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Abstract: Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens of the
silkworm. Cytochrome c (cytc) showed a significant response to BmNPV infection in our previous
transcriptome study. However, little is known about the role of Bombyx mori cytc (Bmcytc) in resistance
to BmNPV infection. In this study, the expression levels analysis of Bmcytc showed stable expression
levels in selected tissues of the resistant strain AN following BmNPV infection, while there was
downregulation in the susceptible strain p50, except in the malpighian tubule. To further study
the role of Bmcytc in viral infection, Bmcytc was knocked down with siRNA in vitro, resulting in
significant downregulation of selected downstream genes of the mitochondrial pathway, including
Bmapaf, Bmcaspase-Nc, and Bmcaspase-1; this was also confirmed by overexpression of Bmcytc using the
pIZT/V5-His-mCherry insect vector, except Bmcaspase-1. Moreover, knockdown of Bmcytc significantly
promoted the infection process of BmNPV in vitro, while the infection was inhibited by overexpression
of Bmcytc at the early stage and subsequently increased rapidly. Based on these results, we concluded
that Bmcytc plays a vital role in BmNPV infection by regulating the mitochondrial apoptosis pathway.
Our work provides valuable data for the clarification of the mechanism of silkworm resistance to
BmNPV infection.
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1. Introduction

The silkworm Bombyx mori L. (Lepidoptera: Bombycidae) has been domesticated in China for
more than 5000 years and generates the main income of some farmers. BmNPV is one of the primary
silkworm pathogens that causes serious economic losses every season. Interestingly, certain silkworm
strains show high resistance to BmNPV infection [1], but the underlying molecular mechanism is still
far from being understood. Moreover, the silkworm is a good model organism for the study of insect
genetics and immunology [2,3].

Apoptosis, or programmed cell death (PCD), is a physiological process characteristic of pluricellular
organisms. It leads to cellular self-destruction [4,5], which has been reported widely in defense against
viral infection [6]. In the mammalian cell, the mitochondrial apoptotic pathway releases several
proapoptotic proteins from the intermembrane space of mitochondria [5]. Cytc as a soluble protein is
localized in the intermembrane space and is loosely attached to the surface of the inner mitochondrial
membrane [7]. Its release from mitochondria is a key event and plays an important role in initiating
apoptosis in the mammalian cell [8]. However, the role of cytc is not clear in insect cell apoptosis. It has
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been reported that cytc is not involved in apoptosis in Drosophila by the release from mitochondria [9].
In another study, mitochondria were involved in host defenses against environmental pressure by
releasing cytc into the cytoplasm to activate apoptosis in the Spodoptera litura and Spodoptera frugiperda
(Sf9) cell line [10,11]. Therefore, some insects can rely on the mitochondrial apoptosis pathway to
protect themselves from an external pressure, such as viral infection.

Cytc is an essential component of the mitochondrial respiratory chain. It has been reported widely
that cytc showed a significant response to viral infection. Liu et al., reported that cytc activates the
apoptotic signaling pathway to defend against Anagrapha falcifera Multiple Nuclear Polyhedrosis Virus
(AfMNPV) infection in Lepidopteran Spodoptera litura cells [12]. Carthy et al., found that cytc released
from mitochondria may be involved in activating caspase after coxsackievirus B3 infection, and this
contributes to the loss of host cell viability and progeny virus release [13]. Machida et al., reported
that inhibition of cytc release resulted in suppression of Fas-mediated cell death, which could cause
hepatitis C virus persistent infection in transgenic mice [14]. In our previous transcriptome study, cytc
showed a significant response in resistant strain BC9 following BmNPV infection [15], and it might be
involved in regulating the mitochondrial apoptosis pathway to defend against BmNPV infection, but
that still needs further study.

According to literature retrieval, there is no related study available to date on Bmcytc response to
BmNPV infection in the silkworm. In this study, the expression levels of Bmcytc in different tissues
of different resistant silkworm strains following BmNPV infection were analyzed using RT-qPCR to
identify the relationship between Bmcytc and BmNPV. To further confirm the role of Bmcytc in response
to BmNPV infection, the expression of Bmcytc was knocked down and overexpressed using siRNA and
the insect pIZT/V5-His-mCherry vector in vitro, respectively. Subsequently, the variation of BmNPV
infection and the expression levels of selected downstream genes were analyzed after knockdown and
overexpression of Bmcytc in BmN cells using RT-qPCR.

2. Results

2.1. Characterization of the Bmcytc Sequence

The full-length cDNA of Bmcytc (GenBank accession number: EU839987) contains a 122 bp 5′-UTR,
a 159 bp 3′-UTR, and a complete 327 bp open reading fragment (ORF) which encodes a 108-amino acid
protein. The theoretical pI and MW are 9.63 and 11.75 kDa, respectively. The functional domain of the
Bmcytc protein is the cytochrome_C domain, which is located from amino acids 8 to 107 (Figure S1).

