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Abstract: In our previous study, Deferoxamine (DFO) increased the iron concentration by upregulating
the expression levels of TfR1 and DMT1 and exacerbated the migration of triple-negative breast
cancer cells. However, the mechanisms of iron distribution and utilization in triple-negative breast
cancer cells with a DFO-induced iron deficiency are still unclear. In this study, triple-negative
MDA-MB-231 and estrogen receptor (ER)-positive MCF-7 breast cancer cells were used to investigate
the mechanisms of iron distribution and utilization with a DFO-induced iron deficiency. We found that
the mitochondrial iron concentration was elevated in MDA-MB-231 cells, while it was decreased in
MCF-7 cells after DFO treatment. The cellular and mitochondrial reactive oxygen species (ROS) levels
increased in both breast cancer cell types under DFO-induced iron-deficient conditions. However,
the increased ROS levels had different effects on the different breast cancer cell types: Cell viability
was inhibited and apoptosis was enhanced in MCF-7 cells, but cell viability was maintained and cell
migration was promoted in MDA-MB-231 cells through the ROS/NF-κB and ROS/TGF-β signaling
pathways. Collectively, this study suggests that under DFO-induced iron-deficient conditions, the
increased mitochondrial iron levels in triple-negative MDA-MB-231 breast cancer cells would generate
large amounts of ROS to activate the NF-κB and TGF-β signaling pathways to promote cell migration.
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1. Introduction

Among cancers affecting females, breast cancer has the highest incidence and a high mortality
rate [1,2]. Metastasis is the principal cause of breast cancer-related death [3]. Abnormal iron metabolism
may contribute to tumor initiation, growth, and metastasis [4–6]. Iron concentrations in tumor tissues
and sera from breast cancer patients are much higher than those from healthy people [7–9]. The
perturbation in the levels of ferritin, which is an intracellular source of iron, is associated with the
progression of breast cancer toward a more malignant phenotype [10]. The decreased expression of
the cellular iron exporter ferroportin and the increased expression of the iron importers transferrin
receptor (TfR) and lipocalin 2 are associated with poor prognosis in breast cancer [11–13]. Therefore,
iron depletion, through a combination of reduced iron uptake and increased iron export, will become a
viable method of cancer therapy.
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Iron chelators, originally designed to treat iron overload, can be used to prevent tumor progression
in patients [14–16]. Deferoxamine (DFO) is the first iron chelator to be used as an anticancer drug [15].
Numerous studies have shown its antiproliferative activity against various tumor types [15,17–19].
Conversely, some studies have shown that DFO promotes the invasion and migration of some
aggressive cancer cells, such as colorectal cancer cells, glioblastoma cells, and triple-negative breast
cancer cells [20–22], and these results indicate that DFO has different effects on the different cell
phenotypes. We recently identified that DFO reduced the intracellular iron levels in estrogen receptor
(ER)α-positive breast cancer cells while enhancing the intracellular iron levels and cell migration in
triple-negative breast cancer cells [23]. Further study showed that DFO could increase the expression
of iron uptake-related proteins, such as TfR1 and DMT1, in triple-negative breast cancer cells; these
proteins were involved in increasing the intracellular iron uptake by activating the IL-6/PI3K/AKT
pathways [24]. However, under DFO-induced iron deficiency, the mechanism of iron distribution and
utilization in triple-negative breast cancer cells remains unclear.

In the present study, aggressive triple-negative breast cancer cells (MDA-MB-231 cells) and
non-aggressive ERα-positive breast cancer cells (MCF-7 cells) were used as cellular models. The
effects of DFO treatment on iron distribution and utilization in MDA-MB-231 and MCF-7 cells were
explored. Our study showed that DFO reduced mitochondrial iron accumulation in MCF-7 cells and
enhanced mitochondrial iron accumulation in MDA-MB-231 cells. The cellular and mitochondrial
reactive oxygen species (ROS) levels in MDA-MB-231 and MCF-7 cells increased after DFO treatment.
However, DFO-induced mitochondrial and cellular ROS inhibited the viability of MCF-7 cells but
promoted the migration of MDA-MB-231 cells through the TGF-β and NF-κB signaling pathways.

