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Abstract: The aim of this study was to analyze the analgesic potential of Arrabidaea chica extract
(EHA) as an alternative to osteoarthritis (OA) treatment. Thus, the extract was initially evaluated by
the cyclooxygenase inhibition test. The analgesic effect of the extract, in vivo, was also verified in
a model of OA induced by sodium monoiodoacetate (2 mg). EHA was administered to rats at doses
of 50, 150, and 450 mg/kg between 3 and 25 days after OA induction. The animals were clinically
evaluated every 7 days, euthanized at 29 days, and the liver, spleen, kidney and knee collected for
histopathological analysis. The chemical composition of EHA was identified by HPLC-MS and the
identified compounds submitted to molecular docking study. The results showed that the extract
promoted cyclooxygenase inhibition and produced significant improvements in disability, motor
activity, hyperalgesia, and OA-induced allodynia parameters, in addition to improvements in the
radiological condition of the knees (but not observed in the histopathological study). Chemically the
extract is rich in flavonoids. Among them, we evidence that amentoflavone showed very favorable
interactions with the enzyme COX-2 in the in silico analysis. Thus, it is concluded that A. chica has
important analgesic properties for the treatment of OA.

Keywords: pain; inflammation; phytotherapy; antinociception; pariri; bioinformatics; molecular
docking; plants

1. Introduction

The plants have contributed significantly to the development of new therapeutic strategies for
the treatment of several diseases, mainly through the secondary metabolites, that can interfere in the
performance of mediators of the inflammatory process, second messenger production, and expression
of transcription factors [1–3]. The Arrabidaea chica (Humb. And Bonpl.) B.Verlot (Bignoniaceae) plant
species used in this study has been distinguished by its pharmacological potential, associated mainly
to its antioxidant, astringent, antimicrobial, antitumor, and anti-inflammatory activities [4,5].

Osteoarthritis (OA) is the disease in which the inflammatory process plays a critical role in its
pathogenesis [6]. Thus, A. chica could represent a potential alternative to treatment. OA is characterized
by progressive destruction of articular cartilage, synovial inflammation, changes in the subchondral
bone and peri-articular muscle, pain and has a generally slow progression [7,8]. As for the inflammatory
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process, increased levels of pro-inflammatory cytokines such as interleukin 1β (IL-1β) and tumor
necrosis factor alpha (TNF-α) decrease collagen synthesis and increase catabolic mediators such
as metalloproteinases and other substances inflammatory [8,9]. As for existing pharmacological
interventions for OA pain, these are often insufficient or poorly tolerated, and OA pain generally
remains refractory to available treatments [10,11]. In addition to adverse drug effects resulting from
long-term use, non-steroidal anti-inflammatory drugs (NSAIDs) provide temporary relief but can
cause gastrointestinal problems, renal dysfunction and elevated blood pressure, among others [12,13].

OA is also an important public health issue related to aging, which affects about 40% of adults over
70 years of age and generates great socioeconomic impact since it can lead to functional disability of the
individuals, affecting the quality of life in addition to producing high costs for health services [14–16].
Thus, the present study aimed to investigate the potential of A. chica extract as an alternative to the
treatment of OA.

2. Results

2.1. Inhibition of Cyclooxygenase 1 and 2

In vitro inhibition assays of cyclooxygenase-1 and 2 (COX-1 and COX-2) were performed in order
to investigate whether the hydroethanolic extract of A. chica has inhibitory effects on these enzymes.
The results of the assay showed that the extract has an inhibitory effect, inhibiting up to 30% of COX-1
and COX-2 in the highest concentration tested, 50 µg/mL. However, concentrations of 2 and 10 µg/mL
failed to produce any inhibitory effect on the enzymes, or the effect was very low. When comparing
the effects of the extract on COX-1 and COX-2, it was possible to verify that the extract does not appear
to be selective for COX-1 or COX-2, since at 50 µg/mL the extract inhibited around 20 to 30% in both
the isoforms (Figure 1A,B).
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since the first evaluation after induction (D7) showed a significant difference between the induced 
groups (EHA50, EHA150, EHA450, CTL + Melox, CTL−, and healthy control), marked by decreased 
motor activity of animals with induced OA. This decrease was also observed on day 14, 
demonstrating that, until this period, the treatments did not produce any significant improvement in 
motor activity (Figure 2). On day 21 after the induction of OA, all treated groups, namely, EHA50 (p 
= 0.026), EHA150 (p < 0.0001) EHA450 (p = 0.0004), and CTL + Melox (p = 0.026) showed a significant 
difference in relation to the saline group, demonstrating that the extract at this concentration is able 

Figure 1. Percent inhibition of in vitro COX-1 (A) and COX-2 (B), induced by the hydroethanolic extract
of A. chica, tested in three concentrations: 2, 10, and 50 µg/mL.

2.2. Clinical Evaluations

2.2.1. Evaluation of Motor Activity/Forced Deambulation (Rotarod Test)

The evaluation of the motor activity initially showed that the induction of OA was effective,
since the first evaluation after induction (D7) showed a significant difference between the induced
groups (EHA50, EHA150, EHA450, CTL + Melox, CTL−, and healthy control), marked by decreased
motor activity of animals with induced OA. This decrease was also observed on day 14, demonstrating
that, until this period, the treatments did not produce any significant improvement in motor activity
(Figure 2). On day 21 after the induction of OA, all treated groups, namely, EHA50 (p = 0.026), EHA150
(p < 0.0001) EHA450 (p = 0.0004), and CTL + Melox (p = 0.026) showed a significant difference in
relation to the saline group, demonstrating that the extract at this concentration is able to promote
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improvement in motor activity. On day 28, these significant differences in relation to the saline group
were also observed in relation to the extract EHA450 (p = 0.028) and EHA150 (p = 0.028) (Figure 2).
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Figure 2. Effects of the A. chica extract on the motor activity/march score of rats with induced
osteoarthritis (OA). The induction of OA was done by the injection of MIA (2 mg) in the knee of Wistar
rats. After 3 days, the animals received oral saline (CTL−), Meloxicam (CTL + Melox), and A. chica
extract at doses 50, 150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 28 days
of induction, the motor activity of the animals was measured to evaluate the rotarod score. The data
are represented in mean ± standard deviation of the means. The healthy group is represented by
animals without osteoarthritis and without treatment (CLEAN). * represents significant differences,
with p < 0.05; *** with p < 0.0005; **** with p < 0.0001 comparing the treatments to the saline group.

