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Abstract: Human mesenchymal stem cells (hMSCs) are a potent source of cell-based regenerative
therapeutics used to treat patients with ischemic disease. However, disease-induced oxidative stress
disrupts mitochondrial homeostasis in transplanted hMSCs, resulting in hMSC apoptosis and reducing
their efficacy post-transplantation. To address this issue, we evaluated the effects of melatonin on
cellular defense mechanisms and mitophagy in hMSCs subjected to oxidative stress. H2O2-induced
oxidative stress increases the levels of reactive oxygen species and reduces membrane potential
in hMSCs, leading to mitochondrial dysfunction and cell death. Oxidative stress also decreases
the expression of 70-kDa heat shock protein 1L (HSPA1L), a molecular chaperone that assists in
the recruitment of parkin to the autophagosomal mitochondrial membrane. Decreased expression
of HSPA1L destabilizes parkin, thereby impairing mitophagy. Our results indicate that treating
hMSCs with melatonin significantly inhibited mitochondrial dysfunction induced by oxidative stress,
which decreased hMSCs apoptosis. In damaged hMSCs, treatment with melatonin increased the levels
of HSPA1L, which bound to parkin. The interaction between HSPA1L and parkin increased membrane
potential and levels of oxidative phosphorylation, resulting in enhanced mitophagy. Our results
indicate that melatonin increased the expression of HSPA1L, thereby upregulating mitophagy and
prolonging cell survival under conditions of oxidative stress. In this study, we have shown that
melatonin, a readily available compound, can be used to improve hMSC-based therapies for patients
with pathologic conditions involving oxidative stress.

Keywords: oxidative stress; mesenchymal stem cells; mitochondria; melatonin; mitophagy;
HSPA1L; parkin

1. Introduction

Human mesenchymal stem cells (hMSCs), which are present mainly in the bone marrow,
adipose tissue, dental pulp, and the umbilical cord, can potentially be used in cell-based therapies
and regenerative medicine because of their continued self-renewal, multidirectional differentiation,
and immunomodulatory abilities [1–3]. In our previous study, we demonstrated that MSC-based
therapy is a promising modality for targeting ischemic disease associated with chronic kidney
dysfunction [4]. However, hMSCs show low therapeutic efficacy when utilized in cell-based
therapies; this is because hMSCs lose viability when subjected to oxidative stress that arises in
various pathophysiological conditions such as inflammation and ischemia [5–7]. Sustained exposure
of hMSCs to oxidative stress induces disruption in their mitochondrial membrane potential and results
in mitochondrial dysfunction [5–8]. Because mitochondria play a pivotal role in cell metabolism,
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damaged mitochondria need to be eliminated in a timely manner to recover cellular homeostasis and
function. Failure to eliminate damaged mitochondria results in apoptosis, which is the primary cause
of failure in hMSC-based therapies [9,10].

Mitochondria play an important role in ATP synthesis during aerobic respiration. In this
process, reactive oxygen species (ROS), such as the superoxide anion (O2

−), hydroxyl radicals (OH−),
hydroperoxyl (HO2

−), and hydrogen peroxide (H2O2), are formed as metabolites of mitochondrial
oxidative phosphorylation [9,11,12]. Under conditions of oxidative stress, mitochondria can synthesize
ROS at a level that extensively disrupts mitochondrial homeostasis, altering the composition of lipids,
proteins, and nucleic acids. The resulting disruption in the composition of the mitochondrial membrane
impairs electrochemical potential of the membrane, leading to mitochondrial dysfunction and cell
death [11,13,14]. Because mitochondrial damage can lead to cell death, timely elimination of excess
ROS is important for cell survival [15,16]. Elevated levels of ROS trigger mitophagy, a cellular process
in which lysosomes selectively scavenge for, and eliminate, damaged mitochondria. [11,17,18]. Under
conditions of oxidative stress, mitophagy is upregulated to prevent the accumulation of dysfunctional
mitochondria. Therefore, regulation of mitophagy in hMSCs is important for enhancing the viability of
hMSCs transplanted into ischemic injury sites.

Melatonin (N-acetyl-5-methoxytryptamine) is synthesized from serotonin and is the main hormone
secreted by the pineal gland at night under normal light/dark conditions. It was first discovered
and isolated from the bovine pineal gland by Aaron Lerner [19]. Since then, this methoxyindole
compound has been found in various tissues such as bone marrow, ovary, testes, gut, placenta and
liver [20–22]. Previous studies have shown that melatonin-treated MSCs can facilitate therapeutically
functional recovery in myocardial infarction, skin wounds, lung ischemia-reperfusion injury, and sepsis-
induced kidney injury [23–25]. In our previous study, we showed that melatonin-treated hMSCs
increase neovascularization in hind limb ischemia by augmenting the activity of mitophagy-mediated
processes [25]. A recent study showed that the levels of 70-kDa heat shock protein 1L (HSPA1L)
are increased under oxidative and metabolic stress [26]. In initial steps of mitophagy, HSPA1L
(a member of the 70-kD heat shock protein (HSP70) family) transfers and tethers parkin to membranes
of dysfunctional mitochondria, thereby inducing mitophagy [27,28]. In this study, we examined
whether enhanced interactions between HSPA1L and parkin underlie melatonin-enhanced mitophagy
and resulting reduction in oxidative stress.

