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Abstract: Asthma is a common chronic airway disease worldwide. Due to its clinical and genetic
heterogeneity, the cellular and molecular processes in asthma are highly complex and relatively
unknown. To discover novel biomarkers and the molecular mechanisms underlying asthma, several
studies have been conducted by focusing on gene expression patterns in epithelium through microarray
analysis. However, few robust specific biomarkers were identified and some inconsistent results were
observed. Therefore, it is imperative to conduct a robust analysis to solve these problems. Herein,
an integrated gene expression analysis of ten independent, publicly available microarray data of
bronchial epithelial cells from 348 asthmatic patients and 208 healthy controls was performed. As a
result, 78 up- and 75 down-regulated genes were identified in bronchial epithelium of asthmatics.
Comprehensive functional enrichment and pathway analysis revealed that response to chemical
stimulus, extracellular region, pathways in cancer, and arachidonic acid metabolism were the
four most significantly enriched terms. In the protein-protein interaction network, three main
communities associated with cytoskeleton, response to lipid, and regulation of response to stimulus
were established, and the most highly ranked 6 hub genes (up-regulated CD44, KRT6A, CEACAM5,
SERPINB2, and down-regulated LTF and MUC5B) were identified and should be considered as new
biomarkers. Pathway cross-talk analysis highlights that signaling pathways mediated by IL-4/13 and
transcription factor HIF-1α and FOXA1 play crucial roles in the pathogenesis of asthma. Interestingly,
three chemicals, polyphenol catechin, antibiotic lomefloxacin, and natural alkaloid boldine, were
predicted and may be potential drugs for asthma treatment. Taken together, our findings shed new
light on the common molecular pathogenesis mechanisms of asthma and provide theoretical support
for further clinical therapeutic studies.

Keywords: Asthma; Epithelial cells; Data integrating; Gene set enrichment analysis; Biomarker;
Protein-protein interaction network.

1. Introduction

Asthma is a chronic inflammatory disease of the airways, caused by genetic or environmental
and lifestyle factors, which is characterized by airway hyper-responsiveness (AHR), inflammation,
and variable airflow obstruction [1]. Despite recent progress in the development of anti-asthmatic
medication, asthma is still a major public health problem in the world. Its prevalence, morbidity, and
mortality are still increasing [2]. According to the Global Asthma Report 2018, asthma affects over 339
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million people, resulting in more than 1000 deaths every day (http://globalasthmareport.org). By 2025,
an additional 100 million people may develop asthma [3]. However, this may be an underestimation
due to underdiagnosis. A recent national survey in China found that the prevalence rate was ~4.2%
in adults over 20, and over 45.7 million people suffered from asthma [4]. The total cost of asthma
exceeded ~$81 billion per year in the USA and ~72€ billion in Europe [5]. Therefore, asthma not only
affects human health seriously but also leads to serious socio-economic problems.

As a T-lymphocyte-controlled airway disease, asthma is caused by inflammation, overproduction
of mucus, and airway remodeling, which results in hyper-reactivity and airway obstruction. The airway
epithelial cells act as the first physical and immunological barrier and play an extremely important
role in controlling inflammatory, immune, and regenerative responses to microorganism infections,
allergens, and environmental pollutants that contribute to asthma pathogenesis [6]. Epithelial cells
express pattern recognition receptors that detect the stimuli and release chemokines and cytokines,
thereby bridging the innate and adaptive immune system cells [7]. Therefore, a better understanding of
the underlying molecular mechanisms of the epithelium’s function in maintaining the integrity of the
airways and its dysfunction in asthma is crucial for exploring how asthma is initiated and perpetuated
and is also helpful in selecting new biomarkers for guiding therapeutic decision in asthma treatment.