2.2.2. Incapacitation/Weight Distribution Test on Hind Legs (Weight Bearing)

The analysis of the data related to joint incapacitation, evaluated using the percentage of weight
distribution in the legs, showed that the induction of OA was effective, since on the seventh day after
induction we observed a significant difference between the induced OA group and the control group
(CLEAN). On days 14, 21, and 28 post-induction, all treated groups (EHA50, EHA150, EHA450, CTL +

Melox) showed significant improvement in disability, and differed significantly from the saline group
(CTL−) (p < 0.0001) (Figure 3).

2.2.3. Mechanical Hyperalgesia (Randall Selitto Test)

The animals, when evaluated, for mechanical hyperalgesia showed a decrease in the nociceptive
paw withdrawal threshold on day 7 after MIA injection. This decrease occurred in all induced
groups (EHA50, EHA150, EHA450, CTL + Melox, and CTL−), as expected, confirming the success
of OA induction. On day 14 of the experiment, all treated groups EHA450, EHA150, EHA50
(p < 0.0001), and CTL + Melox (p = 0.003) showed nociceptive threshold increase, with significant
improvement in mechanical hyperalgesia when compared to the saline group; the EHA450 extract
being statistically better (p = 0.02) until drug meloxicam. Also, observations on day 21 and 28 of the
analysis, showed that the EHA450, EHA150, EHA50 and CTL + Melox (p < 0.0001) treated groups
continued to differ significantly from the saline group (Figure 4). Thus, the extract was able to induce
significant improvements in hyperalgesia by induced OA from day 14 of the analysis, demonstrating
its nociceptive potential.
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The induction of osteoarthritis was done by the injection of MIA (2 mg) in the knee of Wistar rats. After 3
days, the animals received oral saline (CTL−), Meloxicam (CTL + Melox) and extract of A. chica at doses
50, 150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 28 days of induction, the
weight distribution on the hind legs of the animals was measured for the assessment of the incapacity
by means of the Weight Bearing test. The data are represented in mean ± standard deviation of the
means. The healthy group is represented by animals without osteoarthritis and no treatment (CLEAN).
**** represents significant differences, **** with p < 0.0001 comparing the treatments to the saline group.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 22 

 

Figure 3. Effects of the extract A. chica on the degree of incapacitation of rats with induced 
osteoarthritis. The induction of osteoarthritis was done by the injection of MIA (2 mg) in the knee of 
Wistar rats. After 3 days, the animals received oral saline (CTL−), Meloxicam (CTL + Melox) and 
extract of A. chica at doses 50, 150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 
28 days of induction, the weight distribution on the hind legs of the animals was measured for the 
assessment of the incapacity by means of the Weight Bearing test. The data are represented in mean 
± standard deviation of the means. The healthy group is represented by animals without osteoarthritis 
and no treatment (CLEAN). **** represents significant differences, **** with p < 0.0001 comparing the 
treatments to the saline group. 

2.2.3. Mechanical Hyperalgesia (Randall Selitto Test) 

The animals, when evaluated, for mechanical hyperalgesia showed a decrease in the nociceptive 
paw withdrawal threshold on day 7 after MIA injection. This decrease occurred in all induced groups 
(EHA50, EHA150, EHA450, CTL + Melox, and CTL−), as expected, confirming the success of OA 
induction. On day 14 of the experiment, all treated groups EHA450, EHA150, EHA50 (p < 0.0001), 
and CTL + Melox (p = 0.003) showed nociceptive threshold increase, with significant improvement in 
mechanical hyperalgesia when compared to the saline group; the EHA450 extract being statistically 
better (p = 0.02) until drug meloxicam. Also, observations on day 21 and 28 of the analysis, showed 
that the EHA450, EHA150, EHA50 and CTL + Melox (p < 0.0001) treated groups continued to differ 
significantly from the saline group (Figure 4). Thus, the extract was able to induce significant 
improvements in hyperalgesia by induced OA from day 14 of the analysis, demonstrating its 
nociceptive potential. 

 

Figure 4. Effects of A. chica extract on mechanical hyperalgesia in rats with induced osteoarthritis 
(OA). The induction of OA was done by the injection of MIA (2 mg) in the knee of Wistar rats. After 
3 days, the animals received oral saline (CTL−), Meloxicam (CTL + Melox) and extract of A. chica at 
doses 50, 150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 28 days of OA 
induction, the nociceptive threshold of withdrawal of the affected paw was measured by indirect 
evaluation with Randall Sellito apparatus. The data are represented in mean ± standard deviation of 
the means. The healthy group is represented by animals without osteoarthritis and without treatment 
(CLEAN). ** represents significant differences, with p < 0.005; **** with p < 0.0001 comparing the 
treatments to the saline group. # represents significant differences, with p < 0.05 comparing the 
EHA450 with CTL + Melox. 

Figure 4. Effects of A. chica extract on mechanical hyperalgesia in rats with induced osteoarthritis (OA).
The induction of OA was done by the injection of MIA (2 mg) in the knee of Wistar rats. After 3 days,
the animals received oral saline (CTL−), Meloxicam (CTL + Melox) and extract of A. chica at doses 50,
150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 28 days of OA induction,
the nociceptive threshold of withdrawal of the affected paw was measured by indirect evaluation
with Randall Sellito apparatus. The data are represented in mean ± standard deviation of the means.
The healthy group is represented by animals without osteoarthritis and without treatment (CLEAN).
** represents significant differences, with p < 0.005; **** with p < 0.0001 comparing the treatments to
the saline group. # represents significant differences, with p < 0.05 comparing the EHA450 with CTL
+ Melox.
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2.2.4. Mechanical Allodynia (von Frey Test)

