Appendix A

Acute Campylobacteriosis Contains Activated Signaling Pathways for which Curcumin Has Counter-Regulatory Properties in IPA Analysis

From acute infected C. jejuni patients a RNA-Sequencing (RNA-Seq) analysis with concomitant ingenuity pathway analysis (IPA, Qiagen Silicon Valley) was performed. Once gene expression modifications were revealed, a bioinformatic prediction about possible inhibitors of the changed gene regulation could be carried out [6]. The hypothesis is, that upstream regulators, which have an inhibited activation pattern, may re-activate in Campylobacter infection, when the substance is applied during infection. Consequently, inhibited upstream regulators could be protective or therapeutic approaches in *Campylobacter* infection by activation of the corresponding downstream pathways. Different potential candidates were screened for barrier-protective and anti-inflammatory properties in C. jejuni infection. One promising predicted regulator candidate that might counter-regulate the C. jejuni-induced downstream pathways was curcumin. Curcumin showed a significant effect on downstream target genes, with a p-value of 2.06E⁻⁵ and an activation z-score of -3.489, and might therefore be another promising barrier-protecting or potential therapeutic substance in campylobacteriosis (Table S1). The C. jejuni-induced target genes in the dataset that could be counterregulated by curcumin belong mainly to pro-inflammatory pathways, such as TNF- α or IL-1 β . Another promising and studied candidate against *C. jejuni* infections is calcitriol (active vitamin D). Vitamin D shows in the RNA-Seq analysis with concomitant IPA analysis from patients in contrast to curcumin an even higher significance value (overlap *p*-value of 8.97E⁻²⁵, *z*-score -6.25; with negative expression direction) [6].

Upstream Regulator	Predicted Activation	Activation Z-Score	<i>p</i> -Value of Overlap	Target Molecules in Dataset
Regulator	Activation	Z-Score -3.489	Overlap 2.06E ⁻⁵	ABCB1,ABCC1,ABCG1,ADAMTS4,ADIPOQ,A POE,ATOX1,AXIN1,BIRC3,BIRC5,CCNB1,CD4 4,CD80,CD86,CDK1,CDK4,CR1,CRP,CSNK1A 1,CTGF,CXCL1,CXCL3,CXCL8,CXCR3,CXCR4, CYP2E1,CYP3A4,DDIT3,EDN1,EGFR,EIF3H,E RBB2,ETS1,FOS,FTL,GCLM,GFAP,GRIN2B,G RK6,HIF1A,HSP90B1,HSPA8,ICAM1,IFNG,IL 17A,IL1B,IL6,JUN,LPL,LSP1,MMP1,MMP14, MMP3,MMP9,MTHFD1,NAMP1,NOS2,OLR 1,PLAU,PPARGC1A,PRAP1,PRPS2,SELE,SERP INE1,SOCS1,SOCS3,SOD1,STAT3,TFAM,TFR
				2,VEGFA,ZMYND8

Table S1. Curcumin is an upstream regulator in <i>C. jejuni</i> -infected human mucosa identified by	· IPA
--	-------

ubcellular Tight Junction Protein Distribution in Co-Cultures in Confocal Laser-Scanning Microscopy

Curcumin alone showed no influence on the subcellular tight junction distribution of claudin-4 and claudin-8 in comparison to the untreated control (Figure S2).

Figure S2. Tight junction distribution in control conditions after treatment without or with 50 μ M curcumin. Representative confocal laser-scanning microscopy pictures of HT-29/B6-GR/MR after coculturing together with immune cells. (**A**) Claudin-4 (green) and zonula occludens protein-1 (ZO-1, red), and (**B**) claudin-8 (green) and ZO-1 (red). Nuclei are stained in blue with 4′-6-diamidino-2phenylindole dihydrochloride (DAPI).