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Abstract: Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation,
produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in
cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action,
an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2
(T2D) diabetes, as well as their complications, has been well established. However, there is a lack
of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last
decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs).
The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by
interaction with its 3’untranslated region (3′UTR). In this paper, we review the recent progress in
the field, focusing on the association between miRNAs and oxidative stress during the progression
of diabetes.
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1. Introduction

Diabetes, which affects approximately 422 million people worldwide, is a disease characterized
by the loss of glycemic control, which causes side effects such as polyuria, glycosuria, weight loss,
neuropathies, retinopathy, and renal plus vascular diseases. Because diabetes results in the loss of
glucose homeostasis, it is associated with high morbidity and mortality [1]. The most prevalent
forms of this disease are Type 1 (T1D) and Type 2 diabetes (T2D). Both types are characterized by
hyperglycemia due to either insufficient insulin production (T1D) or loss of cellular sensitivity to
insulin, known as insulin resistance (T2D). Insulin-producing beta cells reside in the pancreas within
clusters of endocrine cells called “Islets of Langerhans”. Islets are dispersed throughout the pancreas,
representing around 2% of the overall pancreatic tissue [2]. Beta cells are essential for blood glucose
homeostasis. Their dysregulation is linked to both forms of diabetes. In T1D, the primary targets of
autoimmunity are beta cells [3]. In T2D, insulin resistance (i.e., the inability of cells to respond to insulin
to take up glucose) leads to excessive insulin production by beta cells, resulting in their exhaustion
and eventual death [4]. Strong evidence indicates that T2D is associated with a deficit in beta cell
mass [5], which leads to long lasting inefficient glycemic control leading to toxic amount of glucose.

Int. J. Mol. Sci. 2019, 20, 5423; doi:10.3390/ijms20215423 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-6764-6151
http://dx.doi.org/10.3390/ijms20215423
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/20/21/5423?type=check_update&version=2


Int. J. Mol. Sci. 2019, 20, 5423 2 of 25

Hyperglycemia is responsible for the development of severe complications such as microvascular,
neuropathic, and macrovascular problems, which affect the quality and expectancy of life [6,7].

Since beta cells have notoriously low proliferating rates in adults, replenishing beta cell mass
remains one of the greatest challenges of modern biology [8,9]. Even a partial restoration of insulin
production in the pancreas could be therapeutically sufficient, judging by the fact that even after 80%
loss of beta cell mass, T1D patients remain asymptomatic [10]. Although each of the two diabetes types
has a different etiology, they are both greatly affected by cellular oxidative stress. On the one hand,
oxidative stress in T1D originates from T cell-mediated autoimmunity targeting beta cells through the
generation of proinflammatory cytokines. In addition, low tissue expression of antioxidative enzymes
and antioxidative agents make affected individuals vulnerable to damage induced by reactive oxygen
species (ROS) and reactive nitrogen species (RNS) originating from hypoxia or cytokine-mediated
oxidative stress. A well-balanced equilibrium between oxidative molecules and antioxidative defenses
is critical for physiological cell functions. On the other hand, type 2 diabetes is a metabolic syndrome
where a group of conditions such as hypertension, glucose intolerance, insulin resistance, obesity, and
dyslipidemia result in cellular oxidative stress across tissues [11,12]. Specifically, abdominal obesity has
been shown to be a source of proinflammatory cytokines and, consequently, leads to insulin resistance.

Numerous studies have recently reported a strong link between oxidative stress and microRNAs
(miRNAs). MiRNAs are post-transcriptional regulators, approximately 18 to 23 nucleotides long, that
suppress gene expression by specific interaction with target genes [13]. The miRNAs have a role in
controlling cellular redox homeostasis between highly reactive oxidative and antioxidative species.
Current reports show that changes in miRNA levels contribute to persistent cellular oxidative stress,
eventually leading to the development of diseases. Publications over the last few years increasingly
support the link between miRNAs and oxidative stress in diabetes. A better understanding of the
molecular mechanisms influencing the relationship between miRNAs and oxidative stress in diabetes
could be useful to the development of therapeutic approaches that improve beta cell survival under
metabolic stress. In this paper, we review the progress made in this field, describing mechanistic
miRNA-driven gene regulation during oxidative stress and diabetes progression.

2. Overview of MicroRNA Biology: MiRNA Regulation and Their Role in Islets and Diabetes

The discovery of microRNA (miRNA) over twenty-five years ago revolutionized the field of cell
biology and molecular biology. The first well-characterized small RNAs were lin-4 and let-7 [14–16],
both of which have been found to be involved in control of early development, while let-7 has been
found highly conserved across animal species [17]. According to a conservative analysis from ENCODE
(Encyclopedia of DNA Elements) [18], an international consortium funded by the National Human
Genome Research Institute (NHGRI) to study the human genome, 62% of the genome bases are
transcribed into RNA of more than 200 bases long, of which only 5% corresponds to exons. Therefore,
most of the transcribed RNA does not code for proteins and is designated as non-protein coding RNA
(ncRNA). MiRNAs, a subset of ncRNAs, are small single stranded gene products of 18 to 23 nts, with
an important role in post-transcriptional regulation of gene expression [13,19]. Almost half of the
human miRNA genes are located in intergenic regions of the genome. Most of the other half are located
in intronic regions of protein-coding genes, whereas some are found within exons [20]. The most
common miRNA biogenesis pathway is known as the canonical pathway, although some miRNAs
take alternative biogenesis routes [21,22]. In the canonical pathway, miRNA genes are transcribed by
RNA polymerase II (Pol-II) to primary miRNAs (pri-miRNAs), which are processed in the nucleus by
a microprocessor complex composed of human ribonuclease III (Drosha) and the DGCR8 (DiGeorge
syndrome critical region 8) to a pre-miR stem loop precursor of approximately 60 to 70 nt [13,23].
The pre-miRNA stem loop is actively transported to cytoplasm by exportin 5, where it is cleaved by
Dicer, another member of the ribonuclease III protein family, into approximately 18 to 23 nucleotide
double-stranded mature miRNA [13]. One strand arises from the 5′ end of the stem-loop and the
other strand from the 3′ end, termed -5p and -3p, respectively. The miRNA is then incorporated
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into a ribonucleoprotein complex known as RISC (RNA-induced silencing complex) containing the
essential silencing protein Argonaute 2 (Argo2) [24]. Argonautes belong to a highly conserved protein
family. Together with small RNAs, such as miRNAs, they form ribonucleoprotein complexes (RNPs)
that regulate post-transcriptional gene pathways. If the complementarity with the target mRNA is
extensive, as is the case for the homeobox HOXB8 mRNA and miR-196, the Argonaute protein cleaves
the mRNA [25]. However, in eukaryotes, the most frequent forms of silencing are by inhibition of
translation or mRNA destabilization by polyA shortening [26].