2. Results

2.1. Oxidative Stress Impairs Mitochondrial Function in hMSCs

In our previous study, significant oxidative stress conditions were induced when hMSCs were
treated with 200 µM H2O2 for 4 h [5]. To confirm that oxidative stress decreases the viability of hMSCs,
we exposed hMSCs to 200µM H2O2 for 0, 1, 2, 3, and 4 h (Figure 1A). Our results indicate that the viability
of hMSCs was reduced by approximately 50% at 4 h post-treatment with H2O2. Therefore, in this
study, we used treatment with 200 µM H2O2 to induce oxidative stress in hMSCs. Dysfunctional
mitochondria were observed using transmission electron microscopy (TEM). Mitochondrial dysfunction
was indicated by abnormalities in mitochondrial size and structure, while accumulation was evidenced
by increased numbers of mitochondria (Figure 1B,C). Our findings show that oxidative stress caused
a significant accumulation of impaired mitochondria in hMSCs treated with 200 µM H2O2 for 4 h.
In addition, oxidative stress decreased mitochondrial membrane potential and increased the levels of
mitochondrial ROS, as assessed using tetramethylrhodamine, ethyl ester (TMRE) and MitoSOX assays,
respectively (Figure 1D,E). These results show that oxidative stress deteriorates mitochondrial function
and impairs cellular homeostasis in hMSCs.
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Figure 1. H2O2-induced oxidative stress reduces human mesenchymal stem cell (hMSC) viability by 
inducing mitochondrial dysfunction. (A) MTT assay was used to assess the viability of hMSCs treated 
with 200 μM H2O2 and that of untreated hMSCs. Values represent the mean ± SEM. * p < 0.05 or ** p < 
0.01 vs. control. (B) Transmission electron microscopy (TEM) was used to evaluate mitochondrial 
morphology in hMSCs treated for 24 h with H2O2 (200 μM) and in untreated hMSCs. Scale bar = 500 
nm. (C) Quantitative analyses of morphometric data and percentages of abnormal mitochondria 
showing swelling and severely disrupted cristae. Images were obtained using TEM. Values represent 
the mean ± SEM. ** p < 0.01 vs. control. (D) Tetramethylrhodamine, ethyl ester (TMRE)-positive 
hMSCs, with and without treatment using H2O2 (200 μM), were quantified via fluorescence-activated 
cell sorting (FACS). Values represent the mean ± SEM. ** p < 0.01 vs. control. (E) MitoSOX-positive 
hMSCs with and without treatment using H2O2 (200 μM) were quantified via FACS. Values represent 
the mean ± SEM. ** p < 0.01 vs. control. 

2.2. Melatonin-Treated hMSCs Show Increased HSPA1L Expression and Parkin Stability under Conditions 
of Oxidative Stress 

Translocation of parkin to the mitochondria is induced by the binding of parkin and HSPA1L; 
this is followed by initiation of mitophagy, which eliminates dysfunctional mitochondria [29]. The 
results obtained in this study indicate that expression of HSPA1L and parkin decreased time-
dependently in hMSCs treated with H2O2 (200 μM) (Figure 2A,B). In addition, we observed reduced 
expression of HSPA1L in hMSCs that accumulated dysfunctional mitochondria. Our results 
demonstrate that hMSCs treated with melatonin showed augmented resistance against oxidative 
stress-induced apoptosis. We detected that treatment of hMSCs with melatonin increased the 
expression of HSPA1L and parkin (Figure S1A). In addition, pre-incubating hMSCs with melatonin 
restored the expression of HSPA1L and parkin, increasing their resistance to oxidative stress (Figure 
2C,D). We also analyzed that the knockdown of HSPA1L in hMSCs results in the loss of melatonin 
function on parkin (Figures S3A,B and 2C,D). To confirm that parkin stability was reduced by 
decreased expression of HSPA1L, we used immunoprecipitation (IP) to assess the level of binding 
between parkin and HSPA1L in hMSCs treated with melatonin (Figure 2E,F). Our results indicate 
that this effect was not present in HSPA1L-knockdown hMSCs (Figure 2E,F). 

Figure 1. H2O2-induced oxidative stress reduces human mesenchymal stem cell (hMSC) viability by
inducing mitochondrial dysfunction. (A) MTT assay was used to assess the viability of hMSCs treated
with 200 µM H2O2 and that of untreated hMSCs. Values represent the mean ± SEM. * p < 0.05 or
** p < 0.01 vs. control. (B) Transmission electron microscopy (TEM) was used to evaluate mitochondrial
morphology in hMSCs treated for 24 h with H2O2 (200 µM) and in untreated hMSCs. Scale bar =

500 nm. (C) Quantitative analyses of morphometric data and percentages of abnormal mitochondria
showing swelling and severely disrupted cristae. Images were obtained using TEM. Values represent
the mean ± SEM. ** p < 0.01 vs. control. (D) Tetramethylrhodamine, ethyl ester (TMRE)-positive
hMSCs, with and without treatment using H2O2 (200 µM), were quantified via fluorescence-activated
cell sorting (FACS). Values represent the mean ± SEM. ** p < 0.01 vs. control. (E) MitoSOX-positive
hMSCs with and without treatment using H2O2 (200 µM) were quantified via FACS. Values represent
the mean ± SEM. ** p < 0.01 vs. control.

