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Abstract: Solvation effects play a key role in chemical and biological processes. The microscopic
properties of water near molecular surfaces are radically different from those in the bulk. Furthermore,
the behavior of water in confined volumes of a nanometer scale, including transmembrane pores of
ion channels, is especially nontrivial. Knowledge at the molecular level of structural and dynamic
parameters of water in such systems is necessary to understand the mechanisms of ion channels
functioning. In this work, the results of molecular dynamics (MD) simulations of water in the pore
and selectivity filter domains of TRPV1 (Transient Receptor Potential Vanilloid type 1) membrane
channel are considered. These domains represent nanoscale volumes with strongly amphiphilic
walls, where physical behavior of water radically differs from that of free hydration (e.g., at protein
interfaces) or in the bulk. Inside the pore and filter domains, water reveals a very heterogeneous
spatial distribution and unusual dynamics: It forms compact areas localized near polar groups of
particular residues. Residence time of water molecules in such areas is at least 1.5 to 3 times larger
than that observed for similar groups at the protein surface. Presumably, these water “blobs” play
an important role in the functional activity of TRPV1. In particular, they take part in hydration of
the hydrophobic TRPV1 pore by localizing up to six waters near the so-called “lower gate” of the
channel and reducing by this way the free energy barrier for ion and water transport. Although
the channel is formed by four identical protein subunits, which are symmetrically packed in the
initial experimental 3D structure, in the course of MD simulations, hydration of the same amino acid
residues of individual subunits may differ significantly. This greatly affects the microscopic picture of
the distribution of water in the channel and, potentially, the mechanism of its functioning. Therefore,
reconstruction of the full picture of TRPV1 channel solvation requires thorough atomistic simulations
and analysis. It is important that the naturally occurring porous volumes, like ion-conducting protein
domains, reveal much more sophisticated and fine-tuned regulation of solvation than, e.g., artificially
designed carbon nanotubes.

Keywords: anomalous water diffusion; computer simulations; ion channel gating; molecular
dynamics; nano-size water pore; physico-chemical properties of confined water; protein-water
interactions; TRPV1 channel permeability for water; water dynamics; water H-bonding

1. Introduction

The behavior of water near molecular surfaces is known to be critically important in chemistry
and biology [1,2]. Thus, in a protein hydration shell, it presumably plays a sufficient role in many
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biophysical processes and defines pivotal protein properties, like protein folding (water expulsion from
a hydrophobic core mediates the rate of the late stage folding [1]); ligand binding (water molecules can
affect the selectivity of a binding site [2]); protein aggregation (accelerated water dynamics speeds
up the growth of aggregates by facilitating the binding of new peptide monomers [3]); thermal
stability (strong protein–water interactions prevent unfolding of thermophilic proteins [4]), and so on.
Nontrivial dynamics of water was also reported on the water/membrane interface and inside lipid
bilayers [5]. These effects were associated with the functioning of cell membranes, for example, with
their permeation for water and other substances, adsorption of proteins, protein–protein interactions
in membranes, etc.

Experimental studies and atomistic simulations showed that water molecules in a solute hydration
shell (e.g., proteins, membranes) have retarded dynamics compared to the bulk water by a factor ≈2 to
6 [6]. Such a slowdown can be explained by the extended molecular jump mechanism. It describes
dynamics of water molecules as fast large-amplitude rotational jumps occurring due to the exchange
of hydrogen bonded (hb) partners, and a relatively slow diffusion process occurring between the
jumps [7]. The typical time constant of molecular rotational motions and hb lifetimes is about 2
ps [8] for bulk water. In the jump model, two factors affect water dynamics in solute hydration shell.
The first one is the excluded volume effect that is caused by reducing the number of probable hb
partners for water molecules due to the water–solute interface topology. The typical slowdown factor
of water in this case is less than two at the local convex solute sites and exceeds two at the concave
sites [9]. The second factor is water–solute hb interactions. This can change the rotational dynamics
of water depending on the type (hb donor or acceptor) and strength of these bonds in comparison
with the water–water hb [10]. The largest deceleration effect is induced by strong hb acceptors, such as
carboxylates, whose slowdown factor also exceeds two.