The results of mechanical allodynia evaluation first demonstrated the efficacy of fear of induction
by MIA, since the animals immediately after induction (D7) had a significant reduction of the response
time to the stimulus compared to the group that was not induced (CLEAN). On day 21 after induction the
group treated with extract at the concentration of 450 mg/kg (EHA450) showed a significant difference
(p = 0.0015) in relation to the saline group, demonstrating that the extract at this concentration is able to
promote improvement in allodynia mechanics. On day 28 this result was also observed, but in addition
to the EHA450 extracts, the extracts of lower concentration (EHA50) and (EHA150) also produced
significant improvement (p = 0.0108) in allodynia compared to the saline group (Figure 5).
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observed, reaching grade 4 (Figure 6), with common radiographic characteristics of the disease, such 
as reduction of articular space, marked subchondral bone sclerosis, and intense formation of 
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Figure 5. Effects of A. chica extract on mechanical allodynia in rats with induced osteoarthritis (OA).
The induction of OA was made by the injection of MIA (2 mg) in the right knee of Wistar rats. After
3 days, the animals received oral saline (CTL−), Meloxicam (CTL + Melox) and A. chica extract at
doses 50, 150, and 450 mg/kg (EHA50, EHA150, and EHA450). After 7, 14, 21, and 28 days of OA
induction, mechanical allodynia was measured by indirect evaluation with the von Frey test. The data
are represented in mean ± standard deviation of the means. The healthy group is represented by
animals without osteoarthritis and without treatment (CLEAN). * represents significant differences,
with p < 0.05; ** with p < 0.005 comparing the treatments to the saline group.

2.3. Radiographic Analysis

In the radiographic analyzes, it was observed that in the group without osteoarthritis (CLEAN),
the scores were minimal (grade 0; Figure 6), with preservation of the joint space, without subchondral
sclerosis and no formation of osteophytes (Figure 7A) which would be the main features of OA. In the
group that had OA induction by MIA and received no treatment (CTL−), a high score was observed,
reaching grade 4 (Figure 6), with common radiographic characteristics of the disease, such as reduction
of articular space, marked subchondral bone sclerosis, and intense formation of osteophytes as seen in
Figure 7(B1,B2). In the groups treated with extract (EHA50, EHA150, and EHA450 (Figure 7C) and
Meloxicam, these common radiographic features of OA were much less evident and the score did not
exceed grade 2 according to the classification of Kellgren–Lawrence (Figure 6). Thus, the extract in the
three concentrations tested was able to significantly reduce (p < 0.05) the degree of joint involvement
in relation to the saline group (CTL−) (Figure 6).
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differences, with p < 0.05, between the groups treated with A. chica extract and the saline group (CTL−). 

 

Figure 7. Knee radiographs in the antero-posterior projection. A-RX from the healthy rat paw 
(CLEAN); B1 and B2-RX from the rat paw with experimental model of MIA-induced osteoarthritis–
saline group; C-RX, A. chica extract 450 mg/kg treated group. This analysis was performed with the 
knees collected on day 29 after OA induction. Arrowhead: red—indicating a remarkable narrowing 
of the joint space and deformity in the bone contour; green—subchondral sclerosis; orange—large 
osteophytes.  

Figure 6. Degree of joint involvement in rats treated with A. chica extract (EHA50, 150, and 450 mg/kg,
orally), Meloxicam (CTL + Melox) and saline (CTL–) administered from day 3 after OA induction. This
analysis was performed with the knees collected on day 29 after OA induction. The data are represented
according to classification proposed by Kellgren–Lawrence. * represents significant differences, with
p < 0.05, between the groups treated with A. chica extract and the saline group (CTL−).
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Figure 7. Knee radiographs in the antero-posterior projection. A-RX from the healthy rat paw (CLEAN);
B1 and B2-RX from the rat paw with experimental model of MIA-induced osteoarthritis–saline group;
C-RX, A. chica extract 450 mg/kg treated group. This analysis was performed with the knees collected
on day 29 after OA induction. Arrowhead: red—indicating a remarkable narrowing of the joint space
and deformity in the bone contour; green—subchondral sclerosis; orange—large osteophytes.

2.4. Histopathological Analysis

Histopathological evaluation using the OARSI scoring system (see Materials and Methods item
4.5) revealed that the treatment with A. chica extract at the highest dose tested (EHA450) was not
able to inhibit the OA-induced joint compromise. The OARSI classification system group EHA450
obtained an average grade rating of 5.9 (±0.22), similar to the saline group (CTL−) of 5.4 (±0.47) and
the meloxicam-treated group (CTL + Melox) of 5.9 (±0.25) (Figure 8). These grades above 5, according
to the OARSI classification, indicate greater articular cartilage injury in these animals, recognized by
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denudation, complete erosion of the hyaline cartilage to the level of mineralized cartilage and/or bone,
microfractures, as well as fibrocartilaginous bone surface repair (Figure 9).
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International (OARSI) scoring system. This analysis was performed with the knees collected on day
29 after OA induction. Groups: EHA450 = with sodium monoiodoacetate-induced osteoarthritis
(MIA-induced OA) 2 mg and treated with A. chica hydroalcoholic extract 450 mg/kg; CTL− = with
MIA-induced OA (2 mg) and treated with 0.9% sodium chloride saline; CTL + Melox = with
MIA-induced OA (2 mg) and treated with meloxicam 0.5 mg/kg; CLEAN = untreated and uninduced
OA, healthy. Y-axis: Histopathological evaluation of cartilage (OARSI histological classification: Grade
0—surface intact and cartilage intact; Grade 1—surface intact; Grade 2—surface discontinuity; Grade
3—vertical fissures; Grade 4—erosion; Grade 5—denudation; and Grade 6—deformation).
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Figure 9. Sections of articular cartilage with different grades of degenerative changes in osteoarthritis
(OA) classified using the Osteoarthritis Research Society International (OARSI) scoring system.This
analysis was performed with the knees collected on day 29 after OA induction. (A) Example of CLEAN
group, untreated and uninduced OA, healthy (Grade 0) normal cartilage. (B) Example of CTL-group
treated with 0.9% saline. (C) Example of EHA450 group treated with A. chica hydroalcoholic extract
450 mg/kg. (D) Example of CTL + Melox group. B, C, and D with degrees on average between 5.4 and
5.9. Green arrow indicates normal cartilage lining (intact surface and cartilage); blue arrow indicates
microfractures; red arrow indicates erosion with bone expositon; red circles indicate repair fabric;
yellow arrowindicates complete erosion; yellow circles indicate fibrocartilage formation and bone
remodeling. (O-safranin stain; Bar = 100 µm; 200×).
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Histopathological analyses of the liver, spleen and kidney showed no pathological changes, even
at the highest administered dose of A. chica extract (450 mg/kg) (Figure 10), thus demonstrating that
the extract did not induce any toxicity.
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Figure 10. Exemplary histological sections of the liver (A), kidneys (B), and spleen (C) of EHA450
group. The images show no signs of ischemia, necrosis, cell injury and/or inflammation. (Hematoxylin-
Eosin—HE stain, Bar = 100 µm, 100×).