2. Results

2.1. DFO Regulated the Mitochondrial Iron Concentrations in MDA-MB-231 and MCF-7 Cells

Our previous study showed that DFO enhanced the intracellular iron levels in triple-negative
breast cancer cells, leading to cell migration [23]. However, the intracellular distribution of the increased
iron accumulation in triple-negative breast cancer cells after DFO treatment was unknown. In this
study, aggressive triple-negative breast cancer MDA-MB-231 cells and non-aggressive ERα-positive
breast cancer MCF-7 cells were used to determine the distribution of iron in breast cancer cells
after DFO treatment. The mitochondria and nuclei were isolated, and the iron concentrations in
the mitochondria, cytosol, and nucleus were measured by using inductively coupled plasma-mass
spectrometry (ICP-MS). Consistent with the results of previous studies [22], after cells were treated with
200 µM DFO for 24 h, the iron concentration in MDA-MB-231 cells was markedly increased, while the
iron concentration in MCF-7 cells was significantly decreased (Figure 1A). Interestingly, DFO treatment
elevated the mitochondrial iron concentration in MDA-MB-231 cells and lowered the mitochondrial
iron concentration in MCF-7 cells (Figure 1B). However, the iron concentrations in the cytosol and
nuclei of MDA-MB-231 and MCF-7 cells were not changed after DFO treatment compared with those
in the cytosol and nuclei of the control cells (Figure 1C,D). The results indicated that DFO caused the
opposite effect in regulating the mitochondrial iron concentrations in non-aggressive ERα-positive
MCF-7 cells and aggressive triple-negative MDA-MB-231 breast cancer cells. After DFO treatment,
the mitochondrial iron concentration in MCF-7 cells was depleted; conversely, the mitochondrial iron
concentration in MDA-MB-231 cells was increased. That is, the increased intracellular iron content in
aggressive triple-negative MDA-MB-231 breast cancer cells was mainly distributed in mitochondria
after DFO treatment.
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Figure 1. Deferoxamine (DFO) regulated intracellular iron distribution in MDA-MB-231 and MCF-7 
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concentrations in MDA-MB-231 cells and MCF-7 cells were measured by ICP-MS. Mitochondria and 

nuclear were isolated, and iron concentrations of (B) mitochondria, (C) cytosol, and (D) nuclear were 

measured by ICP-MS. Data were shown as mean ± SD. * versus the control group. n = 3, * p < 0.05, ** 

p < 0.01, *** p < 0.001. ICP-MS: Inductively coupled plasma mass spectroscopy. 
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into mitochondria, iron can be used for Fe-S cluster (ISC) and heme synthesis or can be stored in 

mitochondrial ferritin (MtFt), and the chelatable iron in mitochondria forms the mitochondrial labile 

iron pool [26]. Thus, mitochondrial iron metabolism in MDA-MB-231 and MCF-7 cells was studied 

after DFO treatment. After DFO treatment, the expressions of the Fe-S cluster scaffold protein (ISCU) 

and MtFt in the mitochondrial lysate were markedly increased in MDA-MB-231 cells, while they were 

significantly decreased in MCF-7 cells (Figure 2A). The levels of the mitochondrial labile iron pool 

were measured by using rhodamine B4-[(1,10-phenanthroline-5-yl) aminocarbonyl]benzyl ester 

(RPA). The fluorescence of RPA in the mitochondria diminished with labile iron accumulation [27]. 

The addition of DFO resulted in an increase in RPA fluorescence in MCF-7 cells but a reduction in 

RPA fluorescence in MDA-MB-231 cells, implying the accumulation of chelatable mitochondrial iron 

in MDA-MB-231 cells (Figure 2B). Similarly, the levels of heme were obviously increased in MDA-

MB-231 cells but decreased in MCF-7 cells after DFO treatment (Figure 2C). All of these data 

demonstrated that in MDA-MB-231 cells, mitochondrial iron metabolism, and accumulation were 

enhanced, but in MCF-7 cells, mitochondrial iron metabolism and accumulation were impaired after 

DFO treatment. 

Figure 1. Deferoxamine (DFO) regulated intracellular iron distribution in MDA-MB-231 and MCF-7
cells. MDA-MB-231 and MCF-7 cells were cultured with or without 200 µM DFO for 24h, and (A) iron
concentrations in MDA-MB-231 cells and MCF-7 cells were measured by ICP-MS. Mitochondria and
nuclear were isolated, and iron concentrations of (B) mitochondria, (C) cytosol, and (D) nuclear were
measured by ICP-MS. Data were shown as mean ± SD. * versus the control group. n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001. ICP-MS: Inductively coupled plasma mass spectroscopy.

2.2. The Changes in Mitochondrial Iron Metabolism in MDA-MB-231 and MCF-7 Cells after DFO Treatment

Mitochondria are the major hubs of iron utilization and accumulation [25]. After being imported
into mitochondria, iron can be used for Fe-S cluster (ISC) and heme synthesis or can be stored in
mitochondrial ferritin (MtFt), and the chelatable iron in mitochondria forms the mitochondrial labile
iron pool [26]. Thus, mitochondrial iron metabolism in MDA-MB-231 and MCF-7 cells was studied
after DFO treatment. After DFO treatment, the expressions of the Fe-S cluster scaffold protein (ISCU)
and MtFt in the mitochondrial lysate were markedly increased in MDA-MB-231 cells, while they were
significantly decreased in MCF-7 cells (Figure 2A). The levels of the mitochondrial labile iron pool were
measured by using rhodamine B4-[(1,10-phenanthroline-5-yl) aminocarbonyl]benzyl ester (RPA). The
fluorescence of RPA in the mitochondria diminished with labile iron accumulation [27]. The addition
of DFO resulted in an increase in RPA fluorescence in MCF-7 cells but a reduction in RPA fluorescence
in MDA-MB-231 cells, implying the accumulation of chelatable mitochondrial iron in MDA-MB-231
cells (Figure 2B). Similarly, the levels of heme were obviously increased in MDA-MB-231 cells but
decreased in MCF-7 cells after DFO treatment (Figure 2C). All of these data demonstrated that in
MDA-MB-231 cells, mitochondrial iron metabolism, and accumulation were enhanced, but in MCF-7
cells, mitochondrial iron metabolism and accumulation were impaired after DFO treatment.
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ISCU and MtFt in mitochondrial lysate were detected by western blotting. The results were 