Both factors have a strong influence on the dynamics of water confined in artificial and natural
nanoscale channels, where the aforementioned “water braking” is much more pronounced. Thus, at the
wall of a relatively broad (ø 24 Å) hydrophilic silica channel, water rotational dynamics are lengthened by
roughly two orders of magnitude compared with the bulk phase [11]. These dynamics assume a broad
distribution of rate constants that arises from the spatial heterogeneity of the channel surface [12]. While
in the internal core region of the channel, nearly bulk-like homogenous dynamics are observed.

In narrow channels (e.g., carbon nanotubes), water molecules are often arranged in a single file
and move as a unit due to strong hb interactions with each other. Water rotational dynamics in such
channels are slowed down to the order of several nanoseconds [13]. For porous microstructures, like
perturbed channels [14] and water permeable membranes [15], the interaction between the channel wall
and water strongly effects the water hb–network (and water dynamics) due to the confinement and affinity
of channels or membrane polar groups. Water permeability through such structures critically depends on
their molecular design. For example, water transfer resistance of aromatic polyamide membranes can be
reduced by enhancing the interfacial hydrophilicity and the interior hydrophobicity of their structures [15].

Besides the above said artificial chemically synthetized nano objects, it is very important to
understand the detailed water behavior in the naturally occurring ones—e.g., in transmembrane (TM)
protein ion channels. For the latter, spatial arrangement of hydrophobic/hydrophilic properties of
the pores is often critical for their functionality. Thus, hydrophilic residues in the pore of aquaporins
(a family of proteins, which provide rapid and highly selective conduction of water and other small
molecules across the cellular membrane) lower the energy barrier for water permeation by offering
replacement interactions to water molecules in order to compensate the loss of water–water hydrogen
bonds [16]. An opposite example of this hydrophobic influence on the channel’s activity is the so-called
hydrophobic gating. In this case, a hydrophobic constriction in a channel pore mediates an energetic
barrier to water and ion permeation by means of partial hydration/dehydration of the pore [17,18].

In this work, the effects of the biological pore on water dynamics were studied using the results of
molecular dynamics (MD) simulations of water in confined conditions of the pore and filter domains
of the TRPV1 ion channel. Vanilloid receptor TRPV1 (Transient Receptor Potential Vanilloid type 1)
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is a non-selective cation channel that accomplishes transport of ions and water molecules through a
cellular membrane in response to capsaicin, temperatures above 42 ◦C, and other physico-chemical
stimuli [19]. TRPV1 is preferentially expressed in neurons of the peripheral neuron system responsible
for sensation to heat, hot spice, pain, itch, and so on [19,20].

TRPV1 is composed of four identical subunits, which form a pathway for ions and water molecules
in a lipid bilayer [21–23]. This pathway has two “bottlenecks”: The so-called upper gate that is formed
by a selectivity filter created by short unstructured segments at the extracellular side of the channel
and the lower gate located in the bundle composed of four crossing TM helices S6 disposed closer to
the cytoplasmic side. The narrowest place of the upper gate is formed by carbonyl oxygen atoms of the
residue Glu643 (the distance between the atoms of diagonally located subunits is 7.6 Å in the open
state [22]). The lower gate bottleneck is formed by side chains of Ile679 (7.6 Å in the open state [22]).

The cavity between the gates (the pore) has mostly hydrophobic walls [24]. However, few polar
groups here are exposed to solvent: Backbone carbonyls of some residues, hydroxyl group of Thr671, and
polar groups of Asn676. Such an organization of the TRPV1 pore represents a rather unusual natural nano
object—strongly amphiphilic confined volume with presumably flexible walls formed by four TRPV1
subunits stabilized by the membrane environment. It is reasonable to assume that the dynamic behavior
of water may drastically differ from that in bulk water as well as on the protein or membrane interfaces.