Only the active mature RNA strand, known as a guide strand, is preserved and loaded on RISC,
while the other complementary strand, designated as * strand, and known as a passenger strand, is
degraded [24]. Many miRNAs retain both 5′ and 3′ strands, which are then incorporated into RISC
complexes, generating miR-5p, as well as miR-3p. The choice of miR-5p or -3p as active mature
miRNAs depends mostly on cell type [27]. It appears that the decision to select the guide strand from
the miRNA duplex generated by Dicer is partly due to thermodynamics considerations. The strand
with the weakest binding at its 5′ end is more likely to become the guide strand. In many human
miRNAs, the guide strand is U-biased at the 5′ end with an excess of purines, while the passenger
strand is C-biased with an excess of pyrimidines. Proteins such as Dicer, Argo2, and others participate
in this decision as well. However, the mechanism is basically unknown [28]. The miRNA leads the
RISC to a target mRNA. The single strand miRNA-RISC-Argo2 complex principally functions to inhibit
target gene expression through recognition of partially complementary sequences in messenger RNA
(mRNA), thus regulating mRNA translation by inhibiting gene expression and protein translation.
The recognition sequence on the target mRNA is usually found at the 3′ UTR and is recognized by the
“seed” sequence, two to eight nucleotides long, located at the 5′ domain of the miRNA. The MiRNAs
target specific genes, which in turn may be targeted by many different miRNAs, hence regulating
entire critical cellular expression networks (Figure 1).

It has been estimated that over 60% of human protein-coding genes are targets of miRNAs [29].
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Figure 1. Canonical microRNA biogenesis and RNA targeting. In vertebrates, RNA polymerase-II 
transcribes primary miRNA genes (pri-miRNAs), which contain a hairpin-loop along with 5′ and 3′ 
flanking regions. DGCR8 (DiGeorge critical region 8) and a Drosha molecule combine to form the 
microprocessor complex which binds with pri-miRNA and cleaves it at specific sites (red 
arrowheads). The resulting precursor miRNA (pre-miRNA) contains a phosphate on its 5′ end and a 
hydroxyl group on its 3′ end along with a 2 to 3 nucleotide over-hang. Subsequently, the nuclear 
chaperone Exportin 5 (EXP5) binds to pre-miRNA molecules and transports pre-miRNA molecules 
to the cytoplasm via transnuclear migration, where Dicer, another RNAse III enzyme, binds to pre-
miRNA molecules, cleaves them at specific regions, and releases a miRNA duplex intermediate. 
Argonaute 2 (AGO2) and other proteins assemble with miRNA molecules released from the miRNA 
duplex intermediate, together forming the RNA induced silencing complex (RISC). The 3′ or 5′ 
miRNA containing RISCs may bind to target regions and either result in translational repression, 

Figure 1. Canonical microRNA biogenesis and RNA targeting. In vertebrates, RNA polymerase-II
transcribes primary miRNA genes (pri-miRNAs), which contain a hairpin-loop along with 5′ and 3′

flanking regions. DGCR8 (DiGeorge critical region 8) and a Drosha molecule combine to form the
microprocessor complex which binds with pri-miRNA and cleaves it at specific sites (red arrowheads).
The resulting precursor miRNA (pre-miRNA) contains a phosphate on its 5′ end and a hydroxyl group
on its 3′ end along with a 2 to 3 nucleotide over-hang. Subsequently, the nuclear chaperone Exportin
5 (EXP5) binds to pre-miRNA molecules and transports pre-miRNA molecules to the cytoplasm via
transnuclear migration, where Dicer, another RNAse III enzyme, binds to pre-miRNA molecules,
cleaves them at specific regions, and releases a miRNA duplex intermediate. Argonaute 2 (AGO2)
and other proteins assemble with miRNA molecules released from the miRNA duplex intermediate,
together forming the RNA induced silencing complex (RISC). The 3′ or 5′ miRNA containing RISCs
may bind to target regions and either result in translational repression, mRNA degradation, or in some
cases translational activation. Inset shows a crystal structure of human Argonaute 2 bound to a guide
and target RNA [30].

To date, the human genome contains 1917 annotated hairpin precursors, and 2654 mature sequences
which are annotated in the Wellcome Trust Sanger Institute miRNA database [31] (http://www.mirbase.
org/cgi-bin/mirna_summary.pl?org=hsa). miRNAs play a fundamental role in regulation of gene
expression in key biological events such as cell proliferation, differentiation, death, and malignant
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transformation [13,32–35]. Consequently, impairment of miRNA expression is the underlying cause
of many diseases. The miRNAs are mostly intracellular, but they are also found circulating in the
body fluids, such as plasma or urine. They are extremely stable in human fluids, and therefore
are well suited as clinical biomarkers [36]. They are protected from nucleases either by forming
ribonucleoprotein particles (RNPs) with RNA-interacting proteins such as the RISC protein Ago2 or
enclosed in extracellular vehicles (EVs) such as exosomes, present in and released by the majority of
cell types [37]. The exosome-mediated transfer of mRNAs and miRNAs is a mechanism of cellular
communication and genetic exchange among cells. The biogenesis, mode of action and suitability
of circulating miRNAs as biomarkers for several diseases, is a hot research topic in biomedicine.
Numerous studies suggest that miRNAs have an active role in pancreas organogenesis and in islet
function [38–42]. An important study regarding miRNAs and their role in islet development is a
report on the deletion of Dicer1 in pancreatic progenitors. Dicer1 is an enzyme involved in miRNA
maturation, and its loss results in a marked reduction of endocrine cells [40]. Likewise, deletion
of Dicer1 in embryonic beta cells results in fewer beta cells, and impaired glucose tolerance [43,44].
There is evidence that miRNAs are involved in the pathogenesis of diabetes. Comprehensive reviews
describing miRNAs in the context of T1D, T2D, and other diabetes models have recently become
available. Furthermore, the role of miRNAs in tissues targeted by insulin, and in healthy or stressed
islets, have been reported [45–48]. We have previously identified a subset of miRNAs differentially
expressed in developing human islets, in human developing pancreas, and in alpha and beta cells of
adult human islets [49–52]. These observations set the stage for studies to specifically assess the role
of miRNAs and their target molecules in endocrine differentiation. In fact, many studies, including
ours, identified individual miRNAs enriching endocrine tissue such as, miR-375 and miR-7, with
the role in beta cell differentiation and function [53–57]. The same miRNAs have an important role
in in vitro human stem cell differentiation into beta cells [58–61]. On the basis of the information
presented above, it can be implied that oxidative stress affecting deregulation of miRNA networks,
which is important for acquisition and maintenance of beta cell identity or proper cellular function and
metabolism, contributes to the development of diabetes [62].

