group
control, cirrhosis and HCC compared by ANOVA one-analysis. * p < 0.05.
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Figure 10. A core of 5 genes involved in NASH progression have alterations found in hepatocellular
carcinoma which are associated with a very poor outcome. (A) Investigation of the 30 genes involved
in NASH on genomic data including copy number variations, single nucleotide polymorphism,
mutation, fusion and deletion of liver cancer cohort from TCGA consortium performed in 353 patients
(https://www.cbioportal.org/) [72] leading to five genes present in more than 4% of patients. (B) Table
from (A) recording the total patients with genetic alterations (≥4%) in the 5 genes of interest (n = 14)
and the total patients (n = 217) without genetic alteration (<4%). Among these patients some patients
(n = 9 and n = 89, respectively) have been identified with relapse or progression of the liver cancer.
(C) Kaplan-Meier survival curve between patients (n = 9) with genetic alterations (≥4%) in the five
genes identified in (A) and patients (n = 89) without (<4%) genetic alterations in the 24 other genes
associated with relapsed or progressed cancer. Kaplan-Meier curves were analyzed by log-rank test.

3. Discussion

Since we began this study, more than 2,550,897 papers have been published in PubMed but
only 4916 new articles about NAFLD were released, and 0.197% of these publications included the
following fields such as reviews; original articles focused on diagnosis; treatment; new marker(s)
and cofactors; epidemiology; cause or relationship with other diseases, i.e., cardiovascular disease,
fibrosis, muscular dysfunction, drug-induced NAFLD; and some articles focused on mechanisms
(source from https://www.ncbi.nlm.nih.gov/). In general, manuscripts that focused on mechanisms,
attempt to confirm or disprove previous data leading to controversial results [74,75] while adding
additional data. However, to date, no comprehensive study, combining all the relevant data to find a
canonical mechanism implicated in NAFL/NASH progression, has been performed. In the last few
years, as bioinformatic tools were developed to perform data-mining and text-mining, laboratories in
NAFLD field have started to use these approaches to develop a diagnostic tool based on a decision tree
using a machine learning approach [76]. These tools have also been used to develop an algorithm that
would perform data mining [77] to predict NAFLD-cancer progression, or to find a specific signature
and mechanism of NASH progression using lipidomic data [19].

Thus, in this manuscript we used text-mining and data-mining based approaches and found a
NAFLD/NASH canonical mechanism summarized in Figure 7.

Indeed, the text mining approach reduced the transcriptomic matrix to the most important genes
highlighted by scientific literature. This mathematical approach to reduce the dimension had a major
advantage as compared to classical analysis which was also to reduce the false discovery error link

https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/
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to the high dimension data of the transcriptome. During transcriptome analysis, usual statistical
approach applied for more than 30,000 variables and for each row is to use 5 percent of false positive
error of discovery, with some corrections applied like FDR or BH, usually introduced to minimize this
trouble. By this conventional approach, if the biological information is small and diluted in unrelated
experimental variance, the biological information could be totally ignored by the statistical hypothesis.
The advantage of our work is to focus on the statistical hypothesis to a few hundred genes and so to
considerably reduce the risk to the unseen biological effect, especially in the context of liver, in which
the biology and the metabolism are very complex.

For some selected genes, in the case of the gene co-occurrences which were biased in the scientific
literature, the second step of our workflow was to eliminate these unrelated genes because literature
information was confirmed in transcriptome data from patients with NAFLD.

During this work, a protein–protein interaction network was built around significant genes.
This bioinformatic step enlarged the literature approach by the fact that the initial gene analysis
was introduced in neighbor molecules which were experimentally connected to the initial selected
markers from the scientific literature. This original bioinformatic approach allowed identification of a
canonical mechanism for the progression from NAFL to NASH and then, probably in some patients,
the progression from NASH to cirrhosis/HCC.