summarized in the bar graph. (B) The level of chelatable mitochondrial iron was measured by RPA. 

(C) The level of heme was measured as described in Materials and Methods. Dashed lines indicate 

the boundary of one cell. * versus the control group. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001. RPA: 

Rhodamine B4-((1,10-phenanthroline-5-yl) aminocarbonyl) benzyl ester. 
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of mitochondrial chelatable iron catalyzes Fenton reactions, resulting in the production of ROS [28]. 

Moreover, as a hypoxia-mimetic agent, DFO induces ROS generation by simulating a hypoxic 
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accumulation in MDA-MB-231 and MCF-7 cells, cells were treated with carboxyl-2′,7′-

dichlorofluorescein diacetate (DCFH-DA) and MitoSOXTM Red (MitoSOX), respectively. The levels 

of cellular ROS can be determined by detecting the fluorescence of DCF, and MitoSOX can be used 
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Figure 2. DFO regulated mitochondrial iron metabolism in MDA-MB-231 and MCF-7 cells.
MDA-MB-231 and MCF-7 cells were treated with or without 200 µM DFO for 24 h. (A) The protein
levels of ISCU and MtFt in mitochondrial lysate were detected by western blotting. The results were
summarized in the bar graph. (B) The level of chelatable mitochondrial iron was measured by RPA.
(C) The level of heme was measured as described in Materials and Methods. Dashed lines indicate
the boundary of one cell. * versus the control group. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001. RPA:
Rhodamine B4-((1,10-phenanthroline-5-yl) aminocarbonyl) benzyl ester.

2.3. DFO Increased Cellular and Mitochondrial ROS in MDA-MB-231 and MCF-7 Cells

Mitochondria are the sites of oxygen consumption and electron transport, and the redox
activity of mitochondrial chelatable iron catalyzes Fenton reactions, resulting in the production
of ROS [28]. Moreover, as a hypoxia-mimetic agent, DFO induces ROS generation by
simulating a hypoxic environment [29,30]. To explore whether DFO induced intracellular and
mitochondrial ROS accumulation in MDA-MB-231 and MCF-7 cells, cells were treated with
carboxyl-2′,7′-dichlorofluorescein diacetate (DCFH-DA) and MitoSOXTM Red (MitoSOX), respectively.
The levels of cellular ROS can be determined by detecting the fluorescence of DCF, and MitoSOX can
be used to specifically detect the ROS levels in mitochondria. The results showed that the intracellular
and mitochondrial ROS levels were significantly increased in MDA-MB-231 and MCF-7 cells after DFO
treatment compared to control cells, but there were higher levels of intracellular and mitochondrial ROS
in MDA-MB-231 cells than in MCF-7 cells (Figure 3). We suggested that the increased mitochondrial
chelatable iron promoted the production of ROS in DFO-treated MDA-MB-231 cells, but in MCF-7 cells,
DFO was a hypoxia-mimetic agent that functioned as a metabolic stressor to increase the ROS levels.
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Figure 3. DFO increased intracellular and mitochondrial ROS in MDA-MB-231 and MCF-7 cells.
MDA-MB-231 and MCF-7 cells were treated with or without 200 µM DFO for 24 h. (A) Mitochondrial
ROS levels were assessed by MitoSOX. (B) Cellular ROS levels were assessed by DCF-DA. * versus the
control group. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. The Effects of DFO on the Cell Viabilities of MDA-MB-231 and MCF-7 Cells

The above results showed that DFO had different effects on mitochondrial iron concentrations
in MDA-MB-231 and MCF-7 cells (Figure 1B). A mitochondrion performs bioenergetic, biosynthetic,
and regulatory functions and plays a central role in iron metabolism in cells [25]. We hypothesized
that DFO treatment could alter the cell viabilities of MDA-MB-231 and MCF-7 cells. To address this
hypothesis, mitochondrial biogenesis, cell viability, and apoptosis were examined after the addition
of 200 µM DFO (Figure 4). After DFO treatment, the mitochondrial mass was obviously increased
in MDA-MB-231 cells compared to untreated MDA-MB-231 cells. Conversely, mitochondrial mass
in DFO-treated MCF-7 cells was decreased compared to that in untreated MCF-7 cells (Figure 4A).
After DFO treatment, the cell viability and apoptosis rates of MDA-MB-231 cells were not changed
compared to those of untreated cells, while the cell viability of MCF-7 cells was significantly decreased
and apoptosis was markedly increased in MCF-7 cells (Figure 4B,C). The supplementation of growth
medium with the Necroptosis Inducer Kit with TSZ (TSZ) served as a positive control. The results
showed that DFO induced cell death and reduced mitochondrial biogenesis in MCF-7 cells, while DFO
treatment induced no significant cytotoxicity and increased mitochondrial biogenesis in MDA-MB-231
cells; these effects contributed to the DFO-induced decrease in iron concentration in MCF-7 cells and
the increase in iron concentration in MDA-MB-231 cells.