2.2. Melatonin-Treated hMSCs Show Increased HSPA1L Expression and Parkin Stability under Conditions of
Oxidative Stress

Translocation of parkin to the mitochondria is induced by the binding of parkin and HSPA1L; this is
followed by initiation of mitophagy, which eliminates dysfunctional mitochondria [29]. The results
obtained in this study indicate that expression of HSPA1L and parkin decreased time-dependently in
hMSCs treated with H2O2 (200 µM) (Figure 2A,B). In addition, we observed reduced expression of
HSPA1L in hMSCs that accumulated dysfunctional mitochondria. Our results demonstrate that hMSCs
treated with melatonin showed augmented resistance against oxidative stress-induced apoptosis.
We detected that treatment of hMSCs with melatonin increased the expression of HSPA1L and parkin
(Figure S1A). In addition, pre-incubating hMSCs with melatonin restored the expression of HSPA1L
and parkin, increasing their resistance to oxidative stress (Figure 2C,D). We also analyzed that the
knockdown of HSPA1L in hMSCs results in the loss of melatonin function on parkin (Figures S3A,B
and 2C,D). To confirm that parkin stability was reduced by decreased expression of HSPA1L, we used
immunoprecipitation (IP) to assess the level of binding between parkin and HSPA1L in hMSCs treated
with melatonin (Figure 2E,F). Our results indicate that this effect was not present in HSPA1L-knockdown
hMSCs (Figure 2E,F).
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Figure 2. Melatonin enhances parkin stability by increasing HSPA1L expression in hMSCs subjected 
to oxidative stress. (A) Expression of HSPA1L and parkin in hMSCs treated with or without H2O2 for 
various time periods (0, 1, 2, 3, and 4 h). (B) The expression levels of HSPA1L and parkin were 
normalized with respect to that of β-actin. Values represent the mean ± SEM. ** p < 0.01 vs. untreated 
hMSCs. (C) Expression of HSPA1L and parkin in hMSCs pretreated with HSPA1L siRNA (si-HSPA1L) 
and 1 μM melatonin for 24 h. (D) Expression levels of HSPA1L and parkin were normalized relative 
to those of β-actin. Values represent the mean ± SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. 
H2O2-treated hMSCs; $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L. (E) 
Immunoprecipitates with anti-HSPA1L were analyzed after treatment of melatonin-pretreated 
hMSCs with si-HSPA1L by western blot using an antibody that recognized parkin. (F) The levels of 
parkin bound to HSPA1L were normalized with respect to that of β-actin. Values represent the mean 
± SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin-treated hMSCs; $$ p < 0.01 vs. 
melatonin-treated hMSCs pretreated with si-HSPA1L. 

2.3. Mitophagy Pathway Is Enhanced via Increased Expression of HSPA1L in Melatonin-Treated hMSCs 
Subjected to Oxidative Stress 

Next, we evaluated whether treatment with melatonin enhances mitophagy in hMSCs, thereby 
aiding in elimination of dysfunctional mitochondria. We confirmed that treatment of hMSCs with 
melatonin decreased the level of P62 and increased the expression of LC3B II in mitochondria (Figure 
S1B). For this, we assessed the expression levels of mitophagy-associated-proteins in mitochondrial 
fractions of melatonin-treated and untreated hMSCs subjected to oxidative stress. Our results, 
obtained using western blotting, show increased levels of LC3B II and decreased levels of P62 in 
hMSCs treated with melatonin and subjected to oxidative stress compared with the levels of 
untreated controls placed under oxidative stress (Figure 3A,B). Flow cytometric analysis indicated 
that pre-incubating hMSCs with melatonin increased the formation of autophagosome under 
conditions of oxidative stress (Figure 3C). Knockdown of HSPA1L in hMSCs decreased the 
expression of LC3B II and increased that of P62; these events attenuated the effects of melatonin and 
destabilized the HSPA1L/parkin interactions. These results indicate that melatonin promoted the 
mitophagy pathway via upregulation of HSPA1L/parkin axis in hMSCs placed under oxidative 
stress. 

Figure 2. Melatonin enhances parkin stability by increasing HSPA1L expression in hMSCs subjected
to oxidative stress. (A) Expression of HSPA1L and parkin in hMSCs treated with or without H2O2

for various time periods (0, 1, 2, 3, and 4 h). (B) The expression levels of HSPA1L and parkin were
normalized with respect to that of β-actin. Values represent the mean ± SEM. ** p < 0.01 vs. untreated
hMSCs. (C) Expression of HSPA1L and parkin in hMSCs pretreated with HSPA1L siRNA (si-HSPA1L)
and 1 µM melatonin for 24 h. (D) Expression levels of HSPA1L and parkin were normalized relative
to those of β-actin. Values represent the mean ± SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01
vs. H2O2-treated hMSCs; $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L.
(E) Immunoprecipitates with anti-HSPA1L were analyzed after treatment of melatonin-pretreated
hMSCs with si-HSPA1L by western blot using an antibody that recognized parkin. (F) The levels of
parkin bound to HSPA1L were normalized with respect to that of β-actin. Values represent the mean
± SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin-treated hMSCs; $$ p < 0.01 vs.
melatonin-treated hMSCs pretreated with si-HSPA1L.