The homologous align analysis showed that the Bmcytc amino acid sequence kept a high
conservation among different species (Figure S2). BLASTP blast showed that the Bmcytc amino
acid sequence is most similar to that of Vanessa tameamea (XP_026495965.1) (96% identity),
followed by Amyelois transitella (XP_013199433.1), Danaus plexippus plexippus (OWR53222.1), Pieris
rapae (XP_022127978.1) (94.44% identity), Plutella xylostella (NP_001292408.1) (93.52% identity),
Hyposmocoma kahamanoa (XM_026465578.1), Papilio machaon (XP_014360069.1) (92.59% identity), Papilio
xuthus (XP_013179876.1), Spodoptera litura (XP_022822995.1) (91.67% identity), Bactrocera dorsalis
(XP_026321363.1), Ostrinis furnacalis (AHV85214.1) (90.74% identity), and Zeugodacus cucurbitae
(XP_011189550.1) (89.81% identity). Therefore, the high conservation of cytc amino acids among
different species shows that Bmcytc may play a vital role in the apoptosis pathway in the silkworm.

The CDS sequence of Bmcytc and those in other species were derived from NCBI, which were used
to analyze the evolutionary relationships of cytc among different species. Based on the DNA/Protein
model of Dayhoff + G, a phylogenetic tree including Bmcytc and 15 other homologs was generated
(Figure S3). Bmcytc and these homologous genes were precisely classified into four categories, namely
Lepidoptera, Diptera, Rodentia, and Brassicales. The homologous gene sequences of Bmcytc in M.
musculus and Arabidopsis shared a low sequence identity with Bmcytc, indicating that cytc gene in the
earlier species might have diverged before the appearance of these orders during evolution.



Int. J. Mol. Sci. 2019, 20, 4325 3 of 14

2.2. The Spatio-Temporal Expression Pattern of BMCYTC

To determine the specific biological function of Bmcytc, the relative expression levels of Bmcytc in
different stages and different tissues of the p50 strain were detected by RT-PCR. The highest expression
levels of Bmcytc were in the head and the lowest were in the hemolymph in different tissues (Figure 1A).
In different developmental stages, the highest expression level of Bmcytc was in the moth (Figure 1B).
During the molting of 4th instar, Bmcytc showed a significantly different expression (Figure 1C).
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the susceptible strain p50 following BmNPV infection (except in the malpighian tubule). 

Figure 1. The spatiotemporal expression analysis of Bmcytc. (A) The expression levels of Bmcytc
in different tissues. (B) The expression levels of Bmcytc in different developmental stages. (C) The
expression levels of Bmcytc during molting stages. The data were normalized using BmGAPDH and are
represented as the mean ± standard error of the mean, from three independent experiments. Relative
expression levels were calculated using the 2−∆∆Ct method. Statistical analysis was performed using
GraphPad Prism 5 software. The difference between the samples was analyzed by the t-test method.
Significant differences are indicated by different letters, e.g., a, b, c (p <0.05).

2.3. Bmcytc Showed Significant Response to BmNPV Infection in Different Tissues

To determine the response of Bmcytc to BmNPV, two different resistant silkworm strains AN
and p50 were selected. The resistant levels of selected silkworm strain AN and p50 were determined
in our previous study [16,17] the LC50 value of AN was >10 9 OB/mL, p50 was about 10 5 OB/mL.
The expression patterns of Bmcytc in the midgut, hemolymph, malpighian tubule and fat body of
different resistant strains following BmNPV infection were analyzed using RT-qPCR (Figure 2). The
expression of Bmcytc kept a stable level in four selected tissues of the resistant strain AN following
BmNPV infection, while it was significantly downregulated in the selected tissues of the susceptible
strain p50 following BmNPV infection (except in the malpighian tubule).
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BmGAPDH and are represented as the mean ± standard error of the mean, from three independent 
experiments. Relative expression levels were calculated using the 2-△△Ct method. Statistical analysis 
was performed using GraphPad Prism 5 software. The difference between the samples was 
analyzed by the t-test method. Significant differences are indicated by different letters, e.g., a, b, c (p 
<0.05). 
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Bmcaspase-Nc, and Bmcaspase-1. BmN cells transfected with siRNA at 24 h, 48 h, and 72 h were 
collected as a template. The expression level of Bmapaf was downregulated at 24 h after knockdown 
of Bmcytc and kept a low expression level at the two selected time points (Figure 3B). The 
expression levels of Bmcaspase-1 and Bmcaspase-Nc were downregulated at 48 h after knockdown of 
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Figure 2. Expression analysis of Bmcytc in different tissues of different resistant strains following
BmNPV infection. Expression levels of Bmcytc in midgut (A), fat body (B), malpighian tubule (C), and
hemolymph (D) at 24 h following BmNPV infection. The data were normalized using BmGAPDH
and are represented as the mean ± standard error of the mean, from three independent experiments.
Relative expression levels were calculated using the 2−∆∆Ct method. Statistical analysis was performed
using GraphPad Prism 5 software. The difference between the samples was analyzed by the t-test
method. Significant differences are indicated by different letters, e.g., a, b, c (p < 0.05).