As expected, four major axes have been identified validating our approach. The first axe concerns
lipid metabolism dysregulation including increased lipid influx, increased de novo lipid synthesis,
and decreased mitochondrial function that leads to fat accumulation in the form of intracellular lipid
droplets. The second pathway includes inflammatory processes implicating lipids and chemo-attracting
molecules which lead to recruitment of inflammatory cells such as macrophages. The third pathway,
which is activated as a result of activation of the previous two, is the insulin resistance pathway.
All these three pathways lead to the development of liver cancer. What is interesting in our analysis
is that we were able to connect all these pathways together showing key genes and pathways that
connect all these processes. However, we should consider this canonical mechanism as a nucleus and
not as a dogma. For instance, recently we and others, using different approaches, have shown that
FADS1 (i.e., ∆5-desaturase) polymorphism can decrease enzyme activity leading to the accumulation
of toxic fatty acids upstream in the pathway and decrease the downstream phosphatidylcholine to
phosphatidylethanolamine ratio in NASH patients, leading to hepatocyte death and release of lipids
that are toxic for the surrounding hepatocytes [19,20,35]. Thus, FADS1 can be incremented in the
canonical pathway summarized in Figure 7. We should consider that in all NASH patients, activation
of this canonical pathway is a common feature, and some of patients can have additional traits (e.g.,
FADS1 polymorphisms/decrease enzyme activity) that increase their risk for a faster progression of
the disease from NAFL to NASH and/or from NASH to HCC. Thus, each additional trait, such as
PNPLA3 and/or FADS1 polymorphisms, can be incorporated into the canonical pathway to build a
more complex mechanism and then to have a larger overview of the mechanism implicated.

Also, in using this canonical pathway as a main foundation to study NAFLD progression,
researchers will be able to have a new angle to understand the disease and to find new treatment(s)
or approaches to treat NASH-patients. Recently, Musso G et al. published an interesting review
focusing on bioactive lipid species and metabolic pathways implicated in NASH progression based on
162 publications. This resulted in description of general mechanisms, but did not identify the most
critical mechanism among all of these mechanisms or how the connections between these mechanisms
are made [78]. The general mechanisms described in this review are connected to the canonical
pathway that we found but with more detail about which partners are important.

The study by Muss G et al. [78] and our study do not address the assessment of the probability
weight of the risk of having particular polymorphisms (e.g., FADS2 polymorphisms vs. FADS1
polymorphisms vs. PNPLA3 polymorphisms) or to have metabolic dysregulations of lipids from the
diet, for instance. Defining an odds ratio or risk ratio for each element of the canonical pathway
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and the other pathways will be the next step to understand the imbalance that occurs during
NAFLD progression.

This study also showed for the first time the role of proteins YWHAZ and YWHAH which belong
to the 14-3-3 protein family. Both proteins YWHAZ and YWHAH are implicated in HCC progression
and metastasis. Indeed, the YWHAZ gene is well known to be up-regulated in HCC patients but
now YWHAZ is identified as an oncogene based on recent research on Cancer Genome Atlas [60] and
implicated in mitochondrial function [79]. YWHAH has also been implicated in liver cancer depending
on regulated c-myc expression [63], in insulin resistance [62] and mitochondrial function [80].

Finally, to make the final connection between genes implicated in NASH progression and
hepatocellular carcinoma development, we investigated the genes in two genome datasets including
normal, cirrhotic, and HCC patients (GSE14323) and also 353 patients with HCC for which copy number
variations and SNP were identified. We found five genes associated with poor prognosis including
FASN, DGAT1, LPL, IRS2, and YWHAZ. Four of these genes are implicated in lipid metabolism
regulation and one in liver cancer. Recently, lipid metabolism reprogramming in hepatocellular
carcinoma has become the focus of research [81]. Several studies have shown that knockdown
or pharmacological inhibition of FASN suppressed the growth of HCC in vitro. In vivo, genetic
ablation of FASN completely suppressed Akt-driven HCC development through the inhibition of
Rictor/mTORC2 signaling [81,82]. Recently, another in vivo study confirmed the previous findings
and showed that genetic deletion of FASN totally suppresses hepatocarcinogenesis driven by AKT and
AKT/c-Met protooncogenes in mice. On the other hand they showed also that liver tumor development
is completely unaffected by FASN depletion in mice co-expressing β-catenin and c-Met strongly
suggesting that lipid metabolism could play a role not directly in the development of the HCC but
in the prognosis of the HCC progression [83]. Indeed, it has been shown that FASN is frequently
up-regulated in various cancers, and its increased expression is associated with chemoresistance,
metastasis, and poor prognosis [81]. It has been shown that LPL is also up-regulated in mouse and
human HCC associated with up-regulation of FASN [84]. In addition, IRS2 has been shown to be
overexpressed in murine and human HCC and participate in the development of the disease with IRS1
through AKT pathway [85,86]. Thus, these five genes make the core of the canonical pathway. We also
showed that not only dysregulation of their expression but also genetic alterations in these genes play
an important role in the progression of the disease.