2.3. Mitophagy Pathway Is Enhanced via Increased Expression of HSPA1L in Melatonin-Treated hMSCs
Subjected to Oxidative Stress

Next, we evaluated whether treatment with melatonin enhances mitophagy in hMSCs, thereby
aiding in elimination of dysfunctional mitochondria. We confirmed that treatment of hMSCs with
melatonin decreased the level of P62 and increased the expression of LC3B II in mitochondria
(Figure S1B). For this, we assessed the expression levels of mitophagy-associated-proteins in
mitochondrial fractions of melatonin-treated and untreated hMSCs subjected to oxidative stress.
Our results, obtained using western blotting, show increased levels of LC3B II and decreased levels of
P62 in hMSCs treated with melatonin and subjected to oxidative stress compared with the levels of
untreated controls placed under oxidative stress (Figure 3A,B). Flow cytometric analysis indicated that
pre-incubating hMSCs with melatonin increased the formation of autophagosome under conditions
of oxidative stress (Figure 3C). Knockdown of HSPA1L in hMSCs decreased the expression of LC3B
II and increased that of P62; these events attenuated the effects of melatonin and destabilized the
HSPA1L/parkin interactions. These results indicate that melatonin promoted the mitophagy pathway
via upregulation of HSPA1L/parkin axis in hMSCs placed under oxidative stress.
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Figure 3. Treatment with melatonin enhances mitophagy by stabilizing parkin in hMSCs subjected to 
oxidative stress. (A) Expression of P62 and LC3B II in mitochondrial fractions obtained from 
melatonin-treated (1 μM, 24 h) hMSCs, si-HSPA1L-treated hMSCs, and untreated control hMSCs; all 
cell groups were subjected to oxidative stress. (B) Expression levels were normalized relative to those 
of VDAC1. Values represent the mean ± SEM. * p < 0.05, and ** p < 0.01 vs. untreated hMSCs; # p < 
0.05, and ## p < 0.01 vs. H2O2-treated hMSCs; $ p < 0.05, and $$ p < 0.01 vs. melatonin-treated hMSCs 
pretreated with si-HSPA1L. (C) hMSCs treated with melatonin (1 μM, 24 h) and si-HSPA1L were 
quantified as autophagy-positive or autophagy-negative using FACS. Values represent the mean ± 
SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin-treated hMSCs; $$ p < 0.01 vs. 
melatonin-treated hMSCs pretreated with si-HSPA1L. 
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this, we used TEM to evaluate changes in mitochondrial morphology in hMSCs pre-treated with 
melatonin and placed under conditions of oxidative stress. Pre-treatment with melatonin restored 
homeostatic mitochondrial size and decreased the number of dysfunctional mitochondria (Figure 
4A–C). hMSCs pre-treated with melatonin also showed restored mitochondrial membrane potential 
and reduced levels of mitochondrial ROS under conditions of oxidative stress (Figures S4A and 5A–
5D). To evaluate the function of electron transport chain (ETC), we measured the activities of ETC 
complexes I and IV in untreated hMSCs, and in those treated with melatonin, under conditions of 
oxidative stress. hMSCs treated with melatonin showed enhanced activities of ETC complexes I and 
IV under conditions of oxidative stress (Figure 5E,F). To further confirm that melatonin augments 
mitophagy via the HSPA1L/parkin axis, we evaluated whether HSPA1L-knockdown hMSCs would 
retain dysfunctional mitochondrial morphology under conditions of oxidative stress even after pre-
treatment with melatonin (Figure 4A–C). Our results indicate that knockdown of HSPA1L in hMSCs 
disrupted mitochondrial membrane potential and increased the synthesis of mitochondrial ROS 
under conditions of oxidative stress; this activity was not dependent on treatment with melatonin 
(Figure 5A–D). Additionally, HSPA1L knockdown decreased the activities of ETC complexes I and 
IV in hMSCs subjected to oxidative stress; this activity was also not dependent on treatment with 
melatonin (Figure 5E,F). These data indicate that melatonin enhanced the mitophagy pathway by 
augmenting interactions between HSPA1L and parkin in hMSCs placed under oxidative stress. 

Figure 3. Treatment with melatonin enhances mitophagy by stabilizing parkin in hMSCs subjected
to oxidative stress. (A) Expression of P62 and LC3B II in mitochondrial fractions obtained from
melatonin-treated (1 µM, 24 h) hMSCs, si-HSPA1L-treated hMSCs, and untreated control hMSCs;
all cell groups were subjected to oxidative stress. (B) Expression levels were normalized relative to
those of VDAC1. Values represent the mean ± SEM. * p < 0.05, and ** p < 0.01 vs. untreated hMSCs;
# p < 0.05, and ## p < 0.01 vs. H2O2-treated hMSCs; $ p < 0.05, and $$ p < 0.01 vs. melatonin-treated
hMSCs pretreated with si-HSPA1L. (C) hMSCs treated with melatonin (1 µM, 24 h) and si-HSPA1L
were quantified as autophagy-positive or autophagy-negative using FACS. Values represent the mean
± SEM. ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin-treated hMSCs; $$ p < 0.01 vs.
melatonin-treated hMSCs pretreated with si-HSPA1L.