2.4. Selected Downstream Genes Were Downregulated after Knockdown of BMCYTC in BmN Cells

To further study the molecular mechanism of Bmcytc response to BmNPV infection in BmN cells,
the siRNA targeting the Bmcytc functional domain was used to knock down the expression of Bmcytc.
The analysis of the effects of siRNA dose indicated that 4 µg of siRNA could be used for RNAi of Bmcytc
in vitro (Figure S4). The expression levels of Bmcytc were determined in BmN cells after transfecting
with siRNA at 24 h, 48 h, and 72 h using RT-qPCR. The blank control was transfected with free reagent,
the negative control was transfected with siRNA of GFP. The expression of Bmcytc was knocked down
significantly after transfecting with siRNA at 24 h and reached the lowest at 72 h (Figure 3A).

Referring to the mitochondrial apoptosis pathway of Drosophila, three homologous genes of
Drosophila downstream of Bmcytc were selected for further analysis, including Bmapaf, Bmcaspase-Nc,
and Bmcaspase-1. BmN cells transfected with siRNA at 24 h, 48 h, and 72 h were collected as a template.
The expression level of Bmapaf was downregulated at 24 h after knockdown of Bmcytc and kept a low
expression level at the two selected time points (Figure 3B). The expression levels of Bmcaspase-1 and
Bmcaspase-Nc were downregulated at 48 h after knockdown of Bmcytc and kept a low expression level
at the next two selected time points (Figure 3C,D).
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Figure 3. Expression analysis of selected downstream genes after knockdown of Bmcytc at different
times. (A) The expression analysis of Bmcytc after transfecting with siRNA at different times, siRNA
of GFP was used as negative control. The expression analysis of Bmapaf (B), Bmcaspase-NC (C), and
Bmcaspase-1 (D) after knockdown of Bmcytc at different times. The data were normalized using
BmGAPDH and are represented as the mean ± standard error of the mean, from three independent
experiments. Relative expression levels were calculated using the 2−∆∆Ct method. Statistical analysis
was performed using GraphPad Prism 5 software. The difference between the samples was analyzed
by the t-test method. Significant differences are indicated by asterisks (p <0.05). NS, not significant.
*, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.5. Knockdown of Bmcytc Promotes BmNPV Infection in BmN Cells

To investigate the role of Bmcytc in BmNPV infection, 20µL of culture medium containing BV-EGFP
(1 × 10 8 pfu/mL) was added to BmN cells that had been transfected with siRNA for 24 h. BmNPV
infection was recorded using the fluorescence microscope at 24 h, 48 h, and 72 h after inoculation
with BV-EGFP while Z-DEVD-FMK was used as positive control. The infection signal appeared early
in the siRNA treatment group as compared to the control group at 24 h (Figure 4A), and this was
more significant at 48 h and 72 h (Figure 4B,C). To further validate this point, one capsid gene vp39 of
BmNPV was selected to analyze the viral replication in different groups using RT-qPCR. The number
of BmNPV in the siRNA treatment group was significantly more than in the control group at 48 h and
72 h (Figure 4D). These data indicated that Bmcytc played an important role during BmNPV infection.
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ligated with pIZT/V5-His-mCherry vector between Kpn I and Xba I. The recombinant 
overexpression vector was transfected into BmN cells using the transfection reagent, and 
subsequently 20 μL of culture medium containing BV-EGFP (1 × 10 8 pfu/mL) was added to BmN 
cells, the pIZT/V5-His-mCherry was used as negative control. BmNPV infection was significantly 
inhibited after overexpression of Bmcytc at 24 h as compared to the control group (Figure 5A,D), 
while it subsequently increased rapidly at 48 h and 72 h (Figure 5B,C,D). 

Figure 4. Analysis of BmNPV infection in BmN cells following knockdown of Bmcytc at different times.
(A) 24 h after BV-EGFP infection. (B) 48 h after BV-EGFP infection. (C) 72 h after BV-EGFP infection.
(D) The expression analysis of vp39 after knockdown of Bmcytc at different times. Scale bar = 200 µm.
Trans (white), optical transmission. EGFP (Green), expressed following the replication of BV. siRNA
of GFP was used as negative control, Z-DEVD-FMK was used as positive control. The data were
normalized using BmGAPDH and are represented as the mean ± standard error of the mean, from
three independent experiments. Relative expression levels were calculated using the 2−∆∆Ct method.
Statistical analysis was performed using GraphPad Prism 5 software. The difference between the
samples was analyzed by the t-test method. Significant differences are indicated by asterisks (p < 0.05).
NS, not significant. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.6. Overexpression of Bmcytc Inhibits BmNPV Early Infection in BmN Cells