2.5. Chemical Analysis

The HPLC-PDA-ESI-IT-MS/MS analysis, in the positive mode, showed the presence of
25 compounds in the hydroethanolic extract of A. chica leaves (Figure 11); among them, 22 were
identified by dereplication, comparing the masses, retention times, and fragments obtained in mass
spectrometry, with the literature (Table 1).
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Table 1. HPLC-PDA-ESI-IT-MS/MS data (detected UV-vis and detected ions) and FIA-ESI-IT-MS/MSn

(product ions) of compounds detected in the A. chica leaves hydroethanolic extract.

N RT [M+H] MSn

Fragments Name Suggestion for Structure Reference

1 4.48 299 289, 287, 160 carajurin [17–19]

2 5.38 315 313, 289 6,7,3′-trihydroxy-5,4′-dimethoxy-flavylium [18]

3 17.61 289 205, 188 2′-hydroxy-a-naphthoflavone [20] ID
BML00331

4 24.13 289 catechin [21]

5 24.69 301 289 5,7-dimethoxy-4′-hydroxyflavone

6 25.42 289 epicatechin [21]

7 29.98 477 301, 289 quercetin-o-gallate

8 31.12 465 301 Quercetin-o-glucoside [22]

9 32.04 540 460, 301, 289 amentoflavone [23]

10 34.72 479 301, 279 isorhamnetin-3-o-glucoside [24]

11 36.62 301 279 chrysoeriol [25]

12 37.64 287 279 kaempferol [26]

13 39.65 463 330, 301 chrysoeriol-o-glucoside [27]

14 41.24 317 301, 279 isorhamnetin [24]

15 42.99 287 279 luteolin [28,29]

16 45.25 303 6-hydroxyluteolin [29]

17 46.18 477 328, 301, 279 cirsimarin [30,31]

18 47.42 617 601, 301, 279 hyperin 6” gallate

19 47.64 301 279 6,7,3′,4′-tetrahydroxy-5-metoxy-flavilium [32]

20 47.94 302 301, 288, 285 hispidulin [29]

21 49.23 n.i.

22 50.31–50.96 601 n.i.

23 52.72–54.29 577 301, 289 catechin dimer [29]

24 62.14 819 n.i.

25 72.66 593 421, 399 feoforbide A [33]

n.i.—not identified.

2.6. In silico Analysis

To our molecular docking analysis, we used all metabolites identified by HPLC-MS on A. chica
extract. On general, all metabolites showed satisfactory parameters affinity with the COX-2 structure.
In addition to these molecules, molecular docking of the commercial non-steroidal anti-inflammatory
drug meloxicam was performed, with affinity parameters of −8.82 kcal·mol−1 and 0.34 µM from free
binding energy and the inhibition constant, respectively, while among the A. chica metabolites, the
best affinity parameters were shown to be amentoflavone and quercetin-o-gallate with −9.21 and
−8.86 kcal·mol−1 from free binding energy, respectively, and 0.11 and 0.32 µM from the inhibition
constant, respectively; these parameters being superior to those presented by meloxicam. The results
of the binding energy values of all compounds are shown in Table 2.
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Table 2. Free-binding energies and inhibition constant obtained by molecular docking of the compounds
identified in the A. chica extract with the COX-2 structure.

Ligand ∆Gbind (kcal·mol−1) * Ki (µM) **

amentoflavone −9.21 0.11
quercetin-o-gallate −8.86 0.32

chrysoeriol-o-glucoside −8.45 0.63
catechin dimer −8.33 0.78

2′-hydroxy-a-naphthoflavone −7.98 1.43
6-hydroxyluteolin −7.95 1.48

hispidulin −7.81 1.88
cirsimarin −7.61 2.64

isorhamnetin-3-o-glucoside −7.56 2.87
epicatechin −7.49 3.25

catechin −7.46 3.40
hyperin 6” gallate −7.39 3.81

6,7,3′,4′-tetrahydroxy-5-metoxy-flavylium −7.21 5.19
6,7,3′-trihydroxy-5,4′-dimethoxy-flavylium −7.11 6.11

carajurin −7.06 6.71
kaempferol −7.06 6.73

luteolin −7.05 6.76
chrysoeriol −6.90 8.72

quercetin-o-glucoside −6.85 9.46
isorhamnetin −6.72 11.86

meloxicam −8.82 0.34

* ∆Gbind: binding energy; ** Ki: inhibition constant.

The map from interactions of the amentoflavone and quercetin-o-gallate with COX-2 amino acids
identified in selected configurations obtained through molecular docking calculations are displayed in
Figure 12.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 22 
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3. Discussion

Herbal medicines have become considerably popular to relieve the symptoms of various diseases,
including OA [34]. However, available scientific data are still insufficient to support the use of these
products in the clinical management of OA. However, the growth of studies in this sense brings
expectations regarding the arrival of reliable, efficient, and safe herbal products that meet the criteria
of modern medicine [35].

In order to meet these expectations, the present study evaluated pain behavior in an experimental
OA model using A. chica extract as an alternative to traditional pharmacological treatments. Since
many studies have proven its therapeutic potential, including its anti-inflammatory activity [36–38],
and due to the fact that OA is a disease in which the inflammatory process plays a central role in the
pathogenesis [8], we evaluated this plant against OA.