2. Results

To investigate the dynamics of confined water in TRPV1, the most spatially limited protein
domains were chosen: The pore segments of helices S6 between the upper and lower gates and the
selectivity filter (residues 670–680 and 642–646, respectively, Figure 1). For comparison, three additional
domains were considered: Pore vestibule, the less confined volume, which is formed by the segments
of helices S6 under the lower gate (residues 681–692); TRP helix lying on the cytoplasmic side of
the membrane and strongly exposed to the bulk water (residues 693–711); loops in the extracellular
entrance of the channel—they represent protein regions, which are mostly exposed to bulk water in
TRPV1 (residues 604–625).
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Figure 1. Ribbon representation of TM segments of TRPV1 embedded into hydrated lipid bilayer (three
protein subunits are shown). The protein domains considered in the analysis of water dynamics are
colored: green—extracellular loops (residues 604–625), blue—pore segment of the helices S6 (residues
670–680), and selectivity filter (residues 642–646), dark blue—vestibule segment of the helices S6
(residues 681–692), purple—TRP helices (residues 693–711), gray—other protein parts. Asparagine
residues of TRPV1 further mentioned in the text are marked by black circles. Yellow—lipid bilayer, red
and white dots—water molecules. Dashed arrows mark the levels of the upper and the lower gates.
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2.1. Translational Dynamics of Water along the Pore Axis

Figure 2 shows the pore radius (R), water linear density (%ln) for all water molecules (red curve)
and for molecules bound to protein polar groups via hb (green curve), and translational dynamics
coefficient (D, see Materials and Methods). All these profiles were calculated in a cylinder (ø30 × 100 Å)
oriented along the pore axis. The profiles were averaged over four MD trajectories. Minima of the
curves, R(z) and %ln(z), in the regions of z = −5 . . . 0 Å and 10 . . . 15 Å correspond to the narrowest
zones of the pore: The lower and upper gates. It can be seen that water in the confined protein domains
has about 1.5 to 3 times slower translational dynamics in comparison with the bulk (z < –30 Å and
z > 50 Å). Above and below the gates, the mobility of water molecules increases as the channel expands.
The maximum of D in the pore domain (about 0.4 Å2/ps at z = 3 . . . 5 Å) corresponds to the maximum
of the pore radius (R = 3.5 . . . 4.5 Å). In this region, there is a large cavity located between the gates,
where about a half of the water molecules do not form hb with the protein. Furthermore, the maximum
of D(z) is probably related to the formation of a bulk-like phase similar to the core water in silica
nanotube in [11]. An opposite scenario can be seen in the range of z = 15 . . . 30 Å. Very slow water
dynamics (D ≈ 0.2 Å2/ps) take place in spite of a relatively large pore radius and water density. Such a
slowdown is caused by the unstructured protein regions, which evenly fill about half of the volume
in this region and intense water–protein hb interactions (about 75% of water molecules are bound
to protein).
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Figure 2. Pore radius (R), linear density (ρln), and translational dynamics coefficient of water (D) along
the pore axis (z). Linear density of all water molecules and waters bound to protein polar groups via hb
are shown with red and green, respectively. Thick and thin curves display average values (calculated
over four MD trajectories) and standard deviations, respectively. Hatched areas indicate vestibule,
pore, and filter domains of the protein. TRP helix and loop domains are out of the boundaries of the
volume under consideration (cylinder with the radius of 15 Å). Dashed arrows mark the location of the
upper and the lower gates.
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2.2. Spatial Distribution of Water in the Pore

Water distribution around particular protein groups (atoms) can be investigated with the radial
distribution function (g(r)) [25]. This function for water oxygen atoms calculated around polar (and
charged) and nonpolar groups of the pore and filter domains is shown in Figure 3. For analysis, the
groups with coordination number ≥ 0.2 were chosen. It can be seen that around polar groups there is a
pronounced peak within the radius of 3.5 Å. Because nonpolar groups reveal a broader peak shifted
by 1 Å from the center, they form a low density region in their 3.5-Å neighborhood. The difference
between the water radial distribution around polar and nonpolar groups can be explained by the
water–protein hb interactions, which preferably retain water molecules near the polar groups.
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Figure 3. Radial distribution functions of water oxygens around polar and nonpolar groups of the pore
and filter domains. The most hydrated groups of Gly643, Met644, Gly645, Asp646 (filter) and Tyr671,
Asn676, Ile679, Ala680 (pore) were taken for calculation. r = 0 corresponds to the position of the central
atom of a group (oxygen or nitrogen for polar groups and carbon for nonpolar groups). Dashed vertical
line shows the radius of 3.5 Å around the protein groups.