Our results are in accordance with a recent discovery showing a twist in lipid metabolism
in hepatocellular carcinoma [87,88]. Indeed, in this paper they showed that many cancer cells
activate lipid-synthesis pathways to support their rapid proliferation, especially hepatocellular
carcinoma implicating two enzymes SCD and FADS2. They showed that some types of cancer
cell are insensitive to modifications of SCD and continued to grow implicating a second enzyme
FADS2. They showed that in HCC, FADS2 uses palmitate like SCD but produces sapienate (instead of
palmitoleate), a monounsaturated fatty acid produced in sebaceous gland that will be incorporated
into the phospholipids in the membrane of the liver cancer cell to adapt its needs to survive and to
proliferate [88]. The tumor environment such as fibrosis, hypoxia, dysregulated metabolism might also
influence the liver cancer cell regulation of SCD and FADS2 enzyme activities especially in the case of
HCC developed from NASH stage [81]. Indeed, SCD, FADS1, and FADS2 are dysregulated in NASH
as we showed in this study and previously [19,20,81].

Finally, to go further into the understanding of the genes implicated in the canonical pathway
described in this study, the next step will be first to test this canonical pathway in a different new cohort
of patients with steatosis and NASH associated to different genetic backgrounds and environments in
prospective studies. Afterwards, it will be to perform single-cell analysis in different liver biopsies
from healthy lean and obese patients, lean and obese patients with NAFL, NASH, cirrhosis, and HCC
developed from NASH. The cells that should be analyzed will be at least hepatocytes, cholangiocytes,
hepatic stellate cells, endothelial cells, and Kupffer cells. Indeed, in our study we used dataset from
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liver biopsies reflecting the bulk liver RNA. Currently, such single cell analyses in the different groups
of patients mentioned above have not been performed yet.

In conclusion, using an original approach based on text-mining and data-mining we were able to
identify 25 genes implicated in NASH progression and 44 genes/proteins implicated in progression of
the disease from NASH to HCC (Figure 11). This analysis highlighted genes belonging to the 14-3-3
protein family YWHAZ and YWHAH. Both proteins YWHAZ and YWHAH are implicated in cancer
progression, especially in liver cancer. Thus, this might explain why some patients with NASH may or
may not progress to HCC.

Figure 11. Canonical pathway explaining the NASH progression from steatosis to hepatocellular
carcinoma. Inside the box the genes identified by text-mining are represented. The toothed wheels
represent the connections between the genes working together to accumulate toxic lipids that will lead
to insulin-resistance and then inflammation and hepatocellular carcinoma (HCC). Thus, the steatosis
due to an imbalance of lipid metabolism and accumulation of toxic lipids will progress to NASH due to
the inflammatory processes and insulin resistance leading to expression of genes involved in tumor
progression such as YWHAZ and YWHAH. Outside the box, other genes with specific polymorphisms
(e.g., FADS1: fatty acid desaturase 1) or other factors such as cytokines/chemokines (e.g., increase of
leptin and/or decrease of adiponectin) will accelerate and/or exacerbate the progression of the disease
leading faster to cirrhosis and then HCC. This representation is not frozen but dynamic and can change
depending on the future new data.