To further validate the results of RNAi as described above, Bmcytc was overexpressed in BmN
cells using the pIZT/V5-His-mCherry vector. The ORF of Bmcytc without termination codon was
ligated with pIZT/V5-His-mCherry vector between Kpn I and Xba I. The recombinant overexpression
vector was transfected into BmN cells using the transfection reagent, and subsequently 20 µL of culture
medium containing BV-EGFP (1 × 10 8 pfu/mL) was added to BmN cells, the pIZT/V5-His-mCherry
was used as negative control. BmNPV infection was significantly inhibited after overexpression of
Bmcytc at 24 h as compared to the control group (Figure 5A,D), while it subsequently increased rapidly
at 48 h and 72 h (Figure 5B–D).
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2.7. Overexpression of Bmcytc Influences the Expression of Selected Downstream Genes in BmN Cells 

The expression levels of Bmcytc were detected following transfection with 
pIZT/V5-His-mCherry-Bmcytc in BmN cells using RT-qPCR. The results showed that the 
expression level of Bmcytc was significantly increased in the experimental groups as compared to 
the control groups at 24 h, 48 h, and 72 h (Figure 6A). The expression levels of Bmapaf and 
Bmcaspase-Nc were significantly upregulated after overexpression of Bmcytc at 24 h and 48 h, and 
subsequently back to the basal levels at 72 h (Figure 6B,C). However, the expression of Bmcaspase-1 
showed an opposite trend after overexpression of Bmcytc at 48 h and 72 h (Figure 6D). 

Figure 5. Analysis of BmNPV infection after overexpression of Bmcytc in BmN cells at different times.
(A) 24 h after BV-EGFP infection. (B) 48 h after BV-EGFP infection. (C) 72 h after BV-EGFP infection.
(D) The expression analysis of vp39 after knockdown of Bmcytc at different times. Scale bar = 200 µm.
Trans (white), optical transmission. EGFP (Green), expressed following the replication of BV. mCherry
(Red), fused expression with Bmcytc protein. pIZT/V5-His-mCherry was negative control. The data
were normalized using BmGAPDH and are represented as the mean ± standard error of the mean, from
three independent experiments. Relative expression levels were calculated using the 2−∆∆Ct method.
Statistical analysis was performed using GraphPad Prism 5 software. The difference between the
samples was analyzed by the t-test method. Significant differences are indicated by asterisks (p <0.05).
NS, no significant. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.7. Overexpression of Bmcytc Influences the Expression of Selected Downstream Genes in BmN Cells

The expression levels of Bmcytc were detected following transfection with
pIZT/V5-His-mCherry-Bmcytc in BmN cells using RT-qPCR. The results showed that the
expression level of Bmcytc was significantly increased in the experimental groups as compared to the
control groups at 24 h, 48 h, and 72 h (Figure 6A). The expression levels of Bmapaf and Bmcaspase-Nc
were significantly upregulated after overexpression of Bmcytc at 24 h and 48 h, and subsequently back
to the basal levels at 72 h (Figure 6B,C). However, the expression of Bmcaspase-1 showed an opposite
trend after overexpression of Bmcytc at 48 h and 72 h (Figure 6D).
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Figure 6. Expression analysis of selected downstream genes after overexpression of Bmcytc at different
times. (A) The expression levels of Bmcytc after transfecting with overexpression vector at different
times, pIZT/V5-His-mCherry was used as negative control. The expression analysis of Bmapaf (B)
Bmcaspase-NC (C) and Bmcaspase-1 (D) after overexpression of Bmcytc at different times. The data were
normalized using BmGAPDH and are represented as the mean ± standard error of the mean, from
three independent experiments. Relative expression levels were calculated using the 2−∆∆Ct method.
Statistical analysis was performed using GraphPad Prism 5 software. The difference between the
samples was analyzed by the t-test method. Significant differences are indicated by asterisks (p < 0.05).
NS, not significant. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.8. Analysis of Apoptosis In Vivo and In Vitro

To analyze the relationship between Bmcytc and apoptosis during BmNPV infection in vitro,
BmN cells containing pIZT/V5-His-mCherry-Bmcytc was incubated with inhibitor Z-DEVD-FMK.
The replication of BmNPV was analyzed after overexpression of Bmcytc and the treatment with
Z-DEVD-FMK using RT-qPCR. The results showed that the number of BmNPV increased after
treatment with Z-DEVD-FMK, which indicated that the mitochondrial apoptosis pathway activated by
Bmcytc could be affected by inhibitor Z-DEVD-FMK (Figure 7A).