This water molecules’ localization can be seen in Figure 4, which shows the averaged spatial
density distribution of water, protein, and water–protein hb. Isosurfaces corresponding to densities
of (%) 0.03 (semitransparent green) and 0.1 mol/Å3 (opaque dark green) are indicated. The former
corresponds roughly to the bulk water density. The second shows the areas of anomalously high water
density (water localization areas). High-density areas are preferably disposed near the protein polar
groups, which manifest themselves via water–protein hb interactions (pink areas in Figure 4).
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Figure 4. Spatial density distribution of protein atoms, water molecules, and protein–water hb in the
cylinder (ø30 × 50 Å) along the pore axis averaged over one of the trajectories. Gray—isosurface of
protein density ρ = 0.1 atom/Å3 (part of the protein is removed for clarity), dark green—water with
% = 0.1 mol/Å3, green semi-transparent—water with density similar to the bulk water ρ = 0.03 mol/Å3,
pink—water-protein hb with ρ = 0.1 bound/Å3. Boundaries of the vestibule, pore, and filter domains
are shown on the right. Dashed arrows mark the levels of the upper and the lower gates.

A very heterogeneous water spatial distribution with a high abundance of water localization
areas can be seen in the pore and filter domains, while in the less confined vestibule there is a more
homogeneous water distribution. This picture corresponds to the linear density of water along the pore
axis in Figure 2, where about 70% of the 60 water molecules in the pore and filter domains are bound
to protein polar groups, while in the vestibule domain, only 50% of the 96 waters are bound. Moreover,
the contribution of bonded molecules decreases to 36% in the bottom part of the vestibule (z = –20 Å).

2.3. Water Residence Time in the Hydration Shells of Polar and Nonpolar Protein Groups

The distributions of water residence time (τres, see Materials and Methods) were obtained
separately for polar and nonpolar groups of different protein domains (Figure 5a). Nonpolar groups of
the loop, vestibule, and TRP domains showed similar distributions with a narrow peak in the range of
short residence times (1–5 ps), which indicates fast water dynamics, and a long tail of larger residence
times that corresponds to slowed down dynamics. Polar groups of the same domains do not have the
peak of fast dynamics, while the tail decreases slowly compared to that observed for nonpolar groups.
Since the pore and filter domains possess a smaller number of hydrated groups, their distributions
were merged. In this case, the fast dynamics peak in the distribution for nonpolar groups is less
pronounced and extends to 8 ps. In the case of polar groups, the distribution demonstrates slower
water dynamics; its left edge is shifted relative to the less confined domains by 5 to 8 ps to the larger
residence times’ direction.

In Figure 5b, the same τres distributions are shown in a box chart representation. The boxes report
interquartile ranges of the τres distributions, with the line and number in each box showing the median
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τres. For the loop, vestibule, and TRP domains, water molecules show a 3 to 4 times longer residence
time near polar groups compared with nonpolar groups (median τres 16–28 ps and 5–7 ps, respectively).
For the pore and filter domains, the similar ratio of τres occurs (12 and 42 ps, respectively). Furthermore,
water residence times in these domains are 1.5 to 3 times longer than in other domains.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 13 

5–7 ps, respectively). For the pore and filter domains, the similar ratio of τres occurs (12 and 42 ps, 

respectively). Furthermore, water residence times in these domains are 1.5 to 3 times longer than in 

other domains. 

 
 

(a) (b) 

Figure 5. The distributions of the water residence time in hydration shells of polar and nonpolar 

groups of different TRPV1 domains in a histogram (a) and box chart (b) representation. Red—polar 

(and charged) groups, gray—nonpolar groups. Boxes represent interquartile ranges of the 

corresponding histograms; line and number in each box is the median τres of the corresponding 

histogram. 

Another way to compare the dynamics of confined water in a protein hydration shell is to 

calculate the water residence time for the same protein group located in different protein regions. 

The carbonyl oxygen atom of the asparagine residue side chain (OD1 group) was chosen for this 

purpose. Figure 6 shows water survival time correlation functions and τres calculated for the OD1 

group of the next residues: Asn604 and Asn605 of the loop domain, Asn676 located in the pore, 

Asn687 in the vestibule, and Asn695 at the TRP helix (see Figure 1). Asn-OD1 groups of the loop, 

vestibule, and TRP domains reveal similar values of correlation function parameters: Coordination 

number (Nα (t = 0), see Materials and Methods) in the range of 2.0 to 2.6 and τres in the range of 11 to 

16 ps. Asn676 located in the confined volume of the pore shows less hydration Nα(t = 0) = 1.6 and 

slower water dynamics τres = 58 ps in spite of the same solvent exposure of its polar OD1 group. 