3. Overview of Oxidative Stress in Glucose Metabolism

The term oxidative stress refers to an imbalance between cellular oxidants and antioxidants [63,64].
Oxidative stress can be classified into the following two major groups: Endogenous (mitochondrial,
peroxisomes, lipoxygenases, NADPH oxidase (NOX), and cytochrome P450) and exogenous (UV
and ionizing radiation, chemotherapeutics, inflammatory cytokines, and environmental toxins).
Oxidative stress is an accumulation of reactive oxygen species (ROS) above physiological levels, where
ROS molecules oxidize cellular components stochastically, leading to progressive cellular damage.
Under physiological conditions, the utmost ROS generation occurs in mitochondria, accounting for the
transformation of 1% to 2% of oxygen molecules into superoxide anions [65]. Adenosine 5′-triphosphate
(ATP) molecules are the major cellular energy currency. Generation of ATP in mitochondria, results
in the production of ROS which occurs on two occasions with electron transport chain, at complex-I
(NADH dehydrogenase) and at complex-III (ubiquinone-cytochrome c reductase). ATPs are first
generated in the breakdown of glucose molecules during glycolysis. Glycolysis of one glucose molecule
yields two pyruvate molecules with a net gain of only two ATP molecules. The greatest contributor to
ATP production is the subsequent metabolism of pyruvate in the mitochondria through the tricarboxylic
acid cycle, followed by oxidation of its energy mediators, NADH and FADH2, in the electron transport
chain. In this process, known as oxidative phosphorylation, electrons are transferred from electron
donors to electron acceptors via redox reactions. Oxidative phosphorylation, hypothetically, generates
a maximum of 36 ATP molecules per glucose molecule. Oxygen is the final electron acceptor, generating
H2O. Incomplete transfer of electrons to oxygen results in the production of reactive oxygen species
(ROS) such as superoxide or peroxide anions. Superoxide is rapidly converted [66] into peroxide
(H2O2) by the enzyme superoxide dismutase (SOD). Hydrogen peroxide, in turn, is either neutralized
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to H2O and O2 by glutathione peroxidase (Gpx, in the mitochondria), or detoxified by catalase in
peroxisomes. Increased levels of Cu (copper) and Fe (iron) and significantly decreased levels of Zn
(zinc) in the serum of T2D patients and their first degree relatives (FDR) could be either triggering
factors for the development of diabetes or a consequence of the illness [67]. H2O2 can be converted into
highly reactive radical hydroxyl (HO·), the neutral form of the hydroxide ion, via the Fenton reaction.
Hydroxyl radicals target the DNA base deoxyguanosine with great efficiency [65,68].

A discrete amount of ROS is necessary for efficient cellular physiological function. For example,
ROS are one of the metabolic signals for insulin secretion [69] and play an essential role as promoter of
natural defenses [70,71]. If the production of ROS during mitochondrial oxidative phosphorylation is not
well balanced by antioxidative activity, ROS become toxic [66]. Even though oxidative phosphorylation
is a significant contributor to the formation of ROS, recent studies have identified other cellular sources
of ROS, such as peroxisomes, endoplasmic reticulum, and plasma membrane, which could contribute to
tissue oxidative damage [72]. ROS are free radicals and, because they have unpaired valence electrons,
they are extremely reactive with many electron donor molecules such as membrane lipids, proteins,
and DNA, leading to potential toxicity. Overproduction of ROS causes oxidative stress associated with
numerous diseases and aging.

The interaction of ROS with the cell membrane’s polyunsaturated fatty acids generates a lipid
peroxidation chain reaction with the production of toxic and highly reactive aldehyde metabolites
such as malondialdehyde (MDA) [73,74]. MDA causes a reduction of cell membrane fluidity and
function [75]. ROS cause oxidative damage of proteins by direct interaction either on amino acid
residues or cofactors or by indirect oxidation via lipid peroxidation end products [76,77]. Likewise, ROS
target pyrimidine and purine bases, as well as the deoxyribose moiety of genomic and mitochondrial
DNA, causing cellular damage such as strand breakage, nucleotide removal, and DNA-protein
binding. Extensive damage that cannot be corrected by cellular DNA repair could result in permanent
impairment followed by apoptosis [78].

As far as islet beta cells are concerned, they are highly susceptible to ROS-mediated damage
because of insufficient amounts of antioxidative compounds such as glutathione, and the naturally low
expression of antioxidative enzymes such as the mitochondrial SOD (Mn-SOD), cytoplasmic Cu/Zn
SOD, glutathione peroxidase (GPx), and catalase [79]. Several examples also illustrate the critical role
of antioxidative defenses in the vascular system in diabetes. For example, cardiomyocytes in diabetes
overexpress SOD or catalase, protecting cardiac mitochondria from extensive oxidative damage. SOD
also prevents morphological abnormalities in diabetic hearts, correcting the aberrant contractility [80,81].
Two emerging crucial regulators of antioxidative stress responses are the uncoupling protein 2 (UCP2)
and the transcription factor NRF2 (NFE2L2). UCP2, originally thought to function in adaptive
thermogenesis similar to UCP1, is now considered to be primarily a regulator of ROS generation in
mitochondria. UCP2 is a proton channel protein localized on the inner mitochondrial membrane that
reduces the electrochemical gradient on both sides of the membrane, decreases ROS production, and
protects against oxidative damage in mitochondria [82]. UCP2 has a critical role in the regulation
of glucose homeostasis and in oxidative stress-mediated vascular diseases [83,84]. As for NRF2, it
controls the transcription of key components of many antioxidative responses by binding to antioxidant
response (ARE) elements in the promoter regions of target genes such as members of the glutathione
and thioredoxin antioxidant systems and NAPDH (nicotinamide adenine dinucleotide phosphate)
regeneration [85]. NRF2-mediated antioxidative responses are dysfunctional in diabetes [86] and
dysregulation of the NRF2 redox pathway affects healing of diabetic wounds [87].

4. Oxidative Stress Generated by T Cell-Mediated Recognition of Beta Cells

T1D is an autoimmune disease characterized by T cell-mediated recognition and destruction of
insulin-producing beta cells [88]. The beta cells are destroyed during the inflammatory phase known
as insulitis. Insulitis is a significant component of T1D pathology and is characterized by infiltration of
islets by immune and inflammatory cells. The leucocytic infiltration in insulitis is relatively subtle
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and transient, and therefore is detected mostly in cases with recent onset of the disease (less than
one year [89]. There is limited knowledge about autoreactive T cells and autoantigens involved in
the development of T1D. A primary autoantigen that activates autoreactive T cells is insulin [90].
Current views on T1D onset suggest that autoimmune destruction by insulitis is secondary to primary
invasion of macrophages and dendritic cells activated by intercellular ROS from resident pancreatic
phagocytes. Stimulated macrophages and dendritic cells will induce inflammatory genes and carry
beta cell antigens specifically to lymph nodes, where T cells are activated. The activated T cells will
specifically destroy beta cells through proinflammatory cytokine insults and more intracellular ROS
formation [91]. So far, there is no cure for autoimmune T1D. Treatment is mostly focused on intensive
insulin therapy aiming at tight glycemic control, which can significantly reduce debilitating long-term
complications. There is a genetic predisposition for T1D. The strongest associations point at HLA class
II, specifically haplotypes DRB1and DQB1 [92]. Although the autoreactive antigens and self-reactive T
cells involved in autoimmune attack in T1D are well documented, the mechanism is not yet completely
understood, however, the contribution of ROS and proinflammatory cytokines in beta cell death is
fully substantiated [93]. The immune-mediated recognition of beta cells by autoreactive T cells and
cytotoxic CD8T cells generates ROS and proinflammatory cytokines, inducing beta cell destruction and
enhancing the effector response of islet-specific self-reactive CD4 T cells and cytotoxic CD8 T cells [94].
The proinflammatory milieu includes cytokines such as INFg, TNFa, IL-6, IL-12p70 and IL-1b, and
ROS [95]. The destructive effect of ROS is amplified by the generation of reactive nitrogen species
(RNS), which are extremely toxic free radicals such as free radical nitric oxide (NO) produced by IL-1b
in beta cells. The IL-1b activates the enzyme nitric oxide synthase (iNOS), catalyzing production of
nitric oxide and ultimately the superoxide ROS [96],. NO interacts with superoxide to generate the
highly destructive molecule peroxynitrite. Both NO derived RNS and ROS cause beta cell damage
using different pathways [97]. It is important to emphasize that an unbalanced ratio of oxidative to
antioxidative events is what causes free radical toxicity. This has been illustrated by a recent study
showing the dual role, protective or toxic, of NO in beta cells [98]. As stated above, insulitis and
beta cell destruction are the crucial components of T1D pathology, but these are observed only in a
limited proportion of islets at any given time, even at the time of diagnosis. Other factors, such as
intercellular oxidative stress, precede insulitis [99]. This raises the possibility that in addition to the
immune-mediated damaging effect of insulitis, a high level of dysfunction of beta cell contributes
to T1D pathology as well. Interestingly, the lipid peroxidation, and oxidative stress detected by the
presence of malondialdehyde in plasma of nondiabetic first degree relatives of the patients with
T1D [100] supports the observation that oxidative stress can be clinically detected before the onset
of diabetes.