2.4. Melatonin-Treated hMSCs Show Enhanced Mitochondrial Function under Conditions of Oxidative Stress

We next aimed to show that melatonin attenuates the effects of dysfunctional mitochondrial
accumulation by upregulating the expression of HSPA1L in hMSCs subjected to oxidative stress.
For this, we used TEM to evaluate changes in mitochondrial morphology in hMSCs pre-treated with
melatonin and placed under conditions of oxidative stress. Pre-treatment with melatonin restored
homeostatic mitochondrial size and decreased the number of dysfunctional mitochondria (Figure 4A–C).
hMSCs pre-treated with melatonin also showed restored mitochondrial membrane potential and
reduced levels of mitochondrial ROS under conditions of oxidative stress (Figures S4A and 5A–D).
To evaluate the function of electron transport chain (ETC), we measured the activities of ETC complexes
I and IV in untreated hMSCs, and in those treated with melatonin, under conditions of oxidative stress.
hMSCs treated with melatonin showed enhanced activities of ETC complexes I and IV under conditions
of oxidative stress (Figure 5E,F). To further confirm that melatonin augments mitophagy via the
HSPA1L/parkin axis, we evaluated whether HSPA1L-knockdown hMSCs would retain dysfunctional
mitochondrial morphology under conditions of oxidative stress even after pre-treatment with melatonin
(Figure 4A–C). Our results indicate that knockdown of HSPA1L in hMSCs disrupted mitochondrial
membrane potential and increased the synthesis of mitochondrial ROS under conditions of oxidative
stress; this activity was not dependent on treatment with melatonin (Figure 5A–D). Additionally,
HSPA1L knockdown decreased the activities of ETC complexes I and IV in hMSCs subjected to
oxidative stress; this activity was also not dependent on treatment with melatonin (Figure 5E,F).
These data indicate that melatonin enhanced the mitophagy pathway by augmenting interactions
between HSPA1L and parkin in hMSCs placed under oxidative stress.
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Figure 4. Melatonin increases the numbers of healthy mitochondria by stabilizing parkin in hMSCs 
subjected to oxidative stress. (A) Mitochondrial morphology was evaluated using TEM in hMSCs 
treated with melatonin (1 μM, 24 h) and si-HSPA1L, and subjected to oxidative stress. Scale bar = 500 
nm. (B,C) Quantitative analyses of morphometric data, and percentages of abnormal mitochondria 
showing swelling and severely disrupted cristae, as evaluated using TEM. Values represent the mean 
± SEM. * p < 0.05, and ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin–treated hMSCs; $ p < 
0.05, and $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L. 

 
Figure 5. Melatonin enhances mitochondrial function by stabilizing parkin in hMSCs subjected to 
oxidative stress. (A) hMSCs were pre-treated with melatonin (1 μM, 24 h) and si-HSPA1L, and 
subjected to oxidative stress. Untreated hMSCs were subjected to oxidative stress only. All groups 
were assayed using TMRE, and TMRE-positive hMSCs were quantified using FACS. (B) Values 
represent the mean ± SEM. ** p < 0.01 vs. untreated hMSCs, ## p < 0.01 vs. H2O2-treated hMSCs, $ p < 
0.05, and $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L. (C) hMSCs were pre-

Figure 4. Melatonin increases the numbers of healthy mitochondria by stabilizing parkin in hMSCs
subjected to oxidative stress. (A) Mitochondrial morphology was evaluated using TEM in hMSCs
treated with melatonin (1 µM, 24 h) and si-HSPA1L, and subjected to oxidative stress. Scale bar =

500 nm. (B,C) Quantitative analyses of morphometric data, and percentages of abnormal mitochondria
showing swelling and severely disrupted cristae, as evaluated using TEM. Values represent the mean
± SEM. * p < 0.05, and ** p < 0.01 vs. untreated hMSCs; ## p < 0.01 vs. melatonin–treated hMSCs;
$ p < 0.05, and $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L.
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Figure 5. Melatonin enhances mitochondrial function by stabilizing parkin in hMSCs subjected to
oxidative stress. (A) hMSCs were pre-treated with melatonin (1 µM, 24 h) and si-HSPA1L, and subjected
to oxidative stress. Untreated hMSCs were subjected to oxidative stress only. All groups were
assayed using TMRE, and TMRE-positive hMSCs were quantified using FACS. (B) Values represent
the mean ± SEM. ** p < 0.01 vs. untreated hMSCs, ## p < 0.01 vs. H2O2-treated hMSCs, $ p < 0.05,
and $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L. (C) hMSCs were pre-treated
with melatonin (1 µM, 24 h) and si-HSPA1L, and subjected to oxidative stress. Untreated hMSCs were
subjected to oxidative stress only. All groups were assayed using MitoSOX, and MitoSOX-positive
hMSCs were quantified using FACS. (D) Values represent the mean ± SEM. ** p < 0.01 vs. untreated
hMSCs, ## p < 0.01 vs. H2O2-treated hMSCs, $$p < 0.01 vs. melatonin-treated hMSCs pretreated with
si-HSPA1L. (E and F) Activity of complexes I (E) and IV (F) in hMSCs treated with melatonin (1 µM,
24 h) and si-HSPA1L. Values represent the mean ± SEM. * p < 0.05, and ** p < 0.01 vs. untreated hMSCs;
# p < 0.05 vs. H2O2-treated hMSCs; $ p < 0.05 vs. melatonin-treated hMSCs pretreated with si-HSPA1L.
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2.5. Melatonin Protects hMSCs against Oxidative Stress by Augmenting Mitophagy