Figure 5. The distributions of the water residence time in hydration shells of polar and nonpolar
groups of different TRPV1 domains in a histogram (a) and box chart (b) representation. Red—polar
(and charged) groups, gray—nonpolar groups. Boxes represent interquartile ranges of the corresponding
histograms; line and number in each box is the median τres of the corresponding histogram.

Another way to compare the dynamics of confined water in a protein hydration shell is to
calculate the water residence time for the same protein group located in different protein regions. The
carbonyl oxygen atom of the asparagine residue side chain (OD1 group) was chosen for this purpose.
Figure 6 shows water survival time correlation functions and τres calculated for the OD1 group of
the next residues: Asn604 and Asn605 of the loop domain, Asn676 located in the pore, Asn687 in the
vestibule, and Asn695 at the TRP helix (see Figure 1). Asn-OD1 groups of the loop, vestibule, and TRP
domains reveal similar values of correlation function parameters: Coordination number (Nα (t = 0),
see Materials and Methods) in the range of 2.0 to 2.6 and τres in the range of 11 to 16 ps. Asn676 located
in the confined volume of the pore shows less hydration Nα(t = 0) = 1.6 and slower water dynamics
τres = 58 ps in spite of the same solvent exposure of its polar OD1 group.
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Averaging over the protein subunits and MD trajectories broadly used in this study is a convenient
instrument for the comparison of large protein domains. However, a great variety of properties for
the same protein sites or groups should be noted. Figure 7 shows the water survival time correlation
functions calculated separately for the Asn676-OD1 group of four protein subunits and four MD
trajectories. Despite the fact that they are the same groups of identical subunits, the parameters of
water dynamics near the groups vary considerably: τres from 16 to 128 ps, coordination number from
1.1 to 2.2. Moreover, the atoms of Asn676-OD1 are fully dehydrated in two cases.
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The observed variety of the water dynamics is the consequence of two facts that we believe are not
the artifacts of MD simulation but represent the natural property of the protein under study. The first
one is the asymmetrical structure of TRPV1 that arises from the initial symmetric experimental model
due to the flexibility of large protein domains in the course of MD simulations [24]. This is reflected in
the asymmetrical spatial distribution of water in the channel (Figure 4). The second one is the flexibility
of the side chains of individual residues. These two factors are responsible for heterogeneity of the
microenvironment of particular protein groups and affect the water dynamics in their hydration shells.

3. Discussion and Conclusions

In this work, we employed MD simulations to study the atomistic resolution dynamics of water
molecules confined in the transmembrane ion/water conducting pathway of the temperature sensor
protein—TRPV1—channel. The main objective was to explore in detail the behavior of water in a
rather unusual nano volume with varying geometry and complex distribution of physico-chemical
properties of the internal walls of the pore. Firstly, the solvent-accessible space represents a bottle-like
reservoir with two, instead of just one, bottlenecks, linked at the extremities to funnels—vestibules
of the channel. The radius of the channel pathway changes from less than one to 4 to 7 Å along the
membrane normal (Figure 2). Secondly, the walls of the inner channel are highly hydrophobic in the
central part and contain a number of polar protein groups exposed to the pore to varying degrees [24].
Finally, the unique nature of the pore domain is also determined by asymmetrical disposition of the
TRPV1 subunits and the highly dynamic character of particular protein polar and nonpolar groups
lining the pore. Altogether, this makes the pore in TRPV1 a very interesting object to study the confined
water inside—this naturally-occurring system drastically differs from the chemically synthesized
artificial porous nano objects, like carbon nanotubes (CNTs), nano slits, and so on.