Gene expression analysis is becoming more important in diagnostic fields allowing the
identification of novel biomarkers relevant to diseases. The high throughput microarray is an
efficient approach that facilitates gene expression analysis, new drug target identification, and novel
gene function prediction. Woodruff et al. identified 22 differentially expressed genes (DEGs) (e.g.,
CLCA1, POSTN, and SERPINB1) in asthmatics when compared to healthy controls [8]. To identify gene
expression patterns in children with asthma, Kicic et al. found 1612 genes (including 764 up-regulated
and 848 down-regulated genes) were significantly differentially expressed in the epithelium of atopic
asthmatics based on microarray analysis. The genes involved in the response to wounding were
significantly reduced in epithelial cells, causing deficient immune responses and wound repair [9].
These findings strongly support that a fundamental alteration in the epithelium contributes to the
initiation and progression of asthma. To link gene expression profiles to clinical asthma phenotype,
Modena et al. performed a microarray analysis for 155 subjects with asthma and healthy controls and
identified 1384 differentially expressed genes in bronchial epithelial cells. Further analysis revealed
that some genes associated with type 2 inflammation, neuronal function, WNT signaling, and actin
cytoskeleton could be considered as potential biomarkers for asthma [10]. A recent study using
Affymetrix HT HG-U133+ PM GeneChips found that IL-13 response genes (POSTN, SERPINB2,
CLCA1), mast cell mediator genes (CPA3 and TPSAB1), and cystatin genes (CST1, CST2 and CST4)
were overexpressed in the epithelium of asthmatics [11], which was consistent with their previous
study suggesting that activated T cells may be driving neutrophilic inflammation.

Although microarray experiments have generated long lists of genes with altered expression in
asthmatics, some inconsistent findings were observed. Therefore, it is necessary to apply a systematic
approach to combine different publicly available datasets to explore shared molecular mechanisms
with asthma. The powerful meta-analytic technique has been well established to study the shared
biological signatures between related diseases and pathophysiological conditions by merging multiple
omics datasets [12,13].

In this study, we selected ten eligible microarray datasets to identify genes associated with
dysfunctions of the bronchial epithelium in asthmatics. Differentially expressed genes were identified
and functional annotations were performed for significant genes by using the microarray data
integrating and analyzing techniques. Furthermore, approaches from systems biology, such as
enrichment analysis and network analysis, were adopted to look for a better understanding of the
molecular mechanisms underlying asthma.

http://globalasthmareport.org


Int. J. Mol. Sci. 2019, 20, 4037 3 of 19

2. Results and Discussion

2.1. Ten Independent Datasets Meeting the Criteria in This Study

In the study, 191 microarray datasets were obtained by keyword searching (as of 20th December
2018). After filtering based on dataset inclusion and exclusion criteria, 10 asthma-related microarray
datasets from six disparate platforms (Affymetrix: HG-U95Av2, HG-U133A, HG-U133_Plus_2,
HT_HG-U133_ Plus_PM, and Agilent: 4 × 44K G4112F and SurePrint G3 Human GE v3 8 × 60K) were
selected. The detailed information of these datasets and sample descriptions is shown in Table 1 and
Supplementary Material S1, respectively.

Table 1. Information summary of microarray datasets used in this study.

GEO ID Microarray Platform Sample Size (A/H) 1 Cell Type Author (Year)

GSE470 HG-U95Av2 12 (6/6) Epithelial cells Spannhake W, et al. (2003)
GSE4302 HG-U133_Plus_2 70 (42/28) Airway epithelial cells Woodruff PG, et al. (2007) [8]
GSE18965 HG-U133A 16 (9/7) Bronchial epithelial cells Beyer RP, et al. (2010) [9]
GSE41861 HG-U133_Plus_2 81 (51/30) Bronchial epithelial cells Cheng DT, et al. (2015)
GSE44037 HT_HG-U133_Plus_PM 12 (6/6) Bronchial epithelia Wagener AH, et al. (2013) [14]
GSE63142 GPL6480 (Agilent) 155 (128/27) Bronchial epithelia Wenzel S, et al. (2014) [10]
GSE64913 HG-U133_Plus_2 59 (22/37) Peripheral airway epithelia Singhania A, et al. (2017) [15]
GSE67472 HG-U133_Plus_2 105 (62/43) Airway epithelia Christenson SA, et al. (2015) [16]
GSE89809 HT_HG-U133_Plus_PM 56 (38/18) Epithelial cells Singhania A, et al. (2017) [11]
GSE104468 GPL21185 (Agilent) 24 (12/12) Bronchial epithelia Richards A, et al. (2017) [17]

1 A and H represent asthmatics and healthy controls, respectively.

To compile expression data for data integrating and subsequent investigation, each dataset was
preprocessed, normalized, and then integrated for further analysis following the steps illustrated in
Figure 1.