To analyze apoptotic responses of cells in NPV infection in vivo, the inhibitor Z-DEVD-FMK
and inducer NSC348884 were used to analyze the infection variation of BmNPV in different resistant
silkworm strains. The results indicated that the replication of BmNPV was faster in resistant strain AN
at 72 h after injection with inhibitor Z-DEVD-FMK than the control group without treatment (Figure 7B).
Moreover, the apoptosis induced by inducer NSC348884 could significantly inhibit the replication of
BmNPV in susceptible strain p50 at 48 h (Figure 7C). These results indicated that apoptosis plays an
important role in response against BmNPV infection.



Int. J. Mol. Sci. 2019, 20, 4325 9 of 14
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 15 

 

 
Figure 7. Analysis of the replication of BmNPV in vivo and in vitro. (A) The replication of BmNPV 
in BmN cells after overexpression of Bmcytc and treatment with inhibitor Z-DEVD-FMK. (B) The 
replication of BmNPV in different silkworm strains after treatment with inhibitor and inducer at 
different times. The ratios obtained by treatment with inhibitor or inducer against injected with 
sterile water. The data were normalized using BmGAPDH and are represented as the mean ± 
standard error of the mean, from three independent experiments. Relative expression levels were 
calculated using the 2-△△Ct method. Statistical analysis was performed using GraphPad Prism 5 
software. The difference between the samples was analyzed by the t-test method. Significant 
differences are indicated by asterisks (p < 0.05). NS, not significant. *, p < 0.05; **, p < 0.01; ***, p < 
0.001. 

3. Discussion 

BmNPV is one of the main pathogens of silkworm disease and causes serious economic losses 
every year; however, the molecular mechanism of silkworm resistance to BmNPV infection is still 
unclear. In our previous study, the RNA-Seq transcriptome of the midgut of resistant near-isogenic 
line BC9 and susceptible recurrent parent p50 following BmNPV infection was selected to 
systematically screen candidate differentially expressed genes that were involved in resistance to 
BmNPV infection. Among them, Bmcytc showed a significant upregulation in BC9 following 
BmNPV infection, while it was downregulated in p50, indicating it might play a vital role in 
BmNPV infection. However, the underlying molecular mechanism of Bmcytc in response to 
BmNPV infection is still unknown. In this study, the analysis of sequence characterization and the 
role of Bmcytc in response to BmNPV infection was studied, and are described as follows. 

To analyze the characterization of the nucleotide and amino acid sequence of Bmcytc, the 
biological information methods were adopted. The multiple sequence alignment analysis using 
DNAMAN 8 software showed that the Bmcytc amino acid sequence shared a high identity with its 
homologous protein sequence in other species (Figure S2), which was also consistent with the result 
of phylogenetic tree analysis (Figure S3), indicating its role in the apoptosis pathway. Moreover, the 
expression profiles of Bmcytc in different developmental stages and tissues were analyzed using 
RT-qPCR. Bmcytc showed a relatively higher expression level during the molting stage, suggesting 
that the variation of Bmcytc during ecdysis might be impacted by molting hormones (Figure 1B,C). 
Moreover, Bmcytc showed higher expression levels in the midgut and head, which might indicate 
its important role in the process of BmNPV infection in the midgut and head cells (Figure 1A). 

Figure 7. Analysis of the replication of BmNPV in vivo and in vitro. (A) The replication of BmNPV in
BmN cells after overexpression of Bmcytc and treatment with inhibitor Z-DEVD-FMK. The replication
of BmNPV in different silkworm strains after treatment with inhibitor (B) and inducer (C) at different
times. The ratios obtained by treatment with inhibitor or inducer against injected with sterile water.
The data were normalized using BmGAPDH and are represented as the mean ± standard error of the
mean, from three independent experiments. Relative expression levels were calculated using the 2−∆∆Ct

method. Statistical analysis was performed using GraphPad Prism 5 software. The difference between
the samples was analyzed by the t-test method. Significant differences are indicated by asterisks
(p < 0.05). NS, not significant. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3. Discussion

BmNPV is one of the main pathogens of silkworm disease and causes serious economic losses
every year; however, the molecular mechanism of silkworm resistance to BmNPV infection is still
unclear. In our previous study, the RNA-Seq transcriptome of the midgut of resistant near-isogenic line
BC9 and susceptible recurrent parent p50 following BmNPV infection was selected to systematically
screen candidate differentially expressed genes that were involved in resistance to BmNPV infection.
Among them, Bmcytc showed a significant upregulation in BC9 following BmNPV infection, while it
was downregulated in p50, indicating it might play a vital role in BmNPV infection. However, the
underlying molecular mechanism of Bmcytc in response to BmNPV infection is still unknown. In this
study, the analysis of sequence characterization and the role of Bmcytc in response to BmNPV infection
was studied, and are described as follows.