2.5. DFO-Induced Cellular and Mitochondrial ROS Promoted Cell Death in MCF-7 Cells But Had No Effect on
Cell Viability in MDA-MB-231 Cells

The above results showed that DFO induced cellular and mitochondrial ROS production in
MDA-MB-231 and MCF-7 cells (Figure 3). However, DFO showed a significantly increased cytotoxicity
against MCF-7 cells compared to that against MDA-MB-231 cells (Figure 4). We hypothesized that
DFO-induced ROS led to cytotoxicity against MCF-7 cells. To prove the hypothesis, cellular ROS
was scavenged by the SOD/catalase mimetic EUK-134, and the effects of EUK-134 on cell viability
and apoptosis in MDA-MB-231 and MCF-7 cells were evaluated. After 20 µM EUK-134 treatment,
the ROS levels in MDA-MB-231 cells were reduced, while the ROS levels in MCF-7 cells were not
significantly changed (Figure 5A). After EUK-134 treatment, both DFO-treated MDA-MB-231 and
MCF-7 cells displayed lower levels of ROS than the cells in the DFO treatment group. The cell viabilities
of MDA-MB-231 and MCF-7 cells were not changed by EUK-134 treatment (Figure 5B). Compared to
the cell viability after DFO treatment, the viability of MDA-MB-231 cells decreased after treatment
with 20 µM EUK-134 and DFO (Figure 5B). However, EUK-134 treatment reversed the DFO-inhibited
cell viability of MCF-7 cells (Figure 5B). Moreover, the DFO-induced apoptosis of the MCF-7 cells was
reversed by EUK-134 treatment (Figure 5C). These data indicated that DFO-induced ROS inhibited cell
viability and promoted apoptosis in MCF-7 cells; conversely, DFO-induced ROS had no effect on cell
viability in MDA-MB-231 cells.
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control. Data were shown as mean ± SD. * versus the control group. n = 3, * p < 0.05, *** p < 0.001. 
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Figure 4. The effect of DFO on mitochondrial biogenesis and cell viability in MDA-MB-231 and
MCF-7 cells. MDA-MB-231 and MCF-7 cells were treated with or without 200 µM DFO for 24 h. (A)
Mitochondrial mass was assessed by MitoTracker Deep Red FM. (B) Cell viability was assessed by
CCK-8. (C) Apoptotic cells were quantified by using Annexin V-FITC. TSZ was used as a positive
control. Data were shown as mean ± SD. * versus the control group. n = 3, * p < 0.05, *** p < 0.001.

Mitochondria are the major source of ROS [31]. In addition to the mitochondrial respiratory
chain, the labile iron in mitochondria is also the primary site of ROS production. To evaluate the
role of mitochondrial ROS in DFO-induced cytotoxicity, mitochondrial ROS were scavenged by a
mitochondrial-specific antioxidant (Mito-TEMPO), and the effects of Mito-TEMPO on cell viability and
apoptosis were examined in MDA-MB-231 and MCF-7 cells. After 100 µM Mito-TEMPO treatment,
the mitochondrial ROS levels were reduced in MDA-MB231 cells and MCF-7 cells (Figure 5D). The
DFO-induced mitochondrial ROS levels were also reduced in MDA-MB-231 and MCF-7 cells (Figure 5D).
The viabilities of MDA-MB-231 and MCF-7 cells were not significantly changed after exposure to 100
µM Mito-TEMPO (Figure 5E). Compared to DFO treatment alone, DFO and Mito-TEMPO treatment
increased cell viability and decreased apoptosis in MCF-7 cells, while the viability of MDA-MB-231 cells
was not changed significantly (Figure 5E,F). The results suggested that DFO-induced mitochondrial
ROS inhibited cell viability and promoted apoptosis in MCF-7 cells, while there was no significant
change in the cell viability of MDA-MB-231 cells. These data indicated that DFO-induced cellular and
mitochondrial ROS contributed to cell death in MCF-7 cells, while DFO-induced ROS had no effect on
cell viability in MDA-MB-231 cells.
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2.6. DFO-Induced ROS were Essential for Cell Migration in MDA-MB-231 Cells 

As a crucial second messenger, ROS regulate a variety of signaling pathways involved in cell 

migration [32,33]. The above results showed that DFO-induced cellular ROS maintained cell viability 