To confirm that melatonin exerts anti-apoptotic effects and protects hMSCs against oxidative stress,
we measured the expressions of anti-apoptotic protein BCL2 and pro-apoptotic proteins BAX, cleaved
caspase-3, and cleaved PARP-1. Under conditions of oxidative stress, melatonin-treated hMSCs showed
the increased expression of BCL2 and the decreased expressions of BAX, cleaved caspase 3, and cleaved
PARP-1 (Figure 6A,B). Flow-cytometric analysis using annexin V showed that treatment with melatonin
significantly decreased hMSCs apoptosis (Figures S5A and 6C). However, knockdown of HSPA1L in
hMSCs abolished the anti-apoptotic effects exerted by melatonin under oxidative stress (Figure 6A–C).
These results indicate that melatonin upregulated mitophagy by increasing the expression of HSPA1L
and inducing parkin stabilization, which eliminates the dysfunctional mitochondria.
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Figure 6. Melatonin protects against oxidative stress by preserving the stability of parkin. (A) Expression
of anti-apoptotic protein BCL2, and pro-apoptotic proteins BAX, C-caspase-3, and C-PARP-1, in hMSCs
treated with melatonin (1 µM, 24 h) and HSPA1L siRNA (si-HSPA1L) (B) Expression levels were
normalized relative to those of β-actin. Values represent the mean ± SEM. * p < 0.05, and ** p < 0.01 vs.
untreated hMSCs, # p < 0.05, and ## p < 0.01 vs. H2O2-treated hMSCs, $ p < 0.05 vs. melatonin-treated
hMSCs pretreated with si-HSPA1L. (C) hMSCs were pre-treated with melatonin (1 µM, 24 h) and
si-HSPA1L, and subjected to oxidative stress. Untreated hMSCs were subjected to oxidative stress only.
(D) All groups were assayed using PI-Annexin V, and Annexin V-positive hMSCs were quantified
using FACS. Values represent the mean ± SEM. ** p < 0.01 vs. untreated hMSCs, ## p < 0.01 vs.
melatonin-treated hMSCs, $$ p < 0.01 vs. melatonin-treated hMSCs pretreated with si-HSPA1L.

3. Discussion

Various studies have revealed that the excessive levels of ROS under ischemic conditions cause
MSCs to undergo extensive apoptosis, which decreases their effectiveness in the treatment [4,30–32].
To improve the therapeutic potential of MSCs in ischemic diseases, MSCs should acquire the
resistance against ROS-mediated oxidative stress, which restrict MSC-mediated tissue regeneration
and vascularization [33]. It is well known that melatonin enhances the efficacy of MSCs-based therapy
in ischemic injuries such as skin wounds, focal cerebral ischemia, liver ischemic-reperfusion injury,
and acute lung ischemia-reperfusion injury [34–37]. In addition, applications of MSCs for regenerative
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medicine in clinical trials (www.clinicaltrials.gov) have shown therapeutic effects in several diseases,
including aplastic anemia, myocardial infarction, ulcerative colitis, chronic kidney diseases, liver
cirrhosis, graft versus host disease, acute lung injury, and type I diabetes [38]. However, the underlying
mechanisms of the melatonin effects are still unclear. In this study, we found that the treatment of MSCs
with melatonin augmented cell viability by maintaining mitochondrial homeostasis under oxidative
stress. Our results reveal that the positive effects of melatonin were associated with the expression
of HSPA1L, which enhances mitophagy response that clears damaged mitochondria subjected to
oxidative stress.

Mitochondria are a widely recognized source of ROS in animal cells [39]. Although ROS are
normal metabolites of oxidative phosphorylation, uncontrolled accumulation of ROS induces significant
damage to the very machinery that produces these ROS. Oxidative stress disrupts mitochondrial
membrane potential, electron transport chain machinery, the fusion–fission cycle that determines the
functional morphology, and mitophagy. [9,40,41]. The heightened levels of mitochondrial ROS cause
mitochondrial DNA mutations and disruptions in the membrane compartments [9,40,41]. The resulting
ROS-mediated uncoupling of the electron transport chain further induces distortions in mitochondrial
morphology through elongation and fusion [42,43]. In addition, the irregular morphology inhibits the
mitophagy probes from sensing the damaged mitochondria, hence the accumulation of dysfunctional
mitochondria [44]. We showed that ROS-induced oxidative stress conferred the mitochondrial
homeostatic imbalance with the accumulation of mitochondrial ROS. Dysfunctional mitochondria led
to enhanced ROS formation, which, in turn, exacerbated mitochondrial health and further intensified
oxidative stress in a self-perpetuating vicious cycle until apoptotic cell death [45,46].

HSPA1L is a member of the HSP70 family. HSP70 proteins play important roles in protein quality
control by assisting in the refolding of denatured proteins, preventing aggregation, and aiding in
intracellular protein transport [47,48]. HSP70 is an important homeostatic regulator that reduces ROS
levels and helps retain mitochondrial function during the inflammatory response [47,48]. Specifically,
HSPA1L activates mitophagy by binding and translocating parkin to the damaged mitochondria [28].
Parkin is a cytoplasmic protein that initiates the mitophagy signaling cascade when damaged
mitochondria are sensed. It is recruited to the mitochondrial outer membrane and interacts with
a mitochondrial kinase PINK1, a mitochondrial protein that acts as a sensor of mitochondrial
damage [49,50]. Parkin and PINK1 coordinate ubiquitination, proteasomal activation, and mitophagy
response that may attenuate cell death [51]. In this study, we found that the treatment of melatonin with
hMSCs increased the expressions of HSPA1L and parkin as well as their interaction under oxidative
stress. Aligning with the previous findings, the enhanced HSPA1L/parkin interaction stimulated
mitochondrial homeostasis from the oxidative stress-induced imbalance by increasing mitophagy
activity, as indicated by the increased expression of LC3B and the reduced expression of p62 under
western blot analysis [28]. Our results show that melatonin-dependent enhancement of mitophagy
significantly decreased the numbers of dysfunctional mitochondria, restored mitochondrial morphology,
suppressed the accumulation of mitochondrial ROS, and rescued mitochondrial membrane potential
and ETC machinery. Thus, consistent with our hypothesis, apoptotic cell death was suppressed by
the treatment of melatonin. However, the knockdown of HSPA1L reversed the effects of melatonin,
suggesting that the upregulation of HSPA1L/parkin binding is a mechanism of melatonin-mediated
antioxidative action (Figure 7).