As expected, the water in the channel showed a noticeable slowdown, which is caused by the
limited space (and, therefore, excluded volume effect) and the presence of protein groups capturing
waters via hb interactions. Although these effects are commonly observed in any limited nano reservoir,
the picture presented here for TRPV1 has some intriguing specific features. Thus, the water “braking”
near polar groups of the confined protein domains, like the pore and selectivity filter of TRPV1, leads
to an interesting effect of water localization at the particular sites of the protein (Figure 4). These areas
(or zones with anomalously high water density) preferably occupy the protein regions, where most of
the waters (about 70%) are bound to the protein polar groups. Apparently, such “water blobs” play an
important role in the functional activity of TRPV1. In particular, Asn676-OD1 polar groups of four
protein subunits may take part in the hydration of the hydrophobic TRPV1 pore by capturing up to six
waters near the lower gate of the channel. This, in turn, reduces the free energy barrier for ion and
water transport [26].

The effect of water slowdown near the confined protein domains (pore and filter) is evident from
the analysis of residence time (τres) distributions obtained for all polar and nonpolar groups (Figure 5).
In these domains, the τres values for water are 1.5 to 3 times larger in comparison with other protein
regions. Meanwhile, the influence of water–protein hb interactions on water dynamics can be seen in
Figure 5b: The residence time of water near polar groups is 3 to 4 times longer compared to nonpolar
groups for all considered protein regions.

It is interesting to note that the τres distributions for nonpolar groups of the loop, vestibule, and
TRP domains look similar to those obtained by Sterpone et al. [27] for water reorientation dynamics
within a lysozyme hydration shell. Both sets of distributions reveal a narrow peak that corresponds
to relatively fast water dynamics, and a long tail of slow water (Figure 5a). The authors explain the
peak by the contribution of water molecules located near hydrophobic and hb donor protein groups,
while the tail corresponds to water located near the groups that are confined in pockets and clefts on
the protein surface. Most of the latter are hb acceptor groups. Such an assumption agrees with our
observation that the tails of the distributions of τres for polar groups decrease more slowly than for
nonpolar groups (Figure 5a). In other words, the slowest water molecules are mainly localized near
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polar than near nonpolar groups. However, earlier, we showed that waters usually form stronger
H-bonds as acceptors than proton donors [28]. So, we suggest, that the slowest water can be a donor or
acceptor of hb depending on the type of a particular protein group.

MD simulations also show that the water dynamics in the hydration shell of a particular protein
polar group critically depend on the group location (i.e., on its microenvironment). For the polar group
OD1 of Asn676 that is confined in the TRPV1 pore, the water τres value is 3 to 5 times larger than
that for the same groups in other Asn residues located in less-confined conditions of the extracellular
loop, protein surface (TRP helix), and pore vestibule (Figures 1 and 6). This is caused by thte slowed
down dynamics of water molecules near the spatially restrained groups. Since the solvation properties
(e.g., expressed in terms of the water-accessible surface, etc.) are very similar for the considered groups,
the observed changes in water dynamics can only be explained by the excluded volume effect, which
has a much greater impact in confined conditions [27].

The presented dynamic picture of water enclosed in the nano-scale TM pore domain of the ion
channel TRPV1 radically differs from those observed earlier in artificial nano objects (see, e.g., [11,13,29]
and references therein). Thus, in the latter cases, confined water forms either single-file ordered
chains in narrow CNTs and small reverse micelles, various n-gonal ice nanotubes in wider CNTs, or
two-dimensional clusters in slit-pore spaces. None of these phenomena were found in the biomolecular
system under study. Such unique properties of water in nano spaces formed by membrane proteins
(ion channels, receptors, and others) can be explained by the rather flexible walls of the pores and
their finely tuned amphiphilic surface “portraits”. In the first case, even a slight instant asymmetry in
the packing of protein subunits (including thermal fluctuations of non-covalently bound chains) can
lead to serious changes of the geometry of the water “nano pool”. Furthermore, fast conformational
dynamics of multiple polar/nonpolar protein groups inside the pore induces a prominent effect on
the spatial distribution of the high-density water sites—the example of the residue Asn676 clearly
demonstrates this. It should be noted that even such a complex picture is too simplified, since cations
(Ca2+, Na+, K+), which are the key players in channel functioning, were not considered here. Their
appearance will certainly affect the dynamics of water in the pore domain of TRPV1, but this topic is
beyond the scope of the present work.

4. Materials and Methods

4.1. System and Molecular Dynamics Protocol

The studied system was taken from our previous work [24]. It consisted of the TM-segment
of TRPV1 (residues 427–719) in the open state (PDB structure 3J5Q22) embedded into a
fully hydrated lipid bilayer with a composition similar to the neuronal membrane: 50% of
palmitoyloleoylphosphatidylcholine (POPC), 25% of palmitoyloleoylphosphatidylethanolamine
(POPE), and 25% of cholesterol molecules (Figure 1). Chloride ions were added to the system
for restoring electroneutrality.