Figure 5. Scavenging reactive oxygen species (ROS) attenuated DFO-induced cytotoxicity in MCF-7
cells. MDA-MB-231 and MCF-7 cells were pretreated with EUK-134 for 1 h, then treated with or without
DFO for 24 h. (A) Cellular ROS levels were assessed by DCF-DA. (B) Cell viability was assessed by
CCK-8. (C) Apoptotic cells were quantified by using Annexin V-FITC. MDA-MB-231 and MCF-7 cells
were pretreated with Mito-TEMPO for 1 h, then treated with or without DFO for 24 h. TSZ was used
as a positive control. (D) Mitochondrial ROS levels were assessed by MitoSOX. (E) Cell viability was
assessed by CCK-8. (F) Apoptotic cells were quantified by using Annexin V-FITC. TSZ was used as a
positive control. * versus the control group. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001. EUK: EUK-134;
MTP: Mito-TEMPO; TSZ: Necroptosis Inducer Kit with TSZ.



Int. J. Mol. Sci. 2019, 20, 4952 8 of 16

2.6. DFO-Induced ROS were Essential for Cell Migration in MDA-MB-231 Cells

As a crucial second messenger, ROS regulate a variety of signaling pathways involved in cell
migration [32,33]. The above results showed that DFO-induced cellular ROS maintained cell viability
in MDA-MB-231 cells (Figure 5). Previously, DFO enhanced the migration of MDA-MB-231 cells by
activating both the TGF-β signaling pathway and the TNF-α-dependent NF-κB signaling pathway [23].
To investigate whether DFO-induced ROS affected the migration of MDA-MB-231 cells through the
TGF-β signaling pathway and the TNF-α-dependent NF-κB signaling pathway, 20 µM EUK-134 and
100µM of Mito-TEMPO were used to scavenge cellular and mitochondrial ROS, respectively. Consistent
with the results of a previous report [23], after DFO treatment, the expression of fibronectin and
vimentin in MDA-MB-231 cells was increased (Figure 6A,B), and the migration of MDA-MB-231 cells
was enhanced (Figure 6C–F). EUK-134 and Mito-TEMPO did not change the expression of fibronectin
or vimentin in MDA-MB-231 cells, and the migration of MDA-MB-231 cells was also not altered
(Figure 6A,B). Compared to DFO treatment alone, pretreatment with EUK-134 or Mito-TEMPO for 1 h
and DFO treatment for 24 h decreased the expression of fibronectin and vimentin, and the migration of
MDA-MB-231 cells was inhibited (Figure 6A–F). These results suggested that DFO-induced cellular
and mitochondrial ROS promoted the migration of MDA-MB-231 cells. After EUK-134 treatment,
the expression of Snail, phosphate-Smad3 (p-Smad3), phosphate-IKKα (P-IKKα), and phosphate-P65
(P-P65) were not changed in MDA-MB-231 cells (Figure 6G), which indicated that the TGF-β signaling
pathway and the NF-κB signaling pathway were not changed in MDA-MB-231 cells after EUK-134
treatment. Compared with DFO treatment alone, DFO and EUK-134 treatment reduced the protein
levels of Snail and P-Smad3 (Figure 6G), and these results indicated that DFO-induced TGF-β signaling
pathway activation was inhibited by scavenging ROS. Moreover, consistent with the results of a
previous report [23], DFO treatment increased the expression levels of P-IKKα and P-P65 (Figure 6G).
However, DFO and EUK-134 treatment decreased the expression levels of P-IKKα and P-P65 (Figure 6G),
indicating that ROS wer the upstream signal for the NF-κB signaling pathway. The results suggested
that DFO enhanced the migration of MDA-MB-231 cells through the ROS-mediated TGF-β signaling
and TNF-α-dependent NF-κB signaling pathways.
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Figure 6. Scavenging ROS reversed DFO-enhanced migration in MDA-MB-231 cells through TGF-β
signaling and NF-κB signaling pathways. MDA-MB-231 cells were pretreated with EUK-134 or
Mito-TEMPO for 1 h, then co-incubated with or without DFO for 24 h. (A) The expressions of
fibronectin and vimentin were assessed by western blotting. (B) The expressions of fibronectin and
vimentin were assessed by western blotting. (C,D) Cells were allowed to migrate in the wound-healing
assays. (E,F) Cells were allowed to migrate in transwell assays. The images were acquired using
an upright microscope with the 5× objective. (G) MDA-MB-231 cells were pretreated with EUK-134
for 1 h, then treated with or without DFO for 24 h. The expressions of Snail, phosphate-Smad3,
phosphate-IKKα, and phosphate-P65 were assessed by western blotting. Data were shown as mean ±
SD. * versus control group. n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001. EUK: EUK-134; MTP: Mito-TEMPO.
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3. Discussion

In the present study, we identified that (1) the iron chelator DFO reduced mitochondrial iron
accumulation and iron metabolism in ERα-positive MCF-7 breast cancer cells and significantly increased
mitochondrial iron accumulation and iron metabolism in triple-negative MDA-MB-231 breast cancer
cells; (2) DFO induced cellular and mitochondrial ROS production in MDA-MB-231 and MCF-7 cells,
but DFO-induced cellular and mitochondrial ROS contributed to apoptosis of MCF-7 cells, while
DFO-induced cellular and mitochondrial ROS aggravated the migration of MDA-MB-231 cells through
the ROS-mediated TGF-β signaling pathway and the NF-κB signaling pathway.