To the best of our knowledge, this study is the first to demonstrate that the treatment with melatonin
increases the expression of HSPA1L. To further reveal the underlying mechanisms on the relationship
between HSPA1L and parkin, a future study needs to investigate the effect of overexpression of HSPA1L
in MSCs under physiological and pathophysiological conditions. Our results reveal that melatonin can
enhance mitophagy, thereby rescuing mitochondrial homeostasis and protecting hMSCs against the
adverse effects of an oxidative stress environment. Therefore, our study suggests that melatonin is a
potential adjuvant drug that enhances the efficacy of the MSC-based therapy for patients who suffer
from ischemia.

www.clinicaltrials.gov
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Figure 7. Schematic shows melatonin-induced resistance to oxidative stress (left), and how treatment
with melatonin restored mitochondrial function by increasing the expression of HSPA1L and stabilizing
parkin in hMSCs subjected to oxidative stress. Oxidative stress induces mitochondrial dysfunction by
decreasing mitophagy, which results in accumulation of abnormal mitochondria. Melatonin-treated
hMSCs increase their expression of HSPA1L, which stabilizes parkin-induced mitophagy and helps
eliminate dysfunctional mitochondria; this cascade also increases mitochondrial membrane potential
and decreases apoptosis in hMSCs placed under oxidative stress.

4. Materials and Methods

4.1. Human MSC Cultures

Human adipose tissue-derived MSCs (hMSCs) were obtained from the American Type Culture
Collection (Manassas, VA, USA). The hMSCs were confirmed negative for hepatitis B virus, hepatitis C
virus, human immunodeficiency virus, syphilis, and mycoplasma. hMSCs expressed CD73 and CD 105
surface markers (Figure S2A) and showed adipogenic and osteogenic differentiation potentials when
cultured with specific differentiation media [52]. hMSCs were cultured in alpha-Minimum Essential
Medium (α-MEM; Gibco BRL, Gaithersburg, MD, USA) supplemented with 10% (v/v) fetal bovine
serum (FBS; Gibco BRL) and 100 U/mL penicillin/streptomycin (Gibco BRL). hMSCs were maintained
in a humidified incubator at 37 ◦C and 5% CO2.

4.2. Treatments Administered to hMSCs

hMSCs were washed twice with phosphate buffered saline (PBS), and then fresh α-MEM media
supplemented with 10% FBS was added. To examine the apoptotic signaling pathway or mitophagy
pathway, hMSCs (passage 4) were incubated with melatonin (1 µM) at 37 ◦C for 24 h and then treated
with H2O2 (200 µM) for 0, 1, 2, 3, or 4 h.

4.3. Inhibition of HSPA1L Expression by RNA Interference

hMSCs (2 × 105) were seeded into 60-mm dishes and transfected with siRNA in serum-free
Opti-MEM (Gibco BRL) using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) per
manufacturer’s instructions. At 48 h post-transfection, total protein was extracted, and gene expression
was determined using western blotting. siRNA used to target HSPA1L and a scrambled sequence were
synthesized by Dharmacon (Lafayette, CO, USA).
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4.4. Electron Microscopy

hMSCs were fixed in 3% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate
buffer at pH 7.3. Morphometric analyses (used to assess mitochondrial size and number of mitochondria
per cell) were performed using ImageJ software (NIH; version 1.43). At least 10 cells per each
low-magnification image (×10,000) were used to count the number of mitochondria per each hMSCs
(identified by the presence of lamellar bodies). At least 100–150 individual mitochondria from each cell
group were examined at high magnification (×25,000 and ×50,000) and used to assess mitochondrial
perimeter and area.

4.5. Measurement of Mitochondrial Membrane Potential

To quantify the formation of mitochondrial O2
•−, we used TMRE (Abcam, Cambridge, UK) to

measure generation of mitochondrial superoxide in hMSCs subjected to oxidative stress. For this,
hMSCs were trypsinized for 5 min, centrifuged at 1200 rpm for 3 min, washed with PBS twice,
and incubated with 200 nM TMRE solution in PBS at 37 ◦C for 15 min. The cells were then washed
two times with PBS and resuspended in 500 µL PBS. Following this, TMRE signaling was detected by
fluorescence-activated cell sorting (FACS; Sysmex, Kobe, Japan). Cellular forward-scatter levels for
TMRE-positive cells (number of events: 104 cells) were analyzed using Flowing Software (DeNovo
Software, Los Angeles, CA, USA).

4.6. Measurement of Mitochondrial Superoxide (O2
•−) Generation

Generation of mitochondrial O2
•− in hMSCs was assayed using MitoSOX (Thermo Fisher Scientific).