5. Oxidative Stress and Metabolic Syndrome and Insulin Resistance in T2 Diabetes

T2D is currently considered a metabolic and inflammatory disease closely associated with
metabolic syndrome, a group of conditions such as high blood pressure, glucose intolerance, insulin
resistance, obesity, and dyslipidemia [101]. In many cases, a pre-T2D condition known as pre-diabetes
is the prelude to the development of the disease. Pre-diabetes is characterized by impaired glucose
tolerance and a state of mild hyperglycemia, not high enough to be diagnosed as diabetes, but leading to
glucose intolerance. In addition, the main features of pre-diabetes are metabolic abnormalities similar
to T2D, with essential roles of proinflammatory cytokines and free fatty acids (FFA), which are elevated
in obesity and T2D as well. These factors initiate oxidative stress-mediated pathways, eventually
resulting in beta cell dysfunction, impaired insulin secretion, and insulin resistance of peripheral tissue.
Many studies indicate that oxidative stress originates before hyperglycemia, which in turn significantly
contributes to the later complications of T2D (similar to those of T1D), such as vascular damage,
retinopathy, nephropathy, and neuropathy [102]. In vitro and in vivo studies have indicated that the
major oxidative stress-mediated pathways activated by hyperglycemia and ROS are JNK/SAPK, p38
MAPK, NF-kB, and the hexosamine biosynthetic pathway [103]. The first two, JNK/SAPK and p38
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MAPK, contribute to the development of insulin resistance via direct and indirect phosphorylation of
serine and threonine residues of insulin receptors [104,105]. Numerous studies link transcription factor
NF-kB with regulation of gene-associated complications of diabetes [106]. In addition, hyperglycemia
and oxidative stress mediate their actions through other signaling pathways such as advanced glycation
end products (AGEs). AGEs refer to a group of heterogeneous compounds formed by the Maillard
reaction process that involves the non-enzymatic glycation of proteins, lipids, and nucleic acids by
reducing sugars and aldehydes. AGEs function through the multiligand immunoglobulin superfamily
receptor for advanced glycation end products (RAGEs). The AGE compounds directly affect proteins
of the mitochondrial respiratory chain to generate reactive oxygen species (ROS) [107]. AGE and
RAGE are involved in diabetes vascular pathologies as well [108]. They also activate production of the
second messenger signaling lipid diacylglycerol leading to activation of several isoforms of the protein
kinase C (PKC). Isoforms of PKC are implicated in generating insulin resistance [109–111]. Last, but
not least, AGE increases utilization of the polyol pathway that will decrease the cofactor NAPDH, and
therefore directly affects the production of antioxidative glutathione [112,113]. As described above,
multiple signaling pathways contribute to oxidative stress-mediated damage leading to T2D. Therefore,
dysregulation of miRNAs controlling these pathways can certainly contribute to development and
persistence of diabetes.

6. MicroRNAs in Diabetic Oxidative Stress

We reviewed research articles in PubMed, primarily focusing on studies describing changes in the
expression of miRNAs due to oxidative stress in the context of diabetes and their target components
controlling mechanism of oxidative stress homeostasis.

This review does not include studies dealing with miRNAs induced by proinflammatory cytokines
generated by T1D autoimmune attack on beta cells. Thorough reviews have been written on this
topic [46,114–116]. Table 1 lists the miRNAs reported as having an effect on oxidative stress in diabetes,
the source of oxidative stress and the observed effect, target tissue or organ, and target genes. A few
miRNAs, with known target tissue but unknown gene targets are included as well. Ten miRNAs
identified in Table 1, overlap with a previous in silico analysis of miRNAs in human cells regulated
in vitro by oxidative stress [117]. These are let-7f, miR-9, miR-16, miR-21, miR-22, miR-29b, miR-99a,
miR-141, miR-144, and miR-200c. In order to make this overview of miRNAs and their targets in
oxidative stress and diabetes easy to follow, we organized the miRNAs by their function in the affected
tissues and organs.

Table 1. Selected PubMed articles describing miRNAs in diabetic oxidative stress.

Source of Oxidative
Stress

Differentially Expressed
miRNAs Target Tissue/Organ Target Gene Reference

T2D miR-203↓ Cardiac tissue PIK3CA [118]

T2D miR-30e-5p↓ Kidney and vasculature UCP2, MUC17,
UBE2I [119]

Diabetic retinopathy,
hyperglycemia miR-455-5p↓ Retinal epithelial cells SOCS3 [120]

Diabetic nephropathy,
hyperglycemia miR-214↓ Kidney tissue - [121]

Insulin synthesis miR-15a↑ Beta cells UCP2 [122]
Kidney fibrosis miR-30e↓ Tubular epithelial cells UCP2 [123]

DCM miR-30c↓ Cardiac tissue PGC-1β [124]
T2D miR-233↓ Hepatic tissue KEAP1 [125]

T1D, Diabetic nephropathy miR-146a↓ Neural tissue, kidney
tissue - [126,127]

DCM miR-503↑ Cardiac tissue NRF2 [128,129]
Diabetic Retinopathy miR-365↓ Retinal tissue TIMP3 [130]
Gestational Diabetes miR-129-2↑ Murine neural tube PGC-1α [131]

Hyperglycemia miR-106b↑ Pancreatic islets SIRT1 [132]
Diabetic nephropathy miR-106a↓ Murine neural tissue ALOX15 [133]
Diabetic retinopathy miR-7-5p↑ Retinal tissue EPAC1 [134]

Diabetic neurotoxicity miR-302↓ Neural tissue PTEN [135]
T2D miR-17↓ Skeletal muscle GLUT4 [136]
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Table 1. Cont.

Source of Oxidative
Stress

Differentially Expressed
miRNAs Target Tissue/Organ Target Gene Reference

Diabetic retinopathy,
hyperglycemia miR-145↓ Retinal epithelial cells TLR4 [137]

Diabetic nephropathy,
hyperglycemia miR-25↓ Neural tissue, kidney

tissue PTEN, CDC42 [138–140]

TXNIP overexpression miR-200b↑ Beta cells ZEB1 [141]
Diabetic mice miR-200c↑ Vasculature ZEB1 [142]
Diabetic Mice miR-200a/b↓ Vasculature OGT [143]

DCM miR-92a↑ Vasculature HMOX1 [144,145]
T2D miR-200b/c↑ and miR-429↑ Vasculature ZEB1 [146]

T2D, T1D miR-200c↑ Murine arteries SIRT1, FOXO1,
eNOS [147]

Long-term diabetes miR-126↑ Vasculature, skeletal
muscles SIRT1, SOD [148]

T2D miR-133a↓ Murine gastric smooth
muscle cells RhoA/Rho kinase [149]