Our previous study showed that the iron chelator DFO depleted the iron levels in non-aggressive
ERα-positive breast cancer cells but resulted in increased iron levels by upregulating the expression
of TfR1 and DMT1 in aggressive triple-negative breast cancer cells [23]. Mitochondria are the major
sites of intracellular iron distribution. Mitochondrial iron is primarily utilized in iron-sulfur cluster
biogenesis, mitochondrial ferritin storage, heme synthesis, and chelatable labile iron [25]. In this
study, DFO resulted in increased mitochondrial iron concentrations in MDA-MB-231 cells. After DFO
treatment, the heme levels and chelatable mitochondrial iron levels were enhanced in MDA-MB-231
cells. Increase in ISCU and MtFt levels in DFO-treated MDA-MB-231 cells were observed, which would
be due to an increase in mitochondrial mass. In addition, iron in mitochondria can be used for Fe-S
cluster (ISC) or can be stored in mitochondrial ferritin (MtFt) to prevent iron induced toxicity [26],
thus the increased levels of ISCU and MtFt would be induced by the increased mitochondrial iron
content in DFO-treated MDA-MB-231 cells. This suggested that DFO-induced mitochondrial iron
accumulation might play an essential role in supporting cell growth in triple-negative MDA-MB-231
breast cancer cells.

The increased chelatable iron catalyzes excess Fenton reactions, contributing to the production of
ROS [34–38]. Moreover, as a hypoxia-mimic compound, DFO increased ROS accumulation in various
cells [20,21,39]. In the present study, DFO induced cellular and mitochondrial ROS generation in
MCF-7 and MDA-MB-231 cells. We considered that the increased ROS in triple-negative breast cancer
MDA-MB-231 cells was produced by the DFO-induced increased iron content, while the increased
ROS in ER-positive MCF-7 cells was induced by a DFO-triggered hypoxic environment, which needed
further exploration.

Due to their dualistic nature, ROS can act as “good” and “bad” molecules depending on cell
type and the amount of ROS [40,41]. A moderate increase in ROS may promote cell proliferation
and survival. However, when the increase in ROS reaches a certain level (the toxic threshold), it may
overwhelm the antioxidant capacity of the cell and trigger cell death [42]. We showed that DFO-induced
ROS and mitochondrial ROS have different effects on cell viability and apoptosis in MCF-7 cells and
MDA-MB-231 cells. Scavenging cellular and mitochondrial ROS suggested that DFO-induced ROS
contributed to cell death in MCF-7 cells but maintained cell viability in MDA-MB-231 cells, which
suggested that DFO-induced ROS levels were below the tolerability threshold in MDA-MB-231 cells
but above that in MCF-7 cells.

In malignant breast cancer cells, alterations in some metastatic genes are associated with elevated
ROS generation [43]. ROS are critical signaling intermediaries to control TGF-β signaling and NF-κB
signaling [44,45]. In our previous study, DFO-increased iron concentrations promoted cell migration
through both the TGF-β signaling pathway and the TNF-α-induced NF-κB signaling pathway in
MDA-MB-231 cells [23]. To further test whether DFO-induced TGF-β signaling and NF-κB signaling
activation were specifically regulated by ROS, a specific scavenger of ROS was used in MDA-MB-231
cells. The phosphorylation of Smad3, IKKα and P65 was reduced after scavenging DFO-induced
ROS accumulation, which suggested that DFO enhanced MDA-MB-231 cell migration through
ROS-mediated TGF-β signaling and NF-κB signaling activation.

In this study, we found that iron content in mitochondria was increased after DFO treatment.
The increased chelatable iron can induce the generation of ROS through Fenton reactions [34–38],
we suggest that under DFO-induced iron-deficient conditions, the increased mitochondrial iron in
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triple-negative MDA-MB-231 breast cancer cells would induce the increase of mitochondrial ROS to
activate the NF-κB and TGF-β signaling pathways, which is required for promoting cell migration.
However, the relationship among the increased mitochondrial iron content, the production of ROS,
and cell migration need to be studied further.

Our current study also found that DFO increased mitochondrial biogenesis in MDA-MB-231 cells.
In contrast, DFO significantly decreased mitochondrial biogenesis in MCF-7 cells. Mitochondria are
the most important energy production organelles. High levels of mitochondrial biogenesis are related
to enhanced tumor progression and poor overall survival in gastric cancer patients [46]. Increased
mitochondrial biogenesis is coupled with enhanced energy production to support cell migration and
invasion in cancer cells [47]. Thus, we suggest that the increased mitochondrial mass in DFO-treated
MDA-MB-231 cells would supply more energy for cell migration, which requires further study.

