

4-Mercaptobenzoic Acid Labeled Gold-Silver-alloyembedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection

Xuan-Hung Pham ¹, Eunil Hahm ¹, Kim-Hung Huynh ¹, Byung Sung Son ¹, Hyung-Mo Kim ¹, Dae Hong Jeong ² and Bong-Hyun Jun ^{1,*}

- ¹ Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea; phamricky@gmail.com (X.-H.P.); greenice@konkuk.ac.kr (E.H.); huynhkimhung82@gmail.com (K.-H.H.); imsonbs@konkuk.ac.kr (B.S.S.); hmkim0109@konkuk.ac.kr (H.-M.K.)
- ² Department of Chemistry Education, Seoul National University, Seoul 151-742, Republic of Korea; jeongdh@snu.ac.kr
- * Correspondence: bjun@konkuk.ac.kr; Tel.: +82-2-450-0521

Supplementary materials:

Figure S1. (a) Reproducibility and (b) repeatability of SERS signal of SiO2@Au@4-MBA@Ag NPs.

Figure S2. SERS spectra of SiO₂@Au@4-MBA@Ag nanoparticles in the presence and absence of 50-uM thiram.

Figure S3. Effect of employed power energy on SERS signals of thiram detection: (**a**) SERS spectra and (**b**) SERS signal plot of SiO₂@Au@4-MBA@Ag nanoparticles in the presence of 50-uM thiram at employed power energy in the range of 2–10 mW.

Figure S4. Effect of laser lines on SERS signals of thiram detection by SiO₂@Au@4-MBA@Ag nanoparticles in the presence of 50uM thiram at 10 mW.