The cells in each group were trypsinized and centrifuged at 600 g for 5 min. The samples were then
washed with PBS and incubated with 10 µM MitoSOX solution in phosphate-buffered saline (PBS) at
37 ◦C for 15 min. Next, the cells were resuspended in 500 µL PBS, and the total number of cells labeled
using MitoSOX was measured via FACS (Sysmex, Kobe, Japan). MitoSOX-positive cells (number of
events: 104) were identified and analyzed using Flowing Software (DeNovo Software, Los Angeles,
CA, USA).

4.7. Autophagy Assessment

Autophagosome-emitted fluorescence in hMSCs was evaluated using an Autophagy Assay Kit
(Abcam). The cells were washed twice using PBS, then 100 µL detection reagent was added to each
plate of hMSCs, and the cells were allowed to incubate for 30 min 37 ◦C. hMSCs were then washed
with PBS and fixed using 4% formaldehyde for 20 min. The labeled hMSCs (number of events: 104)
were analyzed using FACS (Partec, Münster, Germany)

4.8. PI/Annexin V Flow Cytometric Analysis

hMSCs (number of events: 104) apoptosis was assessed by labeling the cells with Annexin V-FITC
and propidium iodide (PI) (De Novo Software, Los Angeles, CA, USA). Signal detection was performed
using Cyflow Cube 8 (Partec, Münster, Germany), and data were analyzed using standard FSC Express
(De Novo Software, Los Angeles, CA, USA).

4.9. Western Blotting

Total homogenates (20 µg protein) were separated using 8–12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and proteins were transferred to nitrocellulose
membranes. The blots were washed with TBST (10 mM Tris-HCl (pH 7.6), 150 mM NaCl, and 0.05%
Tween-20), blocked with 5% skim milk for 1 h, and incubated with the appropriate primary antibodies
overnight at 4 ◦C using the dilutions recommended by the supplier. Antibodies specific for HSPA1L,
parkin, LC3B, P62, and VDAC1 were purchased from Novus Biological (dilution of 1:1000; Centennial,
CO, USA); those specific for BCL2, BAX, cleaved caspase 3, cleaved PARP-1, and β-actin were
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purchased from Santa Cruz Biotechnology (dilution of 1:500; Dallas, TX, USA). After incubation with
primary antibodies, membranes were washed and incubated with goat anti-rabbit IgG (dilution of
1:5000) or goat anti-mouse IgG (dilution of 1:10,000) secondary antibodies conjugated to horseradish
peroxidase (Santa Cruz Biotechnology) for 1 h at 25 ◦C. The bands were then visualized by enhanced
chemiluminescence (Amersham Pharmacia Biotech, England, UK).

4.10. Immunoprecipitation

hMSCs were lysed using lysis buffer (1% Triton X-100 in 50 mM Tris-HCl (pH 7.4) containing
150 mM NaCl, 5 mM EDTA, 2 mM Na3VO4, 2.5 mM Na4PO7, 100 mM NaF, and protease inhibitors).
Cell lysates (300 µg) were incubated with anti-HSPA1L antibody (Novus Biologicals) for 4 h, mixed
with Protein A/G PLUS-Agarose Immunoprecipitation Reagent (Santa Cruz Biotechnology), and then
incubated for an additional 12 h. The beads were then washed four times, and bound protein was
released from the beads by boiling in SDS-PAGE sample buffer for 5 min. The precipitated proteins
were analyzed by western blotting using anti-parkin primary antibody (Santa Cruz Biotechnology).

4.11. Evaluation of Electron Transport Chain Complex I Activity

Complex I activity was measured using a Complex I Enzyme Activity Assay kit (Abcam) following
the manufacturer’s instructions. Briefly, 125–1250 µg/mL whole cell lysate was added to each well of a
96-well microplate, and the plate was incubated for 3 h at 25 ◦C. Each well was then washed three
times. The mixture was diluted with dilution buffer to yield 20× nicotinamide adenine dinucleotide
hydrogen (NADH) and 100× dye. The mixture was carefully added to each well (200 µL per well).
Absorbance was measured immediately at 450 nm every minute for 30 min using an ELISA microplate
reader (BMG Labtech, Ortenberg, Germany). Raw data were expressed as rate (mOD/min) per µg/mL
of cell lysate.

4.12. Evaluation of Electron Transport Chain Complex IV Activity

Complex IV activity was measured using a Complex IV Enzyme Activity Assay kit (Abcam)
following the manufacturer’s instructions. Briefly, 5 mg/mL of each sample was added to wells of a
microplate and incubated for 3 h at 25 ◦C. The enzyme present in each well was immobilized by the
bound monoclonal antibody. Each well was washed three times using potassium phosphate buffer.
The solution was removed and replaced with 200 µL of assay solution containing potassium phosphate
buffer and cytochrome complex (cyt c). Absorbance was measured every 1 to 5 min for 2 h at 550 nm
using an ELISA microplate reader (BMG Labtech). Complex IV activity was calculated as (absorbance
at time 1−absorbance at time 2)/∆t (min). The initial rate was decreased due to inhibition of complex
IV reaction; therefore, the activity rate was always expressed as the initial rate of oxidation of cyt c.

4.13. Statistical Analysis

Results were expressed as mean ± standard error of the mean (SEM). Significant differences
between groups were assessed using two-tailed Student’s t-test, or one- or two-way analysis of variance
(ANOVA). Three or more groups were compared using Dunnett’s or Tukey’s post-hoc test. Data were
considered significantly different at p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4545/s1.
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