The present study shows the anti-inflammatory and analgesic properties of A. chica extract through
in combo studies: In vitro, by inhibition of cyclooxygenase; in vivo, due to the improvement in clinical
and radiological parameters of animals with MIA-induced OA; and also by the demonstration of
potential mechanisms of action of A. chica secondary metabolites through in silico studies. Chemical
analysis of the extract allowed the identification of a large number of molecules with bioactive potential,
including metabolitoes were described for the first time in the species.

In this context, A. chica extract was evaluated for its ability to inhibit COX enzymes in vitro.
COX-2 participates in inflammatory and painful processes, being responsible for the metabolization of
arachidonic acid resulting from the action of phospholipase A2 on membrane lipids, which produce
intermediates, prostaglandin G2, and prostaglandin H2 which are isomerized to prostanoids such
as prostaglandins, prostacyclins, and thromboxanes [39]. Due to the role this enzyme plays in
inflammatory processes, it is the target of non-steroidal anti-inflammatory drugs and have represented
a potential target for action of new compounds. And in this study, A. chica extract was able to inhibit
COX-2 and COX-1 by up to 30% (Figure 1A,B), demonstrating its anti-inflammatory potential.

The antinociceptive activity of A. chica extract was observed from the improvement of motor
activity from day 21 after OA induction, in all doses, similar to meloxicam (Figure 2). Treatment with
the dose of 500 mg/kg of Spinacia oleracea L. extract also showed improvement in the motor activity of
the animals, but only later (day 28) [40].

Treatment with A. chica extract also had antinociceptive effects, significantly reducing the weight
distribution deficit between the left and right paws, improving OA-induced disability from 14 days after
induction, in all doses (Figure 3). The paw weight distribution test is an indicator of OA progression
and reveals the efficacy of anti-inflammatory compounds, as observed in the study with an isolated
compound from Zingiber zerumbet (L.) Smith. which was able to reduce joint discomfort in this same
model [41].

The extract also improved the hyperalgesia threshold from day 14 onwards after OA induction,
also in all doses (Figure 4). Hyperalgesia is characterized by a painful response accentuated by
a previously painful stimulus [42]. Treatment with Entada pursaetha DC., hydroethanolic extract 30, 100,
and 300 mg/kg also significantly reduced hyperalgesia in the MIA-induced OA model on days 7, 14,
and 21. The authors suggest that this effect may be linked to the reduced production of inflammatory
mediators responsible for peripheral and central sensitization of pain and hyperalgesia in the model in
question [43].

The results of the clinical evaluations of the present study also show that A. chica extract 450 mg/kg,
from day 21 of treatment, significantly reduced allodynia (pain associated with a stimulus that would
normally not cause pain), and for all doses on day 28 [42] (Figure 5). Lima [38] also observed this
analgesic effect of A. chica extract in an experimental model of neuropathic pain induced by sciatic
nerve compression, hence corroborating the results found here. Similar results were also found by our
group in Calado et al. [44] when they analyzed the effects of the hydroethanolic extract of Chenopodium
ambrosioides L. leaves in an experimental OA model using the same methodology.
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A possible explanation for improvement of these clinical aspects could be the anti-inflammatory
activity of the flavonoids present in the extract, which may be able to inhibit COX, and produce
this action, as reported by [45]. A. chica extract also demonstrated this effect by inhibiting nuclear
transcription factor kappaβ, which consequently prevents the formation of inflammatory mediators
such as iNOS, COX-2, 5-LOX, and phospholipase A2 [18]. Studies by Lima et al. [32] also observed that
in lipopolysaccharide-induced peritonitis in mice, oral pretreatment with hydroethanolic extract of the
leaves or with the isolated compound 4′,6,7-trihydroxy-5-methoxyflavone (5-o-methyl scutellarein) led
to decreased leukocyte migration to the peritoneal cavity, as well as a reduction in proinflammatory
cytokine concentrations (TNFα and IL-1β).

Regarding the radiographic findings of the present study, they showed that after OA induction,
subchondral sclerosis, osteophytes, and decreased joint space were found in the evaluated knees.
Although A. chica extract was unable to prevent the most frequent radiological changes that occur in
OA, the animals treated with herbal medicine had lower degrees of joint changes according to the
Kellgren–Lawrence classification. However, histopathological analyses did not show this improvement
for the A. chica-treated EHA group.

Importantly, radiological parameters are not always associated with clinical or histological results.
This factor generates difficulties in the interpretation of the pain phenomenon in OA; however, people
with radiographic alterations compatible with OA have a higher chance of presenting pain than
individuals without this type of alteration [46,47].

In the chemical analysis of the extract, 22 compounds were identified, most of which belong to the
group of flavonoids (Table 1) that comprise an important class of natural pigments, having a chemical
structure consisting of two aromatic rings linked by a chain of three atoms forming an oxygenated
heterocycle. The degree of oxidation and the substitution pattern of ring C rank the flavonoids and the
substitution pattern on rings A and B specifically defines each compound [48].

Flavonoids in general have been attributed important biological activities, among them an
important anti-inflammatory action, due to the ability of these compounds to modulate the action of
cellular components involved in the mechanism of inflammation such as pro-inflammatory cytokines
TNF-α and IL-1, and the activity of arachidonic acid pathway enzymes such as cyclooxygenase
and lipoxygenase [47,48]. Results such as these were observed by studying extract and fractions of
Tabernaemontana catharinensis DC. leaves, which provide the ability to inhibit leukocyte migration and
significantly decreased the levels of various proteins such as MPO, interleukin (IL)-1β, and tumor
necrosis factor TNF-α [49]. These actions are attributed at least in part to the flavonoids present in
the plant.

Among the 22 compounds identified, it should be noted that 12 are being reported for the first
time in species A. chica. They are: 2′-hydroxy-a-naphthoflavone; 5,7-dimethoxy-4′-hydroxyflavone;
quercetin-o-gallate; quercetin-o-glucoside; amentoflavone; isorhamnetin-3-o-glucoside; chrysoeriol;
chrysoeriol-o-glucoside; isorhamnetin; cirsimarin; hyperine 6” gallate; and catechin dimer.