However, in the present study, there were some limitations of our experimental set up: Monitoring
and measurement of DFO and DFO-iron complex should be needed to support our findings and
proposed mechanisms of action of DFO; the quantification and importance of ferric iron in cytoplasm
and mitochondria should be taken into consideration; other iron chelators, such as deferiprone (DFP)
and deferasirox (DFX), have been clinically approved for iron overload disorders. The mode of action
of the other chelating drugs should facilitate the clarification of the role of iron to explore the possibility
of using chelation as a possible mode of anticancer therapy [48]. In addition, we did not illustrate how
DFO could cause iron deficiency and increase mitochondrial iron. DFO-induced high expression of
TfR1 and DMT1 enhanced iron uptake by activating IL-6/PI3K/AKT pathway in MDA-MB-231 breast
cancer cells [24], we supposed that the increased iron in the cytoplasm would be stored in ferritin, and
under DFO-induced iron-deficient condition, the increased mitochondrial iron in MDA-MB-231 cells
would be derived from ferritin by lysosomal degradation.

Furthermore, because in our other study, we demonstrated that ferric ammonium citrate treatment
promoted cell migration in MDA-MB-231 cells but not in MCF-7 cells, and the mechanism was also
explored (unpublished data), mode of action of iron in the absence of chelators was not identified in
this study.

In summary, the present study provided the new conclusion that DFO affects breast cancer cell
viability and migration in a ROS-dependent manner. The study identified that DFO-induced ROS
enhanced the migration of triple-negative MDA-MB-231 breast cancer cells through the ROS-mediated
TGF-β and NF-κB signaling pathways.

4. Materials and Methods

4.1. Cell Culture

The non-aggressive ERα-positive MCF-7 breast cancer cell line and aggressive triple-negative
MDA-MB-231 breast cancer cell line were purchased from the American Type Culture Collection
(Manassas, VA, USA). The cells were cultured at 37 ◦C in an atmosphere of 5% CO2 and 95% air in
Dulbecco′ s Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum.

4.2. Mitochondrial and Cytosolic Fractionation Collection

Mitochondria and cytosol were separated using the Cell Mitochondria Isolation Kit (Beyotime
Jiangsu, China). Briefly, the collected cells were resuspended and homogenized in extraction buffer at
4 ◦C for 15 min. The suspensions were centrifuged at 800× g for 10 min at 4 ◦C. The pellets containing
the cytosolic fractions were collected. The supernatants were centrifuged at 11,000× g for 10 min at
4 ◦C. The pellets containing the mitochondria fractions were collected.

4.3. Nuclear Extraction

The nuclear fraction was isolated using the Nucl-Cyto-Mem Preparation Kit (Applygen
Technologies Inc., Beijing China). Collected cells were washed with ice-cold PBS and stirred in
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a homogenizer with cytosol extraction reagent. Then, the homogenates were centrifuged at 800× g for
5 min. The pellets were washed with nuclear extraction reagent twice to obtain the nuclear fraction.

4.4. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis

Samples were digested in 70% trace metal basis nitric acid (Sigma-Aldrich, St Louis, MO, USA)
and then diluted with double distilled H2O. The iron contents of the samples were determined by
ICP-MS (Thermo Fisher Scientific, Bremen, Germany). The iron concentrations were normalized to the
weight of each sample. Data were representative of 3 separate experiments.

4.5. Heme Content Determination

For the determination of the cellular heme levels, the cells were collected and lysed in a RIPA
buffer. Then, 10 µL of protein was mixed with 200 µL of 2 mol/L oxalic acid, and the solution was
heated to 95 ◦C for 30 min. The samples were then centrifuged for 10 min at 1000× g at 4 ◦C to remove
the debris. The supernatant was moved to an opaque 96-well culture plate, and the fluorescence was
assessed at 405/600 nm by using a Spectra Max Gemini fluorescence microplate reader. The data were
normalized to the protein concentration.

4.6. Mitochondrial Fe2+ Detection

Detection of free mitochondrial iron was performed using RPA (Squarix Biotechnology GmbH,
Marl, Germany). Cell culture media were removed and replaced with RPA (0.5 µM for 20 min in HBSS
(Biotime) at 37 ◦C). Cells were washed twice with HBSS and incubated for an additional 15 min in a
dye-free buffer at 37 ◦C. RPA red fluorescence was determined by quantitative laser scanning confocal
microscopy (Leica TCS SP5, Weztlar, Germany).