To analyze the characterization of the nucleotide and amino acid sequence of Bmcytc, the biological
information methods were adopted. The multiple sequence alignment analysis using DNAMAN 8
software showed that the Bmcytc amino acid sequence shared a high identity with its homologous
protein sequence in other species (Figure S2), which was also consistent with the result of phylogenetic
tree analysis (Figure S3), indicating its role in the apoptosis pathway. Moreover, the expression profiles
of Bmcytc in different developmental stages and tissues were analyzed using RT-qPCR. Bmcytc showed
a relatively higher expression level during the molting stage, suggesting that the variation of Bmcytc
during ecdysis might be impacted by molting hormones (Figure 1B,C). Moreover, Bmcytc showed
higher expression levels in the midgut and head, which might indicate its important role in the process
of BmNPV infection in the midgut and head cells (Figure 1A).
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Apoptosis is considered to be a means of innate immunity of insects. Early apoptosis has a
positive effect on inhibiting viral infection by facilitating the phagocytosis of foreign bodies and causing
premature dissociation of infected cells [18]. In this study, the replication of BmNPV was faster in
resistant strain AN at 72 h after injection with apoptosis inhibitor, while inhibited in susceptible strain
p50 at 48 h after injection with apoptosis inducer (Figure 7B,C), which indicated that apoptosis plays
an important role in silkworm larvae in resistance to BmNPV infection. Moreover, the expression
levels of Bmcytc were stable in the four tissues of the resistant strain AN, while downregulation in the
susceptible p50 (except in the malpighian tubule) (Figure 2). These results indicated that the host could
rely on the Bmcytc active mitochondrial apoptosis pathway to respond to BmNPV infection, which was
further validated by overexpression of Bmcytc in BmN cells after treatment with inhibitor (Figure 7A).

Our previous transcriptome data showed that Bmcytc and its downstream key genes were related
to BmNPV infection [15]. Combining with relevant reports, we presumed that Bmcytc is involved in
response to BmNPV infection by activating the mitochondrial apoptosis pathway to promote premature
dissociation of infected BmN cells. To prove the hypothesis, the specific siRNA was used to knock
down the expression of Bmcytc in BmN cells. The results showed that knockdown of Bmcytc not
only downregulated the expression of its downstream key genes, including Bmapaf, Bmcaspase-Nc and
Bmcaspase-1 (Figure 3), but also promoted BmNPV infection in BmN cells (Figure 4), indicating that our
inference is reasonable.

Furthermore, to further confirm the variation of BmNPV infection and the expression of
downstream key genes following RNAi of Bmcytc in vitro as described above, Bmcytc was overexpressed
using the pIZT/V5-His-mCherry insect vector by inserting the ORF of Bmcytc and transfecting in BmN
cells (Figure 5A–C). The expression level of Bmcytc was upregulated for 3.5 times at 24 h following
transfection with pIZT/V5-His-mCherry-Bmcytc as compared with control, which was still increased
at 48 h and 72 h (Figure 6A). Moreover, the expression levels of its downstream key genes were
upregulated in the transgenic cell lines (Figure 6B–D), except Bmcaspase-1, possibly because it did
not play an important role in the mitochondrial apoptosis pathway as reported in other species. The
defense of the silkworm against pathogens is through the immune system, including apoptosis and
active substances, such as antibacterial peptides [19]. However, in the later stages of infection, apoptosis
serves as part of the viral strategy to self-propagate and promotes dissemination within the host [20].
This might explain the significant inhibition of BmNPV infection in BmN cells that were transfected
with overexpression vector at 24 h, subsequently increasing rapidly at 48 h and 72 h (Figure 5D).
According to the study as described above, we reached an agreement that Bmcytc plays a crucial role
in the response against BmNPV infection by activating the mitochondrial apoptosis pathway. Taken
together, the role of Bmcytc in response to BmNPV infection will make an important contribution in
elucidating the molecular mechanism of silkworm resistance.

4. Materials and Methods

4.1. Silkworm and BmNPV

The susceptible strain p50 and the resistant strain AN were maintained in the Key Laboratory of
Sericulture, School of Life Sciences, Jiangsu University of Science and Technology University, Zhenjiang,
China. The first three instar larvae were reared on a fresh artificial diet at 26 ± 1 ◦C, 75 ± 5% relative
humidity, and a 12 h day/night cycle. The rearing temperature for the last two instars was reduced to
24 ± 1 ◦C, but the other conditions remained unchanged.

All larvae were starved for 24 h at the first day of the fifth instar. Thirty larvae from each group
were fed with 5 µL of BmNPV suspended in sterile water (1.0 × 10 5 OB/mL) per larva, sterile water
was used as control. Budded virus containing EGFP-tagged (BV-EGFP) BmNPV were maintained in
our laboratory. Polyhedrin promoter was used, the EGFP was inserted between BamH I and Xho I,
which is not fused with any protein. The amount of BV-EGFP (pfu/mL) was determined as described in
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our previous study [21]. The equal volume culture containing BV-EGFP (1 × 10 8 pfu/mL) was added
into the medium to conduct the infection process in different treatment groups.