Considering the potential of these compounds as therapeutic agents and with the encouraging
results of the in vitro and in vivo studies, the in silico study was carried out in order to verify the
possible pathways of action of the metabolites identified in the extract. Thus, the metabolites had their
interactions with the structure of the COX-2 enzyme evaluated through molecular doping. Molecular
docking data show that amentoflavone and quercetin-o-gallate were among the metabolites which had
more favorable interactions with COX-2.

Negative binding-free energy values between the binder and the macromolecule indicate favorable
interactions [50]. The active site of COX-2 involves residues Arg120, Tyr355, Tyr385, Glu524, and
Ser530 where arachidonic acid binds, thus forming prostaglandins [51,52]. The result of molecular
docking demonstrated that amentoflavone and quercetin-o-gallate performed a large number of
interactions (hydrogen bonds and van der Walls interactions) with residues neighboring this region
(Figure 12). Silva and colleagues [53] have identified through molecular docking and molecular
dynamics simulations that the ursolic acid inside all metabolites identified on the ethylacetate fraction
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of Borreria verticillata (L.) G. Mey. was responsible for the anti-inflammatory activity of this plant
species. The ursolic acid was selected by in silico assay and when evaluated isolated in vivo on mice,
showed anti-inflammatory activity higher than indomethacin.

Amentoflavone showed anti-inflammatory activity besides suppressing the production of nitric
oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells [54]. Also, amentoflavone promotes
the downregulation of COX-2 and iNOS levels in cancer cells. This activity is also well associated
with the suppression of PGE2 biosynthesis [55]. Evaluated against an ulcerative colitis model on
mice, the amentoflavone showed decreases in the mucosal injury by lowered colonic wet weight as
well as vascular permeability and diminished lactate dehydrogenase (LDH) and myeloperoxidase
(MPO) activity reflecting reduced leukocyte infiltration and reducing significantly the tumor necrosis
factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 levels as well as the expression of iNOS and
COX-2 [56].

4. Materials and Methods

4.1. Collection and Processing of Plant Species

The leaves of Arrabidaea chica were collected in the urban area of São Luis city, Maranhão state,
Brazil, in May 2016 (2◦ 33′29” S, 44◦ 18 ′30” W) between 5 to 6 p.m. A sample of the plant was deposited
in the “Atico Seabra” Herbarium, Federal University of Maranhão (UFMA), and was identified and
cataloged in register 1.067. For preparation of the extract, the collected plant material was dried at
40 ◦C in an air circulating oven and then pulverized in an electric mill to obtain the powder, which
was impregnated in 70% ethanol in a ratio of 1:4 (m/v) and placed in maceration, under daily manual
agitation. The alcoholic extraction of the macerate was carried out by three successive changes every
72 h, with the renovation of the solvent. At the end of this process, the extracts were pooled and
gauze filtered. The filtrate was concentrated in a rotary evaporator under reduced pressure and at
a temperature of 40 ◦C. From this process, the hydroethanolic extract (EHA) was obtained.

4.2. In vitro Activity on Cyclooxygenase

Cyclooxygenase (COX) has been associated with the target of non-steroidal anti-inflammatory
drugs and has been a potential target for the study of new drugs. Thus, in vitro tests of inhibition
of COX by the hydroethanolic extract of A. chica were carried out, according to the instructions of
the manufacturer of the enzymatic kit (Colorimetric COX Inhibitor Screening Assay Kit, Cayaman
Chemical®, Ann Arbor, Michigan, USA.) and percent inhibition of COX-1 and COX-2, calculated from
the means of the absorbance values, read at 590 nm. Inhibition assays were performed with extracts at
three concentrations 2, 10, and 50 µg/mL in triplicate.

4.3. In vivo Experimental Studies

This study was conducted at the Experimental Laboratory for the Study of Pain (LEED). All
procedures were approved in May 22, 2017 by the Ethics Committee on Animal Use of UFMA under
No. 23115.000372/2017-09.

4.3.1. Animals

Wistar rats (Rattus norvegicus) males, adults approximately 60 days old, which were procured
from the Central Vivarium (Biotério Central) of Federal University of Maranhão (UFMA), São Luis,
Brazil, were used in this study. These animals, throughout the experiment, were fed standard feed and
water ad libitum and kept under a controlled temperature of 23 ± 1 ◦C and humidity of 40–60% under
a 12 h light–dark cycle.
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4.3.2. Experimental Design

The animals were divided into 6 groups (n = 6, per group): Group 1—without OA and untreated
(CLEAN); Group 2—with osteoarthritis and treated with saline (NaCl 0.9%, 0.1 mL/kg) (CTL−); Group
3—with osteoarthritis and treated with Meloxicam® (0.5 mg/kg) (CTL + Melox) [57]; Groups 4, 5,and
6—with osteoarthritis and treated with A. chica hydroethanolic extracts at doses of 50, 150, and
450 mg/kg (EHA50, EHA150, EHA450), respectively.

The CLEAN group did not undergo any type of intervention. The other groups (CTL−, CTL +

Melox, EHA50, EHA150, EHA450) received intra-articular injections of MIA (2 mg) for induction of
osteoarthritis in the knee. And after three days, these groups received their respective treatments, as
described above, orally (once daily) for 25 days (Figure 13).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 15 of 22 
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These groups were evaluated clinically for disability, allodynia, mechanical hyperalgesia, and
motor activity every 7 days, and were slaughtered on day 29 after initiation of OA induction. The animals
were euthanized with a 2:1 anesthetic solution of ketamine hydrochloride (100 mg/kg) and xylazine
hydrochloride (80 mg/kg), after which the blood of all animals was collected through the abdominal
artery. Liver, spleen, and kidney were collected for histopathological analysis, as well as the right paw
induced for radiographic and histopathological analyses (Figure 13).