4.7. Flow Cytometry for ROS, Mitochondrial ROS Detection, and Mitochondrial Mass Detection

The intracellular ROS and mitochondrial-generated superoxide contents were measured by
DCFH-DA (Biotime) and MitoSOX Red (Molecular Probes-Invitrogen, Rockford, IL, USA). Cells were
collected and incubated with 10 µM DCFH-DA in fresh culture medium for 20 min at 37 ◦C or 3 µM
MitoSOX in HBSS for 10 min. The fluorescence intensity of DCF was measured by flow cytometry with
the excitation source set at 488 nm and the emission source set at 525 nm, and the MitoSOX fluorescence
intensity was measured by flow cytometry with the excitation source set at 510 nm and the emission
source set at 580 nm, respectively. Mitochondrial mass was assessed by MitoTracker Deep Red FM
(Invitrogen). MitoTracker Deep Red fluorescence intensity was measured by flow cytometry with the
excitation source set at 644 nm and the emission source set at 665 nm.

4.8. Cell Viability Assay

Cells (1 × 104) were seeded into 96-well culture plates overnight at 37 ◦C. Then, the cells were
pretreated for 1 h with EUK-134 (Cayman Chemical Company, Ann Arbor, MI, USA) or Mito-TEMPO
(Enzo Life Sciences, Farmingdale, NY, USA) and then co-incubated with or without 200 µM DFO
(Sigma) for 24 h. Following the incubation period, 100 µL DMEM including 10 µL Cell Counting
Kit-8 solution (CCK-8 reagent, Dojindo, Kumamoto, Japan) was added to each well; the samples were
incubated for 2 h at 37 ◦C. Cell viability was analyzed by measuring the absorbance at 450 nm with a
microplate reader (Synergy 2 Multimode Microplate Reader, Bio Tek, Winooski, VT, USA).

4.9. Apoptosis Assays

Apoptotic cells were quantified using the FITC Annexin V Apoptosis Detection Kit (BD Pharmingen,
San Diego, CA, USA). Collected cells were resuspended in binding buffer and incubated with Annexin
V-FITC and PI for 15 min at room temperature in the dark. The stained cells were analyzed by flow
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cytometry within 1 h. As a positive control, the cells were incubated with Necroptosis Inducer Kit with
TSZ (Beyotime) for 4 h at 37 ◦C.

4.10. Wound Healing Assay

For the wound healing assay, cells were seeded in 6-well plates until they reached confluence. A
wound was created by 200 µL pipette tips and washed twice with PBS. Then, the cells were pretreated
for 1 h with 20 µM EUK-134 or 100 µM Mito-TEMPO and then co-incubated with 200 µM DFO in
DMEM without serum for 24 h. Images were acquired by using an inverted microscope with a 4×
objective at 0 h and 24 h.

4.11. Migration Assay

Transwell migration assays were performed in a chamber system, and 3 × 105 cells suspended
in 100 µL DMEM without serum were added to the upper chamber of a 6.5 mm (0.8 µm pore size)
24-well transwell (Corning, Corning, NY, USA). DMEM with 10% FBS was placed into the bottom
wells. After incubation at 37 ◦C overnight, the cells were pretreated for 1 h with 20 µM EUK-134 or 100
µM Mito-TEMPO and then co-incubated with 200 µM DFO for 24 h. Then, the upper chamber was
washed with PBS 3 times, fixed with 4% methanol for 10 min, and stained with crystal violet. Images
were acquired using an inverted microscope (Leica DM2500) with a 5× objective. The remaining crystal
violet staining of the migrated cells was dissolved in 33% acetic acid. The OD595 nm of the eluted
crystal violet was determined. Each experiment was performed in triplicate.

4.12. Western Blot Analysis

Twenty micrograms of protein were resolved by 8% or 10% SDS-PAGE and transferred to a
polyvinylidene fluoride (PVDF) membrane. Antibodies against mitochondrial ferritin, fibronectin,
vimentin, COX 4, and His-2A were obtained from Abcam. An antibody against ISCU was obtained
from Gene Tex. Antibodies against β-actin and GAPDH were obtained from Biotime, and antibodies
against Smad2/3, p-Smad3, Snail, p-IKKα, IKKα, and p-p65 were obtained from Cell Signaling
Technology. Western blot analysis was performed using the primary antibodies and was detected
using the appropriate HRP-labeled secondary antibody (KPL, Milford, MA, USA) and enhanced
chemiluminescence (Pierce, Rockford, IL, USA). Each Western blot shown is representative of 3
separate experiments.

4.13. Statistical Analysis

The results were expressed as the mean ± standard deviation (SD) of at least three independent
experiments. Statistical analyses were conducted with Student’s t-test. A p-value of <0.05 was regarded
as statistically significant.
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Abbreviations

DFO Deferoxamine
TfR1 Transferrin receptor
ICP-MS Inductively coupled plasma mass spectroscopy
MtFt Mitochondrial ferritin
RPA Rhodamine B4-[(1,10-phenanthroline-5-yl) aminocarbonyl] benzyl ester
DCF-DA Carboxyl-2′,7′-dichlorofluorescein diacetate
MitoSOX MitoSOX™ Red
TSZ Necroptosis Inducer Kit with TSZ
CCK-8 Cell counting kit-8
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