4.2. Bioinformatics Analysis

The DNAMAN 8.0 software (Lynnon Corporation, Quebec, Canada) was used to analyze the cDNA
and deduce the protein sequence of Bmcytc. The SMART server (http://smart.embl-heidelberg.de/)
was used to predict its conserved motif. The BLASTP tool (http://www.ncbi.nlm.nih.gov/) was used
to analyze the sequences of orthologs. The MUSCLE module of the MEGA7 software was used to
align the amino acid sequences among different species. A maximum-likelihood tree was generated
using MEGA7 with a bootstrap of 1000 replications, and the best DNA/Protein model of Dayhoff + G
was adopted.

4.3. Sample Preparation, RNA Extraction and cDNA Synthesis

Silkworms at the first day of 5th instar were starved for 24 h and then fed with 5 µL BmNPV
(1.0 × 105 OB/mL) per larva. The samples were collected after BmNPV infection at 24 h. The head,
midgut, hemolymph, fat body, malpighian tubule and epidermis of 30 larvae were dissected and mixed
together to minimize individual genetic differences. The whole bodies of thirty larvae in different
developmental stages were collected. All samples were frozen immediately in liquid nitrogen and
stored at −80 ◦C.

The total RNA of the silkworm tissues was extracted with TRIzol Reagent (Invitrogen, New York,
USA) according to the manufacturer’s instructions. A NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, New York, NY, USA) was used to quantify the RNA concentrations and purity.
The RNA integrity was confirmed by 1% agarose gel electrophoresis. The first strand cDNA was
synthesized using an RT reagent kit (TaKaRa Biotechnology Co. Ltd., Dalian, China) according to the
manufacturer’s instructions.

4.4. Quantitative Reverse Transcription PCR (RT-qPCR)

The expression level of Bmcytc was determined by RT-qPCR. All primer sequences are listed
in Table 1. RT-qPCR reactions were prepared with the NovoStart®SYBR qPCR SuperMix Plus
(Novoprotein, Nanjing, China) by following the manufacturer’s instructions. Reactions were carried
out using the LightCycler® 96 System (Roche, Switzerland, France). The thermal cycling profile
consisted of an initial denaturation at 95 ◦C for 5 min, then 40 cycles at 95 ◦C for 5 s and 60 ◦C for 31 s.
All samples were performed in triplicate. Relative expression levels were calculated using the 2−∆∆CT

method according to the protocol described by Livak et al. [22]. B. mori glyceraldehyde-3-phosphate
dehydrogenase (BmGAPDH) was used as an internal control [23]. Statistical analysis was performed
using GraphPad Prism 5 software (GraphPad Software, San Diego, USA). The t-test method was used
to analyze the acquired data. A p-value of <0.05 was considered to be statistically significant.

Table 1. List of primers used in this study.

Gene Name Forward Primers (5′-3’) Revers Primers (5′-3’)

Bmcytc TCATACTCCGATGCCAATAAAGC CATTTGCCTTCTTGAGTCCAGC
BmApaf TCACAACCCTCTAAAATCACACCAG CGACAGCCAGTAATGGGTGTATGAG

BmCaspase-Nc GAGGACGATGTGAGCAGGGAT TTCAGCAGGAACGAAATGTAGC
BmCaspase-1 AACGGCAACGAAGACGAAGG GGTGCCCGTGCGAGATTTTA
BmGAPDH CGATTCAACATTCCAGAGCA GAACACCATAGCAAGCACGAC

VP39 CAACTTTTTGCGAAACGACTT GGCTACACCTCCACTTGCTT
Bmcytc KX GGGGTACCATGGGTGTACCTGCAGGAAA GCTCTAGACTTGGTAGCAGATTTGAGATAGG

4.5. Synthesis of siRNA

To knockdown the expression of Bmcytc in BmN cells, two specific targets in the functional domain
of Bmcytc were selected. The specific target of green fluorescent protein (GFP) was used as negative

http://smart.embl-heidelberg.de/
http://www.ncbi.nlm.nih.gov/
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control. The siRNA oligos were designed and synthesized by Sangon Biotechnology (Table 2). The In
Vitro Transcription T7 Kit (for siRNA synthesis) (TaKaRa Biotechnology Co. Ltd., Dalian, China) was
used to synthesize siRNA according to the manufacturer’s instructions. The concentration and purity
of the siRNA were measured by a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, New
York, NY, USA). The integrity of the siRNA was determined by 3% agarose gel electrophoresis. The
siRNA with good quality was stored at −80 ◦C until use.

Table 2. Primers used to synthesize siRNA.