Hyperglycemia, T2D, T1D miR-21↑ Vasculature, β-cells,
Cardiac tissue

KIRT1, FOXO1,
NRF2, SOD2,

PPARA
[150–152]

T1D model miR-200b↑ Murine retinal cells OXR1 [153]
T2D miR-15a↑ Plasma AKT3 [154]

Diabetic embryopathy miR-27a↑ Murine embryos, kidney
tissue NRF2 [129,155]

STZ-diabetic mice miR-34a↑ β-cells, vasculature SIRT1 [156]
Endothelial cells, vascular

stress miR-204↑ Vascular wall
/endothelium in vivo SIRT1 [157]

Cardiomyocytes apoptosis miR-675↓ Vasculature VDAC1 [158]
T1D, Diabetic retinopathy miR-195↑ Cardiac tissue, β-cells CASP3, MFN2 [159,160]

Gestational diabetes,
hyperglycemia miR-322↓ Murine Embryos,

Neurons TRAF3 [161]

T2D miR-126↓ Vasculature VEGFR2 [162]

T2D miR-27b↓ Vasculature, wounds SHC1, SEMA6A,
TSP-1, TSP-2 [163]

Hyperglycemia, Polyol
pathway miR-200a-3p↑, miR-141-3p↑ Kidney tissue KEAP1, TGFβ1/2 [164]

STZ mice miR-1↓, miR-499↓,
miR-133a/b↓ and miR-21↑ Cardiac tissue ASPH [165]

Persistent UPR IRE1α
deficiency miR-200↑, miR-466h-5p↑ Vasculature, wounds ANGPT1 [166]

T2D, DCM miR-9-5p↑ Retinal tissue ELAVL1 [167]
T2D miR-99a↑ Vasculature IGF1R, MTOR [168]

Hyperlipidemia miR-155-5p↑ β-cells MAFB [169]
T1D NOD islets miR-29c↑ β-cells MCL1 [170]

T2D, glucose and lipid
oxidation miR-29↑ Skeletal muscle - [171]

Diabetic nephropathy miR-29↑ Regulation of
inflammatory cytokines TTP [172]

Diabetic heart T2D miR-29↑ Cardio-metabolic
disorders Lypla 1 [173]

Gestational diabetes Circular RNAs: circ-5824↓,
circ-3636↓, circ-0395↓ Human placenta

(In silico analysis)
AGE- and

RAGE-related
genes

[174]

6.1. Vascular Endothelial Cells, Diabetic Cardiomyopathy, and Muscle

MiR-21 is a miRNA related to diabetes. The expression of miR-21 is increased in the plasma of
patients with impaired glucose tolerance and with T2D [150]. It has been proposed that circulating
extracellular vesicles carrying miR-21 could be used as a marker of developing type 1 diabetes [175].
It has been found that miR-21 increases susceptibility to oxidative stress induced by fluctuating
glucose levels in primary pooled human umbilical vein endothelial cells (HUVECs), by targeting
genes regulating homeostasis of intracellular ROS, such as KRIT1, NRF2, and SOD2 [151]. A reduced
expression of miR-21 protects against cardiac remodeling in diabetic cardiomyopathy (DCM). An in vivo
experiment in mice confirmed, that suppression of miR-21 stimulates the nuclear hormone receptor
PPAR (peroxisome proliferator activated receptor), known to regulate homeostasis in response to
glucose and lipid levels. The PPAR initiates nuclear translocation of NRF2, and thus the antioxidative
response of NRF2 protects from DCM [152]. MiR-21 also regulates the signaling pathway of the
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intracellular AGE–RAGE interaction and targets TIMP3, an inhibitor of extracellular matrix degradation
in diabetic neuropathy [176].

Similarly, in a rat model of DCM, the expression of miR-503 is increased in myocardial cells and
has a deleterious role by targeting NRF2 and antioxidant response element (ARE) signaling pathway
as well [128]. The cluster of miR-200 is an important player in oxidative response in diabetes [177].
It is formed by the following five evolutionary conserved miRNAs: miR-200a, miR-200b, miR-200c,
miR-141, and miR-429. These miRNAs can be grouped according to their seed sequences into subgroup
I, miR-200a and miR-141 (AACACUG), and subgroup II composed of miR-200b, miR-200c, and
miR-429 (AAUACUG), suggesting that miRNAs in each subgroup will target different genes. Several
reports indicate that the miR-200 family has a role in the development of endothelial inflammation
present in diabetic vascular complications and cardiovascular diseases. In many instances, the action
of miR-200 is via targeting the (zinc finger E-box-binding homeobox) ZEB1. ZEB1 has a role in
epithelial–mesenchymal transition (EMT) [141] and is associated with the inhibition of apoptosis.
The thioredoxin-interacting protein, TXNIP, is induced in vivo by hyperglycemia and it inhibits the
antioxidative function of thioredoxin resulting in accumulation of reactive oxygen species, cellular
stress, and induction of the miR-200 family which induces apoptosis through inhibition of ZEB1.
Likewise, inhibition of miR-200c restores endothelial function in diabetic mice through upregulation of
ZEB1 [177], and in HUVEC under oxidative conditions miR-200 expression is increased which suppress
ZEB1 causing apoptosis. Overexpression of ZEB1 in the cells reversed the effect [178]. Downregulation
of ZEB1, by miR-200a/b/c and miR-429, contributes to activation of proinflammatory genes in vascular
smooth muscle cells of diabetic mice [146]. Furthermore, the miR-200 family negatively regulates beta
cell survival in type 2 diabetes in vivo. Overexpression of miR-200, in mice, causes beta cell death and
is sufficient to render T2D lethal [179].

In addition, the family of miRNA-200 has been reported to exhibit a protective effect in diabetic
oxidative stress by targeting high glucose-induced O-linked N-acetylglucosamine transferase (OGT),
whose enzymatic activity is associated with diabetic complications, and endothelial inflammation in
mice with diabetes. Experiments with human aortic endothelial cells (HAEC) confirmed miR-200
silencing OGT by direct binding to 3′UTR of mRNA [143].

Another important antioxidative gene that is regulated by the family of miR-200 is Sirtuin 1
(SIRT1) [177]. SIRT1 is NAD+-dependent deacetylase that controls histone chromatin proteins as well
as non-histone proteins, many of them are transcription factors such as fork-head box O1 (FOXO)1.
To date, seven sirtuins have been identified. They are associated with several cellular processes, such as
energy balance, stress resistance, and insulin resistance. Some are located in the cytoplasm and others
are located in the nucleus or mitochondria [180]. SIRT1, -2, -3, and -6 have a function in oxidative
stress. By targeting SIRT1, endothelial nitric oxide synthase (eNOS) and FOXO1 miR-200 impairs their
regulatory circuit and promotes ROS production and endothelial dysfunction [147]. It has been shown
that miR-200 targets these three genes in vitro in HUVEC cells. The in vitro results were validated in
three in vivo models of oxidative stress, human skin fibroblasts from old donors, femoral arteries from
old mice, and a murine model of hindlimb ischemia [147].

In endothelial cells, SIRT1 is targeted by other miRNAs, increasing diabetes-related oxidative
stress. Examples include the following: miR-34 induces endothelial inflammation by downregulating
SIRT1 [156] and targeting SIRT1; miR-204 promotes vascular endoplasmic reticulum (ER) stress,
inflammation, and dysfunction in mice; downregulation of miR-204 activates protection against ER
stress through an increase of SIRT1 expression [157]; miR-106b targets SIRT1 in mouse insulinoma
cell line NIT-1, rendering them vulnerable to hyperglycemia induced by 30mM glucose; and in vivo
suppression of miR-106b increases expression of SIRT1 and reduces cardiovascular damage in diabetic
mice [132].