4.3.3. MIA-Induced OA Model

The animals were anesthetized by inhalation of isoflurane 1%. After certifying the anesthetic
plane, a trichotomy was performed in the right knee and, subsequently, a topical solution of 10%
iodopovidone was applied for local asepsis. An articular lesion was induced by a single intra-articular
injection of 2 mg sodium MIA (diluted in a maximum volume of 25 µL) into the right knee through the
patellar ligament [58,59].
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4.3.4. Clinical Evaluations

Evaluation of Motor Activity/Forced Deambulation (Rotarod Test)

The animals were placed on a swivel bar (IITC Life Science, Woodland Hills, CA, USA.) at a speed
of 16 rpm for a period of 300 s. The use of the affected limb was assessed by forced deambulation.
The use of the paw was graded using a numerical scale ranging from 5 to 1, where: 5 = normal use of
the paw, 4 = mild claudication, 3 = severe claudication, 2 = intermittent disuse of affected paw, and 1 =

complete disuse of affected paw [60].

Incapacitation/Weight Distribution Test on Hind Legs (Weight Bearing)

The animals were placed in a glass bowl angled and positioned so that each hind leg laid on
different platforms. The weight exerted on each back paw (measured in grams) was evaluated for 5 s.
The final measurement of weight distribution was the mean of three measurements [61]. Changes in
the weight distribution on the paws were calculated as follows:

Weight distribution (%) =
APW

APW + CPW
× 100 (1)

where APW was affected paw weight and CPW was contralateral paw weight.

Mechanical Hyperalgesia (Randall–SelittoTest)

Mechanical hyperalgesia was assessed by evaluating the nociceptive threshold paw withdrawal
following the application of mechanical pressure using an analgesiometer (IITC Life Science, Woodland
Hills, CA, USA). A wedge-shaped device (area, 1.75 mm2) was applied to the dorsal surface of the
hind paws with increasing linear pressure until the animal responded by withdrawing the paw. Three
measurements were performed in the ipsilateral and contralateral paws. A cut-off threshold pressure
of 250 g was programmed to prevent tissue damage. The paw withdrawal reflex was considered to
represent the hypernociceptive threshold. The nociceptive paw withdrawal threshold (NPWT) was
recorded in grams and defined as the percentage pressure required to provoke a withdrawal of the
ipsilateral affected paw, and was calculated as follows:

NPTW (%) =
NAPWT

NAPWTW + NCPWT
× 100 (2)

where NPWT was nociceptive paw withdrawal threshold, NAPWT was nociceptive affected
paw–withdrawal threshold, and NCPWT was nociceptive contralateral paw withdrawal
threshold [62,63].

Mechanical Allodynia (von Frey Test)

The Von Frey test was performed with a filament with an adapted tip, which was pressed with a
constant force. For this evaluation the animals were placed in individual transparent acrylic boxes on
raised platform to allow access to the lower part of their bodies. The response given at time of paw
withdrawal to the filament stimulus was measured in 3 applications lasting up to 5 s each, always
performed by the same evaluator [64].

4.4. Radiological Analysis

After euthanasia, the right hind paws of the animals were amputated and submitted to radiographs
on anteroposterior and profile incidences, in order to evaluate the decrease in joint space, sclerosis of
the subchondral bone and presence of osteophytes in the knees evaluated. The AP incidence was used
to classify osteoarthritis by the [65], according to Table 3.
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Table 3. Classification of Kellgren–Lawrence.

Grade 0 No arthrosis—Normal radiology

Grade I Doubtful arthrosis—Doubtful articular space narrowing and possible

Grade II Minimal osteoarthritis—Possible joint narrowing, defined osteophytes

Grade III Moderate arthrosis—Defined joint narrowing, multiple moderate osteophytes, some
subchondral sclerosis and possible deformity in the bone contour

Grade IV Severe arthrosis—Significant articular space narrowing, severe subchondral sclerosis, defined
deformity in the bone contour and large osteophytes

4.5. Histopathological Analysis of Articular Cartilage

On day 29, the knee of each animal was removed after euthanasia and fixed in 10% buffered
formalin. Then, they were subjected to decalcification in 20% ethylenediaminetetraacetic acid (EDTA)
for 28 days. Subsequently they were submitted to the inclusion protocol in paraffin blocks, cut into
sections of 5 µm, and the proteoglycans of the organic cartilage matrix were stained specifically with
0.5% O-safranin.

The histopathological evaluation was performed according to the guidelines of the Osteoarthritis
Research Society International (OARSI). The slides were analyzed blindly by two pathologists,
who graded them on a scale of 0 to 6, according to the severity of the articular cartilage lesion.
The classification considered the most severe lesion observed on the slide regardless of the extent
of the lesion. Grade 0 indicates morphologically intact cartilage, Grade 1 indicates an intact surface
with possible focal lesions or abrasion, Grade 2 shows discontinuity in the articular surface, Grade 3
shows vertical fissures, Grade 4 presents erosions, Grade 5 exhibits denudations with sclerotic bone or
fibrocartilaginous tissue repair or both, and Grade 6 shows remodeling and bone deformation with
changes in the contour of the articular surface [66], according to Table 4.

Table 4. Osteoarthritis cartilage histopathology assessment classification system (Osteoarthritis
Research Society International) [66].

Grade (Key Feature) Subgrade (Optional) Associated Criteria (Tissue Reaction)

Grade 0:
Surface intact,
Cartilage intact

No subgrade Intact, uninvolved cartilage

Grade 1:
Surface intact

1.0 Cells intact
1.5 Cell death

Matrix: superficial zone intact, edema and/or
fibrillation;
Cells:proliferation (clusters),hypertrophy;
Reaction must be more than superficial
fibrillation only.

Grade 2:
Surfacediscontinuity

2.0 Fibrillation through superficial zone
2.5 Surface abrasion with matrix loss
within superficial zone

As above
+Discontinuity at superficial zone;
±Cationic stain matrix depletion (Safranin O or
Toluidine Blue) upper 1/3 of cartilage (mid zone);
±Disorientation of chondron columns

Grade 3:
Verticalfissures

3.0 Simple fissures
3.5 Branched/complex fissures

As above;
±Cationic stain depletion (Safranin O or
Toluidine Blue) into lower 2/3 of cartilage (deep
zone);
±New collagen formation (polarized light
microscopy, Picro Sirius Red stain)

Grade 4:
Erosion

4.0 Superficial zone delamination
4.5 Mid zone excavation

Cartilage matrix loss, cyst formation within
cartilage matrix
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Table 4. Cont.