Taken together these data led to discovery of a canonical pathway for NASH progression that
connects together dysregulation of lipid metabolism, inflammatory processes, insulin resistance, and
cancer progression (Figure 11). In addition, other genes with specific polymorphisms or other factors
such as cytokines/chemokines could accelerate and/or exacerbate the progression of the disease leading
to cirrhosis and HCC faster. This canonical pathway is not frozen but dynamic and is likely to change
depending on the future new data that can be integrated with the pathway. These genes should be
sought in future prospective clinical studies involving patients with NAFLD.
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4. Material and Methods

4.1. Bioinformatics and Statistical Analyses

Text-Mining Approach

Bioinformatics of gene expression analysis was approached by dimensional reduction of gene
expression matrix by text-mining approach. Workflow of this analysis is described in Figure 1.
Text-mining based on MeSH, a natural language processing, allowed us to found connections between
language terms and gene identifiers in scientific literature such as PubMed database. Co-occurrence
quantification by this approach allowed to connect gene databases to scientific literature and to
highlighted important scientific relations with small set of molecules [55]. Mathematical dimensional
reduction of transcriptome matrix was focused on significant genes found connected to literature after
false discovery rate (FDR) correction in order to minimized false positive discovery and set-up below
5% [89].

Lipid genes differential expressed between NASH, healthy obese, and NAFL obese liver samples
were searched with Significance Analysis for Microarray (SAM) algorithm by implementing FDR
threshold under 5 percent [90]. Unsupervised PCA was performed with “FactoMineR” R-package and
group discrimination p-value was estimated with variable correlation to the first principal component
axis [91,92].

Functional enrichment analysis was performed with the standalone software GO-Elite version
1.2 [93] on Gene Ontology-Biological Process (GO-BP) and the Comparative Toxicogenomics Database
(CTD). Functional enrichment networks were built with Cytoscape software version 3.0. [94] with
information collected during functional enrichment: the blue edge represents connections between
genes and functions, blue circle nodes represent enriched genes, and octagon nodes represent enriched
functions, scale color from yellow to purple in the function nodes is proportional to the Z-scores
obtained during the enrichment. PubMed gene prioritization by connection to the NCBI website
was performed with java application Gene Valorization working under Java Virtual Machine [95].
Gene prioritization relations with scientific literature were represented as a Circos plot with “circlize”
R-package [92,96].

4.2. Transcriptome Dataset Analysis Narrowing Text-Mining Discovery

Transcriptome dataset of liver samples included HO subjects (n = 24), NAFL obese patients
(n = 23), and samples of patients affected by NASH (n = 24) [61]; it was downloaded from Gene
Expression Omnibus database under accession number GSE61260 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE61260). These experiments were performed with Affymetrix technology and
microarray version Human Gene 1.1 ST array. Normalized matrix by robust multi-array average (RMA)
algorithm [97] was merged on identifier column with corresponding annotation platform GPL11532
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL11532) to create an in silico experimental
matrix. This matrix comprises 71 patients divided in three groups for which each liver sample
hybridized array comprised more than 750,000 unique 25-mer oligonucleotide probes that interrogate
more than 28,000 genes.

Then, receiver operating characteristic (ROC) curves with area under the curve (AUC) performed
on altered lipid genes were done with “pROC” and “Epi” R-packages [98,99]. Boxplots, Kruskal-Wallis
test, and Student t-test were performed in R software environment version 3.4.3 [92].

The patient sample characteristics from GSE61260 dataset can be found in the paper published by
Horvath et al. on the Supplementary Information of the paper [61].

Briefly, patients were only Caucasians from Germany. RNA was extracted from human liver
samples and analyzed as described above.

Patients were divided in different groups such as NAFL (n = 23), NASH (n = 24), HO subjects
(n = 24) based on the results of the histology analysis performed by a pathologist. Liver samples were

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61260
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61260
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL11532
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obtained percutaneously for patients undergoing liver biopsy for suspected NAFLD or intraoperatively
for assessment of liver histology.

The three groups of patients were clustered based on the total NAFLD Activity Score (NAS) [21,100].
Briefly, the total NAS represents the sum of scores for steatosis, lobular inflammation, and hepatocyte
ballooning, and ranges from 0 to 8 [21,100]. After diagnosis, NASH or fatty liver not diagnostic of
NASH, the total NAS is used to grade activity. NAS scores of 0–2 typically occur in cases largely
considered not diagnostic of NASH, whereas scores of 5–8 usually occurs in cases that are considered
diagnostic of NASH. Steatosis: ordinal variable that relates to the amount of surface area involved
by steatosis as evaluated on medium power examination. Minimal steatosis (<5%) receives a score
of 0. 5–33% (score of 1), 33–66% (score 2), and >66% (score 3). Liver inflammation: ordinal variable:
0 corresponds to no foci, 1 (<2 foci/200×), 2 (2–4 foci/200×), 3 (>4 foci/200×). Fibrosis: ordinal variable
that takes on (half) integer values between 0 and 4: 0 (none), 2 (perisinusoidal and portal/periportal),
3 (bridging fibrosis), 4 (cirrhosis). The fibrosis stage is evaluated separately from the total NAFLD score.