Furthermore, it has been shown, in a mouse model of peripheral arterial disease, that the more
abundant circulating form of unacylated ghrelin (UnAG) exerts its protective effect from ROS imbalance
in endothelial cells via induction of miR-126, a known endothelial miRNA. By targeting vascular cell
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adhesion molecule 1 (VCAM1), miR-126 indirectly activates SIRT1 and SOD to induce resistance to
oxidative stress [148].

MiR-9 plays a positive role in oxidative stress-mediated cardiomyopathy in T2D. In vitro
experiments with immortalized cardiomyocyte culture and samples of failing heart tissue collected
at the time of transplantation confirmed that downregulation of miR-9 in human cardiomyocytes
results in higher expression of its target ELAV-like protein 1 (ELAVL1), a ubiquitously expressed RNA
binding protein that stabilizes inflammatory mRNAs by binding to ARE domains and thus leading
to cardiomyocyte death [167]. Another miRNA with a protective role in diabetic cardiomyopathy is
miR-30c. MiR-30c targets PGC-1β, one of important coactivators of PPAR alpha and mitochondrial key
regulator. Knockdown of PGC1 beta reduces excessive ROS and myocardial lipid accumulation which
decreases cardiac dysfunction in diabetes [124].

Numerous studies report miR-29 family participation in oxidative stress-mediated inflammatory
response in diabetes. The miR-29 family consists of three members divided into two clusters that are
transcribed polycistronically; the miR-29a/b-1 cluster is localized on human chromosome 7 and the
miR-29c/b-2 cluster on chromosome 1 [181]. The miR-29s are known to be regulated in multiple tissues.
Hyperinsulinemia dramatically reduces their expression, while hyperglycemia induces it. Experiments
with MIN6 insulinoma beta cell line determined that miR-29 targets a member of the BCL2 family, an
antiapoptotic protein, the MCL1 (myeloid cell leukemia 1) (MCL-1) gene. Interestingly, in humans,
repression of MCL1 is related to diabetes mellitus-associated cardiomyocyte disorganization [182].
Since circulating miR-29 has been reported in newly diagnosed T2D patients and, furthermore,
upregulation of miR-29 expression contributes to development of the first stage of type 1 diabetes
mellitus in the T1D model of NOD mice [170], there is the possibility that miR-29 regulates MCL1 at
different stages of the disease.

There are instances that indicate the miR-29 cluster family has a protective role against oxidative
stress conditions. Its elevated expression has been associated with a compensatory mechanism for
heart hypertrophy and fibrosis due to age increased oxidative stress, modulating targets such as
DNA methylases and collagens [183]. A protective role in endothelial dysfunction in cardiometabolic
disorders found in T2D has been reported. MiR-29 is upregulated in T2D arterioles to compensate
for endothelial dysfunction. Specifically, miR-29 targets Lypla 1 (lysophospholipase I), a gene that
negatively regulates production of NO, required for vasodilation. Lypla 1 depalmitoylates eNOS (nitric
oxide synthase), reducing NO in endothelial cells [173].

The expression of miR-29a and miR-29c in skeletal muscle of patients with type 2 diabetes are
upregulated which suppresses glucose and lipid metabolism possibly by targeting insulin receptor
substrate 1 (IRS1) and phosphoinositide 3 kinase (PI3K). Both genes are involved in glucose insulin
regulation, moreover they control lipid oxidation by targeting peroxisome activated receptor gamma
coactivator1alpha (PGC1alpha). In vivo overexpression of miR-29 in mouse tibias anterior muscle
resulted in a decrease of glucose uptake and glycogen content. MiR-29 acts as an important regulator
of insulin stimulated glucose metabolism [171].

6.2. Retina Cells

Oxidative stress and hypoxia cause retinopathy by induction of miR-7 that negatively regulates
the RAPGEF3/EPAC-1 (rap guanine nucleotide exchange factor 3). EPAC-1 is an accessory protein for
cAMP activation and stimulation for survival and growth in response to extracellular signals [134].
MiR-7-mediated decrease of EPAC1 expression results in endothelial hyperpermeability and loss of
(endothelial nitric oxide synthase) eNOS activity in murine experimental retinopathy. EPAC-1 is
associated with cAMP-induced vascular relaxation in endothelial cells via eNOS and amelioration of
endothelial hyperpermeability induced by inflammatory mediators [134]. Development of retinopathy
in T2D is associated with miR-15 as well. This miRNA is mostly found in the pancreas, where it plays
an important role in beta cell insulin secretion. Interestingly, miR-15 has been detected in the plasma of
T2D patients, where its amount corelated with the severity of the disease. Experiments with the rat
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beta cell line INS1 showed that the concentration of miR-15 in the cells increases when cultured in high
glucose media. Coculture of INS1 insulinoma cells with Muller cells (retinal glial cells) showed a clear
transfer of miR-15 into Muller cells, and the transfer was achieved by exosomes. The deleterious effect
of miR-15 in the retina is via targeting AKT3, an isoform of the AKT gene (serine/threonine kinase 1).
Loss of AKT3 in the tissue increases intracellular content of ROS, leading to cellular apoptosis. These
results also prove that under pathological conditions some miRNAs can travel from tissue to tissue
through exosome transfer [154]. Incidentally, persistent exposure to high glucose causes intracellular
accumulation of insulin in beta cells mediated by suppression of the UPC2 gene by miR-15a. High
glucose treatment for a short time induces miR-15a, while longer exposure suppresses the expression.
It has been found that inhibition of UPC2 by miR-15a increases O2 consumption beta cell function and
insulin synthesis [122].

Oxidative stress in retinal glial Muller cells induces upregulation of miR-365 causing damage
by targeting TIMP3, the protein that inhibits matrix metalloproteinases and has antioxidative
properties [130]. MiR-455-5p may have a positive role in diabetic retinopathy. Upregulation of
miR-455-5p attenuates high glucose-triggered oxidative stress injury by targeting SOCS3 (suppressor
of cytokine signaling 3) mRNA. SOCS3 downregulation decreases production of intracellular ROS,
malondialdehyde (MDA) content, and NADPH oxidase 4 expression, while enhancing superoxide
dismutase, catalase, and GPX activities [120].

6.3. Diabetic Wound

Moreover, the miR-200 family has an effect on the pathology of diabetic skin ulcers by targeting
the angiogenic factor angiopoietin 1 (ANGPT1), resulting in disrupted angiogenesis. In diabetic wound
healing, hyperglycemia-mediated oxidative stress produces an unmodulated, persistent unfolded
protein response (UPR), generating deficiency in inositol-requiring enzyme 1 (IRE1α), a primary
UPR transducer that modulates expression of mRNAs and miRNAs. This deficiency leads to the
upregulation of the miR-200 family and miR-466, both targeting ANGPT1. Angiogenesis may be
rescued by upregulation of IRE-1a, which attenuates maturation of both miRNAs [166].