Grade (Key Feature) Subgrade (Optional) Associated Criteria (Tissue Reaction)

Grade 5:
Denudation

5.0 Bone surface intact
5.5 Reparative tissue surface present

Surface is sclerotic bone or reparative tissue
including fibrocartilage.

Grade 6:
Deformation

6.0 Joint margin osteophytes
6.5 Joint margin and central osteophytes

Bone remodeling; Deformation of articular
surface contour (more than osteophyte formation
only);
Includes: microfracture and repair

4.6. FIA-ESI-IT-MS/MSn and HPLC-ESI-IT-MS Analysis Instrumentation

For the FIA-ESI-IT-MSn assay, 10 mg of A. chica hydroethanolic extract was dissolved in 1 mL
MeOH:H2O (1:1, v/v). The sample was filtered through a 0.22 µm PTFE filter, and 20 µL aliquots were
injected into the LC-MS and directly into the FIA-ESI-IT-MSn system. Chromatographic profile of
the crude extract of A. chica was performed on LCQ Fleet (Thermo Scientific®, San Jose, CA, USA),
Kinetex® C18, 100 Å (4.6 × 100 mm.; 5 µm). The mobile phase was ultra-pure water (eluent A) and
acetonitrile (eluent B), both containing 0.1% formic acid in an exploratory gradient starting with 10%
to 100% B in 60 min at a flow rate of 1.0 mL/min.

The sample was ionized by electrospray (ESI) and the fragments were obtained in multiple stages
(MSn), in ion trap type interface. The experimental conditions were: Capillary voltage35 V, spray
voltage 5000 V, capillary temperature at 350 ◦C, drag gas (N2), and flow 60 (arbitrary units). The
acquisition range was m/z 100–2000, with two or more scanning events performed simultaneously
on the spectrum. The direct flow infusion of the sample was performed on an LTQ XL Ion trap type
analyzer equipped with a positive mode electrospray ionization (ESI) source (Thermo Scientific®, San
Jose, CA, USA). A 280 ◦C stainless steel capillary tube, a spray voltage of 5.00 kV, a capillary voltage
of 90 V, a tube lens of −100 V and a flow of 5 µL min−1 were used. The complete scan analysis was
recorded in the m/z range of 100–1000. Multiple-stage fragmentation (ESI-MSn) was performed using
the collision-induced dissociation (CID) method against helium for ion activation.

The first event was a full sweep mass spectrum to acquire data on ions in this m/z range. The second
scanning event was an MS/MS experiment performed using a data-dependent scanning on the [M + H]
molecules of the compounds of interest with a collision energy of 30% and an activation time of 30 ms.
The product ions were then subjected to further fragmentation under the same conditions, until no
further fragments were observed. The identification of the different compounds in the chromatographic
profile of the hydroethanolic extract was accomplished by the mechanisms of fragmentation and
comparing their mass spectral data with the literature.

4.7. In silico Studies

4.7.1. Predictive Models and Theoretical Calculations

The metabolites identified in the A. chica hydroethanolic extract had their geometric, electronic, and
vibrational properties optimized using the Gaussian program 09 (Gaussian, Inc., Wallingford CT) [67].
The GaussView 5.0.8 (Semichem Inc., Shawnee Mission, KS) [68] was used to obtain 3D structural
models. Geometric optimization calculations were performed according to the Functional Density
Theory (DFT) method, combining the functional hybrid B3LYP and the set of bases 6-31++G(d, p).

4.7.2. Molecular Docking

All docking procedures utilized the Autodock 4.2 package [69]. The structure of the cyclooxygenase
2 (COX-2) (PDB ID 1DDX) and ligands were prepared for docking simulations with AutoDock
Tools version 1.5.6 [70]. Docking methodology described in literature were used [70] with some
modifications [44,53]. Gasteiger partial charges were calculated after addition of all hydrogens,
both ligand and macromolecule. Non-polar hydrogens from COX-2 and A. chica metabolites were
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subsequently merged. The dimensions of the cubic box in the X-, Y- and Z-axes were 120 × 120 ×
120 Å, respectively, with a spacing of 0.375 Å between grid points. Grid box was centered on oxygen
atom from residue Arg120 from COX-2 and the Lamarckian genetic algorithm (LGA) was chosen to
search for the best conformations, with 100 runs for each compound. Initial coordinates of COX-2 and
A. chica compounds interaction complexes were chosen based on the criterion of the better docking
conformation of the cluster with the lowest energy in addition to visual inspection.

4.8. Statistics

The comparison of the means of different experimental groups was performed using Student’s
t-test or univariate analysis of variance (One-way ANOVA), followed by the Tukey test. In the
evaluation of two sources of variability, bivariate variance analysis (Two-way ANOVA) was used.
The p value <0.05 was considered as indicative of significance and the data obtained were analyzed
through the software GraphPad Prism 7.0® software for Windows® (CA, USA).

5. Conclusions

The results of the present study provide evidence that A. chica extract has the potential to be used
in the treatment of OA. It has been shown to inhibit the enzyme COX-2; additionally, oral treatment for
25 days with A. chica hydroethanolic extract (50, 150, and 450 mg/kg) showed antinociceptive activity,
producing improvements in incapacitation, motor activity, allodynia and hyperalgesia parameters in
rats with OA experimentally induced by MIA.

The extract was able to produce radiological improvements in the affected knees; however,
histopathological analysis revealed that the extract apparently did not act significantly on cartilage
regeneration. Investigations into prophylactic use of the extract before OA induction may show whether
the extract would be effective in preventing cartilage deterioration. Thus, more study is needed.

The results of the present study also showed that A. chica extract is rich in flavonoids, which have
a large biological potential and may help in the treatment of OA. The in silico assays indicate a possible
way of action of the compounds present in the extract, suggesting that through an interaction with
cyclooxygenase-2 these compounds reduce the inflammatory process and improve OA.
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