Primer Names Sequences (5′-3′)

Bmcyto-1 Olig-1 GATCACTAATACGACTCACTATAGGGGGACCGAATCTACATGGATTT
Bmcyto-1 Olig-2 AAATCCATGTAGATTCGGTCCCCCTATAGTGAGTCGTATTAGTGATC
Bmcyto-1 Olig-3 AAGGACCGAATCTACATGGATCCCTATAGTGAGTCGTATTAGTGATC
Bmcyto-1 Olig-4 GATCACTAATACGACTCACTATAGGGATCCATGTAGATTCGGTCCTT
Bmcyto-2 Olig-1 GATCACTAATACGACTCACTATAGGGCCTTATTGCCTATCTCAAATT
Bmcyto-2 Olig-2 AATTTGAGATAGGCAATAAGGCCCTATAGTGAGTCGTATTAGTGATC
Bmcyto-2 Olig-3 AACCTTATTGCCTATCTCAAACCCTATAGTGAGTCGTATTAGTGATC
Bmcyto-2 Olig-4 GATCACTAATACGACTCACTATAGGGTTTGAGATAGGCAATAAGGTT

GFP Olig-1 GATCACTAATACGACTCACTATAGGGGGAGTTGTCCCAATTCTTGTT
GFP Olig-2 AACAAGAATTGGGACAACTCCCCCTATAGTGAGTCGTATTAGTGATC
GFP Olig-3 AAGGAGTTGTCCCAATTCTTGCCCTATAGTGAGTCGTATTAGTGATC
GFP Olig-4 GATCACTAATACGACTCACTATAGGGCAAGAATTGGGACAACTCCTT

4.6. Construction of pIZT/V5-His-mCherry-Bmcytc Overexpression Vector

The ORF of Bmcytc without a termination codon was amplified from p50 midgut cDNA with
the primers Bmcytc KX (Table 1; the underlined portions indicate the Kpn I and Xba I restriction sites,
respectively). The purified PCR products were ligated with pMD-19T vector for sequencing. The
ORF of Bmcytc and the pIZT/V5-His-Mcherry vector were digested with Kpn I and Xba I (TaKaRa
Biotechnology Co. Ltd., Dalian, China) and then ligated with T4 DNA ligase (TaKaRa Biotechnology
Co. Ltd., Dalian, China). The recombinant expression vector pIZT/V5-His-mCherry-Bmcytc was
confirmed by Kpn I and Xba I enzyme digestion and sequencing by Sangon Biotechnology.

4.7. BmN Cell Culture and Transfection

The silkworm ovarian cell line, BmN, was cultured in TC-100 (AppliChem, Germany)
supplemented with 10% (v/v) fetal bovine serum (FBS) (Thermo Scientific, New York, USA), 200 µg/mL
penicillin, and 100 µg/mL streptomycin at 28 ◦C. siRNA and overexpression vector were transfected
with NeofectTM DNA transfection reagent (NEOFECT, Beijing, China) by following the manufacturer’s
instructions. Briefly, BmN cells were seeded into the 3 cm2 culture flasks (approximately 1 × 10
5 cells/well) before transfection. 4 µg siRNA or vector and 4 µL transfection reagent were added
successively into 200 µL serum-free TC-100 to prepare transfection solution, which was added
subsequently into the culture medium.

Cellular fluorescence images were taken using a Leica inverted research grade microscope
DMi3000B camera and processed with the Leica Application Suite V4.6 software (Leica, Wetzlar,
Germany).

4.8. Inhibition and Induction of Apoptosis

Z-DEVD-FMK and NSC348884 reagents (Topscience, Beijing, China) were used for inhibition
and induction of apoptosis, respectively. The final concentrations 5 µM and 10 µM of NSC348884 and
Z-DEVD-FMK were selected according to the manufacturers’ instruction, respectively. The inhibition
and induction effects were analyzed at 24 h, 48 h, and 72 h after treatment with Z-DEVD-FMK
and NSC348884.
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4.9. Genomic DNA Extraction

Genomic DNA was extracted from the whole body of silkworm larvae and BmN cells with DNA
extraction buffer (containing 100 mM Tris-HCl pH 7.5, 100 mM ethylenediaminetetra-acetic acid,
100 mM NaCl, and 0.5% sodium dodecyl sulfate), incubated in 65 ◦C for 30 min, mixed with the
mixture of lithium chloride monohydrate (LiCl)/potassium Acetate (KAc) (containing 4.3 M LiCl and
1.4 M KAc), purified with a isopropanol and 75% ethyl alcohol precipitation extraction, followed by
RNaseA treatment. The integrity, purity, and concentration of DNA were generated as description of
RNA above.
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Abbreviations

B. mori Bombyx mori
Cytc Cytochrome c
BmNPV Bombyx mori nucleopolyhedrovirus
PCD Programmed cell death
Sf9 Spodoptera frugiperda
AfMNPV Anagrapha falcifera Multiple Nuclear Polyhedrosis Virus
BV-EGFP Budded virus containing EGFP-tagged
RT-qPCR Quantitative reverse transcription PCR
BmGAPDH B. mori glyceraldehyde-3-phosphate dehydrogenase
FBS Fetal bovine serum
ORF Open reading fragment
GFP Green fluorescent protein
Apaf Apoptotic Protease-Activating Factor
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