6.4. Kidney Tissues and Functions

Another miRNA that interferes with ROS homeostasis in diabetes via targeting NRF2 is miR-27a.
The adipokine omentin 1 restores renal function of type 2 diabetic db/db mice through suppression
of miR-27a, which upregulates NRF2 and decreases oxidative stress [155]. NRF2/KEAP1 is a master
antioxidant pathway regulating redox under nonstressed and stressed conditions. Under nonstressed
conditions, NRF2 is anchored by a repressor KEAP1 in cytoplasm. A stressed situation releases KEAP1
and the stabilized NRF2 relocates to nucleus, where it binds to the antioxidant response element (ARE)
activating transcription of antioxidant proteins [184]. In experiments with mice rendered diabetic
with streptozotocin, hyperglycemia activates the polyol pathway in renal mesangial cells. The polyol
pathway is involved in microvascular damage to retina in diabetes. On the one hand, activation of
the polyol pathway increases the activity of aldose reductase which in turn decreases expression of
miR-200a and miR-141. These miRNAs are regulators of KEAP-1. Their low expression enhances
suppressive activity of KEAP-1 on NRF2. The suppressed transcription factor, NRF2, cannot activate
transcription of antioxidant genes resulting in an increase of ROS and oxidative stress. On the other
hand, aldose reductase deficiency in the renal cortex upregulates miR-200 and miR-141, which releases
the KEAP-1 suppression of NRF2 and ameliorates the oxidative stress and downregulates TGF-beta,
preventing kidney fibrosis [164]. The NRF2/KEAP1 pathway is also regulated in other organs under
oxidative stress damage, such as in the pathological process of liver injury in T2DM. In this case,
miR-233 targets KEAP1 allowing the released NFR2 to migrate to the nucleus and activate synthesis of
antioxidative mRNAs and proteins such as SOD and HO-1 [125].

Endothelial dysfunction in cardiovascular disease is also affected by CKD (chronic kidney disease).
CKD is caused by the accumulation of uremic toxin which upregulates miR-92a. The miRNA can
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be detected in the patient’s serum, which could be useful for diagnostic purposes. Uremic toxins
generated oxidative stress results in downregulation of endothelial protective factors such as SIRT1 and
eNOS [144]. At this time, it is not known if this is through direct or indirect regulation. Additionally,
miR-92a is upregulated in diabetic aortic endothelium of C57BL-db/db mice and in renal arteries
from human diabetic subjects. MiR-92a downregulates expression of heme oxygenase 1 (HO-1),
an endothelial protective enzyme synthesized through NRF2 binding to the ARE sequence in the
nucleus. The resulting oxidative stress impairs endothelium dependent relaxation. The suppression
of miR-92 restores the endothelial function and the expression of HO-1 [145]. The expression of
miR-25 in diabetic mouse kidneys and in human peripheral blood of patients with diabetes is much
lower than in non-diabetic subjects. MiR-25 has a protective role in ROS-mediated diabetic kidney
disease, by direct regulation of the Ras-related gene CDC42. The CDC42 gene belongs to the family of
Rho small GTPases which are central regulators of actin reorganization and have a role in nephrotic
pathogenesis. An increase of miR-25 expression represses glomerular fibrosis [139]. Some of the
intracellular effects of ROS are mediated by regulation of the PTEN/PI3K/AKT pathway [185]. Blood
samples and kidney tissue from diabetic subjects show downregulation of miR-25. Gain and loss
of function performed with the human kidney cell line HK2 confirmed the crucial role of miR-25
protection against dysfunction and apoptosis of renal tubular epithelial cells. MiR-25 inhibits the
apoptotic effect of hyperglycemia-mediated ROS in renal tubular epithelial cells by targeting PTEN.
Knockout of PTEN activates the PI3K/AKT. PTEN is a dual protein and lipid phosphatase whose main
substrate is phosphatidyl-inositol,3,4,5 triphosphate (PIP3). PTEN catalysis dephosphorization of
PIP3 to PIP2 which represses the antiapoptotic signaling pathway of PI3k/AKT. Knockout of PTEN
by miR-25 activates the AKT pathway ameliorating ROS and apoptosis [140]. Some miRNAs exert
their antioxidative role by regulating the expression of UCP2 (uncoupling protein 2) which attenuates
ROS activity in mitochondria. In HK2 (kidney cortex and proximal tubule cell line), it has been shown
that miR-214 suppresses oxidative stress in diabetic nephropathy via the ROS/Akt/mTOR signaling
pathway and enhancing UCP2 expression [121]. On the other hand, an experiment in a diabetic mouse
model showed that miR-30e targets directly UCP2 in kidney cells, thus mediating the TGF-β1-induced
epithelial-mesenchymal transition and kidney fibrosis [123]. In diabetic nephropathy, miRNA-29c
contributes to the progression of the disease by regulating proinflammatory cytokines via targeting
tristetraprolin (TTP) mRNA [172]. Experiments were performed in kidney tissues from DN patients
and controls. TTP has anti-inflammatory effects by enhancing the decay of mRNAs bearing the
adenosine/uridine-rich element (ARE) present in the 3′UTR of cytokine transcripts such as Il-6 and
TNF alpha. Additional experiments with cultured podocytes confirmed the findings. Finally, miR-21,
a diabetes-related miRNA, described above, has a role in diabetic nephropathy by regulating TIMP3,
an inhibitor of extracellular matrix degradation [176], involved in mesangial expansion characteristic
of diabetic nephropathy.

6.5. Diabetic Neuropathy

In the case of diabetic peripheral neuropathy, PKC activity is linked to a protective role of miR-25.
MiR-25 downregulates production of AGE and RAGE, reduces activation of PKC, and reduces NAPDH
oxidase activity probably via regulation of NOX4, an isoform of the NOX family. NOX4 protects
vasculature against inflammatory stress. Experiments to clarify the protective role of miR-25 in diabetic
neuropathy were done with sciatic nerve from db/db diabetic mouse model and BALB/c healthy
counterparts. The conclusions were confirmed with cultured Schwann cells [138]. Modulation of
the PTEN/AKT pathway is also critical to attenuate the oxidative stress mediated by extracellular
amyloid-β (Aβ) peptides in diabetic neurotoxicity. Activation of the AKT pathway through direct
targeting of PTEN by miR-302 attenuates amyloid beta induced toxicity in neurons and activated AKT
signaling, which subsequently stabilizes NRF2 and synthesis of cytoprotective protein HO-1 [135].

Finally, as stated above, we have not included in this review the miRNAs involved in the oxidative
stress caused by the effect of proinflammatory cytokines in beta cells. However, beta cells are also the
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target of other oxidative sources such as oxidized LDL (low density of lipoproteins). Oxidative stress
induced the generation of oxidized LDL in hyperlipidemia conditions. Oxidized LDL enhances the
activity of LPS (lysophosphatidylcholine) increasing the expression of miR-155-5p in murine pancreatic
beta cells. MiR-155 targets MAFB (v-maf musculoaponeurotic fibrosarcoma oncogene family, protein
B), enhancing the transcription of IL-6 that stimulates the production of GLP-1 in alpha cells, which
suppresses glucagon secretion from alpha cells and stimulates insulin secretion from beta cells in a
glucose-dependent manner. Through this mechanism, miR-155-5p improves the adaptation of beta
cells to insulin resistance and protection of islets from stress [169].