Molecular dynamics (MD) simulations were performed using the GROMACS 2018.5 package [30],
Amber99sd-ildn force field [31], and TIP3P water model [32]. Simulations were carried out with
an integration time of 2 fs, imposed 3D periodic boundary conditions, and constant temperature
(310 K) and pressure (1 bar). For electrostatic interactions, the particle-mesh Ewald summation was
used (real space cutoff 10 Å and 1.2 Å grid with fourth-order spline interpolation). A twin-range
(10/12 Å) spherical cutoff function was employed to treat van der Waals interactions. Four starting
configurations of the system were taken from one of the 500-ns MD trajectories calculated earlier [24].
These configurations were heated to 310 K during the 400-ps MD run with fixed positions of the protein
heavy atoms. Then, four unrestrained MD simulations were carried out with a length of 2 ns and the
time step between the stored states of 0.25 ps.
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4.2. MD Data Analysis

Translational dynamics of water molecules along the pore axis (z) were characterized by the
coefficient, D, that was named the translational dynamics coefficient and calculated as:

D(z) =
1

6T

T∑
t=0

1
Nw(z, t)

Nw(z,t)∑
i=0

∆R2
i (z, t) (1)

where T is the trajectory length (2 ns); Nw(z,t) is the number of water molecules in a layer from z to z +

dz at a moment t (dz = 0.25 Å); ∆Ri
2(z,t) is the square displacement over time of 1 ps of the molecules,

which are located from z to z + dz at a moment t. Parameter D for bulk water numerically equals its
diffusion coefficient (about 0.65 Å2/ps for TIP3P water at 310 K) and, at the same time, it shows the
local heterogeneity of water dynamics along the pore.

Channel radius along the pore axis (R) was calculated as:

R(z) =
√
< V(z) >/πdz (2)

where <V(z)> is the MD-averaged solvent-accessible volume of a layer from z to z + dz (dz = 0.25 Å).
That is, the volume, where the center of a sphere with a radius of 1.4 Å can be placed without
overlapping with the protein surface.

To compare the water dynamics near polar and nonpolar groups in the protein domains with
various confinement conditions, the residence time of water molecules in the hydration shells of protein
groups (τres) was calculated. For this, a survival time correlation function was used [25]:

Nα(t) =
1
T

Nw∑
j=1

T∑
t′=0

pα, j(t′, t′ + t; t0) (3)

Here, T is the trajectory length (2 ns). Nw is the total number of water molecules in the system. pα,j(t’,
t’ + t; t0) is the binary function, which equals 1 if the water molecule, j, continuously stays in the
hydration shell of a group, α, during the time interval from t’ to t’ + t or leaves the shell during this
interval, but returns for the time no longer than t0 = 2 ps. Otherwise, the function equals zero. The
radius of hydration shell was taken as 3.5 Å for all protein groups. The value Nα (t = 0) gives the mean
hydration shell occupancy (coordination number) of the group, α.

The calculated Nα was fitted by a double exponential function:

n(t) = n f e− t/τ f + nse− t/τs (4)

where τf and τs are the fast and the slow decay constants. Only groups with Nα (t = 0) ≥ 0.2 were taken
for fitting. The latter was performed on the time interval from 0.25 to 100 ps or up to the time when
Nα reaches the value of 0.1 for rapidly decaying functions. The residence time of water molecules was
calculated for each group as:

τres = 〈t〉 =

∫
∞

0 tn(t)dt∫
∞

0 n(t)dt
=

n fτ
2
f + nsτ2

s

n fτ f + nsτs
(5)

In Figures 2 and 4, origin of the pore axis (z) was taken as the pore center of mass calculated
over Cα atoms of residues 642, 643, 644, 645, 671, 675, 676, 679, 680, 683, 686, and 687—those are
located in the helices S6 and the selectivity filter. The following geometric criteria were used to define
water–protein hb: Donor (D) – acceptor (A) atoms distance ≤ 3.5 Å, the angle D-H-A lies in the range
180◦ ± 30◦.
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