Hepatocyte ballooning was measured in each biopsy as follow: ballooning: 0 (none), 1 (few
balloon cells). Here “few” means rare but definite ballooned hepatocytes as well as cases that are
diagnostically borderline, 2 (many cells/prominent ballooning).

Patients were also checked for free-hepatitis B or C virus infections.
All patients provided written, informed consent. The study protocol was approved by the

institutional review board (“Ethics commission of the Medical Faculty, University of Kiel”, project
identification: D425/07, A111/99) before the commencement of the study, as published in the original
paper [61].

4.3. Confirmation of NASH Canonical Pathway by Using an Independent Validation Cohort and a Different
Transcriptome Technology Analysis

An independent transcriptome series was process in order to validate the inflammatory/lipid
gene expression profile of the NASH canonical pathway using a published GSE33814 [65] including
44 human liver tissue surgical samples (normal n = 13; steatosis n = 19; steatohepatitis n = 12) which
was process with Illumina HumanWG-6 v3.0 expression beadchip technology. Normalized dataset
was annotated with corresponding Gene Expression Omnibus platform GPL6884. Annotated matrix
was restricted to inflammatory lipidic signature by SQL querying and process to perform supervised
expression heatmap with “made4” R-package/Bioconductor repository [101] and unsupervised PCA
with “FactoMineR” R-package [91]. ANOVA-One way with Tukey post Hoc test was done on highlighted
biomarkers in R software environment version 3.4.3 [92]. The study was approved by the ethical
review committee at the University of Graz (EK number: 20-119 ex 08/09), as published in the original
paper [65].

4.4. Genes Implicated in NASH Progression Involved in Progression to Hepatocellular Carcinoma: Liver Cancer
Genomic Data

To assess the play of the genes implicated in NASH progression, we investigate the gene profile of
GSE14323 [68]. Liver tissue samples were obtained from patients waiting for liver transplantation at
one of the GR2HCC Centers. Additionally, normal liver and tumor samples were also obtained from
the Liver Tissue Cell Distribution System. For each sample, RNA was extracted and hybridized to an
Affymetrix GeneChip ([HG-U133A] Affymetrix Human Genome U133A Array) including 19 controls,
41 HCV-cirrhosis and 38 HCV-advanced hepatocellular carcinoma patients.

In the second way, we investigated genomic data (copy number variations: CNV and
single nucleotide polymorphism: SNP) of liver cancer cohort from The Cancer Genome Atlas
(TCGA) consortium [72] through cbioportal web application (https://www.cbioportal.org/) [102,103].
This dataset contained Tumor Samples with sequencing and CNA data (353 patients/samples).
Oncoprint of the CNV and SNP comprised in this dataset for the 30 lipid-related genes were performed.
The number of patients who relapsed or progressed based on their cancer genetic profile (i.e. free

https://www.cbioportal.org/
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survival) was assessed over the time using Kaplan-Meier analysis with “survival” R-package and
analyzed using stratified log-rank survival test. The research protocol was approved by the respective
institutional review boards, and informed consent was obtained in all cases, as published in the original
paper [68].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/22/5594/
s1. Supplementary Datasets Table S1: Text-mining list of genes associated in PubMed literature with lipid related
keywords. Supplementary Datasets Table S2: Expression fold change of lipid related genes found differentially
expressed between NASH and healthy obese liver samples. Supplementary Datasets Table S3: Liver as principal
filter for prioritization of lipid related genes found differentially expressed in NASH. Supplementary Datasets
Table S4: Gene prioritization secondary filters (immunological, inflammation, liver pathogenesis progression) table
found with lipid related genes differentially expressed in NASH. Supplementary Datasets Table S5: Identification
of protein partners of YWHAZ gene using InnateDB database. In red, “YWHAZ gene encodes for a 14-3-3 protein
family and it is well known to be up-regulated in HCC.”
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