6.6. Gestational Diabetes

As discussed previously, the miR-29 family is regulated in multiple tissues. Although in most
cases it has a deleterious and proinflammatory effect, in some organs the effect of miR-29 alleviates
symptoms. In rats, miR-29b has a positive effect on gestational diabetes mellitus by targeting PI3K/Akt
signal. Administration of miR-29 mimics reduced markers indicating oxidative stress, increased super
oxide dismutase (SOD), catalase [165], and decreased malondialdehyde (MDA) in liver tissues of
GDM rats [186]. Maternal diabetes and hyperglycemia dysregulate mitochondrial function through
activation of protein kinase C (PKC) isoforms that have a role in the diabetic embryopathy. One of
the isoforms of PKCα upregulates expression of miR-129-2, which targets the PGC-1α, the ligand of
PPAR alpha (peroxisome proliferator activated receptor alpha). PGC1 alpha is a positive regulator of
mitochondrial function and its downregulation by miR-129-2 mediates teratogenicity of hyperglycemia
leading to NTDs (Neural tube defects in embryos) [131]. On the other hand, in the case of oxidative
stress induced in embryo by maternal diabetes, inhibition of miR-27a increases NRF2 expression, which
restores the homeostasis [129].

More recently, specific circular RNAs (circRNAs) interacting with miRNAs were identified
in placentas from women with gestation diabetes mellitus that may regulate the AGE–RAGE
interaction [174]. The circRNAs have their 5′ end and 3′ end covalently bond and are generated by a
process known as back splicing, in which an upstream splice acceptor is joined to a downstream splice
donor. They are expressed in various types of cells and tissues and, although little is known about
their biological role, some act as gene regulators. In particular, several circRNAs have been described
as acting as miRNA silencers or “sponges” by containing miRNA target sequences, in different type
of cells including beta cells [187,188]. The differentially expressed circRNAs have been analyzed by
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and circRNA–miRNA interaction,
according to the sponge molecular interaction. The KEGG analysis predicted that circRNAs are likely
to be involved in advanced glycation end products receptor for advanced glycation end products,
AGE-RAGE, signaling pathways in diabetic complications. The expression of three circRNAs, circ-5824,
circ-3636, and circ-0395, are downregulated in placentas of GDM. The circRNA–miRNA interaction
analysis showed that miR-1273g-3p activated by acute glucose fluctuation is also involved in the
progression of several complications caused by diabetes and it could be a potential gene of interest in
GDM [174].

Figure 2 shows a scheme depicting the group of selected miRNAs described above and in Table 1
with their role in regulation of oxidative stress in diabetes
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miR-15a), leading to loss of oxidative regulation and the initiation of oxidative stress. Cellular 
oxidative stress can lead to either dysglycemia or cellular senescence. Cellular senescence is mediated 
by the inhibition of zinc finger E-box binding homeobox 1 (ZEB1) by miR-200 family miRNAs. 
Dysglycemia develops when O-linked β-N-acetylglucosamine transferase (OGT) and NAD-
dependent deacetylase sirtuin-1 (SIRT1) are targeted by specific miRNAs. Oxidative stress driven 
dysglycemia rapidly initiates the expression of miRNA molecules which target suppressor of cytokine 
signaling 3 (SOCS3), exchange factor directly activated by cAMP 1 (EPAC1), and heme oxygenase 
(decycling) 1 (HMOX1), Peroxisome proliferator-activated receptor alpha (PPARA), mitochondrial 
uncoupling protein 2 (UCP2), and tristetraprolin (TTP), leading to decreased expression of these genes 
and the advance of diabetes. Alternatively, recovery can occur by miRNA directed targeting of genes 
involved in dysglycemia, they include: Cell division control protein 42 homolog (CDC42), V-maf 
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Figure 2. Dysregulated oxidative stress and microRNAs result in loss of glucose homeostasis. This figure
outlines the effect of aberrant accumulation of cellular reactive oxygen species (ROS) and reactive
nitrogen species (RNS). Cellular oxidative status is maintained by SOD2, NRF2, and UCP2, which allows
for a spectrum of physiological functions carried out by the cell. Excessive ROS and RNS generation
led to dysglycemia or cellular senescence. The miRNA molecules can target NRF2 (miRNA-21,
miRNA-27a, miRNA-503, miRNA-233), SOD2 (miRNA-21), and UCP2 (miR-30e and miR-15a), leading
to loss of oxidative regulation and the initiation of oxidative stress. Cellular oxidative stress can lead
to either dysglycemia or cellular senescence. Cellular senescence is mediated by the inhibition of
zinc finger E-box binding homeobox 1 (ZEB1) by miR-200 family miRNAs. Dysglycemia develops
when O-linked β-N-acetylglucosamine transferase (OGT) and NAD-dependent deacetylase sirtuin-1
(SIRT1) are targeted by specific miRNAs. Oxidative stress driven dysglycemia rapidly initiates the
expression of miRNA molecules which target suppressor of cytokine signaling 3 (SOCS3), exchange
factor directly activated by cAMP 1 (EPAC1), and heme oxygenase (decycling) 1 (HMOX1), Peroxisome
proliferator-activated receptor alpha (PPARA), mitochondrial uncoupling protein 2 (UCP2), and
tristetraprolin (TTP), leading to decreased expression of these genes and the advance of diabetes.
Alternatively, recovery can occur by miRNA directed targeting of genes involved in dysglycemia, they
include: Cell division control protein 42 homolog (CDC42), V-maf musculoaponeurotic fibrosarcoma
oncogene homolog B (MAFB), protein kinase B and mammalian target of rapamycin (AKT/mTOR),
acyl-protein thioesterase 1 (LYPLA1) and phosphatase and tensin homolog (PTEN). Recovery of glucose
homeostasis results in oxidative normalization and cellular homeostasis. Different colors of miRNA
denote affected organ.

7. Conclusions

In diabetes, hyperglycemia induces intense oxidative stress that can no longer be modulated
by the cellular antioxidative response, thus leading to accumulation of ROS. Overall, this process
causes pancreatic beta cell dysfunction and unpaired glucose tolerance response, both of which have
a deleterious effect on many types of cells and tissues. miRNAs have a critical role in the molecular
mechanism involved in this process. Many of the studies reviewed here were performed in in vitro
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with animal cell lines or primary cells, in animal models (some in combination with tissues), some in
silico, and a few cases in human tissues. It is expected that the development of new transgenic mice to
study the role of miRNAs in oxidative stress will be useful to confirm or even discover novel potential
targets and cellular pathways. However, the real challenge is the translation of all the in vitro, in silico,
and animal model discovery to human diabetes. Although animal models, especially rodents, have
been very useful for obtaining the basic information on the mechanism of several diseases, it is also true
that the translation to human disease is not always straightforward. Specifically, many strategies were
successful in treating autoimmune diabetes in rodent models, but none of them had been successful in
treating human T1D. Furthermore, human basic and clinical research should aim at developing new
strategies focusing on miRNAs and their target genes to cure diabetes and its complications. One of
the emerging strategies is the use of a combination of human primary cells derived from human stem
cell differentiation and organoid cultures plus genome editing alternatives to investigate the causes
and role of miRNAs in oxidative stress in diabetes, as well as to screen for potential drugs to treat or
alleviate its effects. However, it is important to remember that, currently, therapeutic approaches based
on manipulation of miRNA expression are more effective in vitro than in vivo because of difficulties
with specific delivery. As we have presented in this review, miRNAs are of variable nature, depending
very much on the external and internal triggers. Therefore, it is of utmost importance to determine
their specific targets and approach the treatment from that direction.
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