2.2. Large Microarray Dataset Generated from Ten Selective Datasets

2.2.1. Sample Quality Control and Microarray Data Preprocessing

After the quality control, 1 (GSE470), 2 (GSE4302), 2 (GSE18965), 11 (GSE41861), 4 (GSE63142),
3 (GSE64913), 7 (GSE89809), and 4 (GSE104468) samples did not meet the cut-off criteria in array
quality metrics assessment and were excluded for subsequent analysis; the QC reports are presented in
Supplementary Material S2. Thus, a total of 556 samples were used for further analysis, containing
348 asthmatic patients and 208 healthy subjects. Through microarray data preprocessing, 10 gene
expression matrices (genes in rows and samples in columns) were generated. For these matrices, all
gene names were replaced by Entrez gene identifiers (IDs).

2.2.2. Data Integration and Batch Correction

Based on the results of the data preprocessing, probe annotations, and gene matching, a total of
8324 genes from 556 samples shared by six microarray platforms were selected (Supplementary Figure
S1). After data integrating, batch effects were corrected using the ComBat algorithm. The clustering
dendrogram showed that each dataset was clearly separated from the others before the batch correction
(Figure 2A). After the batch correction, the samples from all datasets were well intermixed (Figure 2B),
suggesting that the batch-adjusted data were suitable for further analysis.
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Figure 1. The workflow of microarray data integration and subsequent analyses in this study. Quality 
control of each dataset was manually checked, and then 10 preprocessed and independent qualifying 
datasets were merged into a large dataset (designated as Merged DS) for further analysis. Batch effects 
were removed by using the algorithm of batch effect removal. Differentially expressed genes (DEGs) 
between the asthmatics and healthy controls were identified based on expression fold change > 1.2 
and false discovery rate (FDR) < 0.05. Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)-based pathways were subsequently enriched and followed by protein-protein 

Figure 1. The workflow of microarray data integration and subsequent analyses in this study. Quality
control of each dataset was manually checked, and then 10 preprocessed and independent qualifying
datasets were merged into a large dataset (designated as Merged DS) for further analysis. Batch effects
were removed by using the algorithm of batch effect removal. Differentially expressed genes (DEGs)
between the asthmatics and healthy controls were identified based on expression fold change > 1.2 and
false discovery rate (FDR) < 0.05. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG)-based pathways were subsequently enriched and followed by protein-protein interaction (PPI)
network construction, prediction of potential transcription factors (TFs) and microRNAs, chromosomal
localization, and potential candidate chemical prediction for asthma treatment. The partial contents in
this workflow were cited from published papers [18–21].
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Figure 2. Exploration and visualization of the Merged dataset (abbr. DS) before and after batch
correcting. Hierarchical clustering for samples was performed based on Euclidean distance and Complete
linkage. Then, the results of clustering were visualized using clustering dendrograms in ggtree package.
(A) Before batch effect removal, and (B) after batch effect removal.
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2.3. Identification of DEGs Involved in Pathogenesis of Asthma

Based on feature selection, we identified 153 differentially expressed genes including
78 up-regulated and 75 down-regulated genes across the integrated dataset with the fold change
> 1.2 and FDR < 0.05 (Table 2 and Supplementary Material S3). To identify genes most closely
related to asthma, more stringent criteria (fold change > 1.5 and FDR < 0.05) were applied and only 8
up-regulated, 2 down-regulated genes were obtained. The up-regulated genes included CEACAM5
(carcinoembryonic antigen), CLCA1 (calcium-activated chloride channel regulator 1), POSTN (periostin),
CPA3 (carboxypeptidase A3), SERPINB2 (plasminogen activator inhibitor-2), KRT6A (keratin 6A),
CD44 (hyaluronate receptor), and MUC5AC (mucin 5AC), while LTF (lactotransferrin) and MUC5B
(mucin 5B) were down-regulated. Gene expression patterns of all DEGs are shown in the volcano plot
(Figure 3).

Table 2. The significant DEGs with fold change > 1.5 between asthmatics and healthy controls

Gene Entrez ID Log2(Fold Change) Asthmatics vs. Healthy Controls FDR 1

CEACAM5 1048 1.13 Up 7.67 × 10−23

CLCA1 1179 1.58 Up 5.43 × 10−22

POSTN 10631 1.33 Up 7.83 × 10−22

CPA3 1359 1.26 Up 1.28 × 10−21

SERPINB2 5055 1.14 Up 9.55 × 10−20

LTF 4057 −0.75 Down 4.60 × 10−17

MUC5B 727897 −0.89 Down 2.10 × 10−13

KRT6A 3853 0.61 Up 4.89 × 10−12

CD44 960 0.60 Up 9.03 × 10−9

MUC5AC 4586 0.59 Up 1.03 × 10−6

1 FDR (false discovery rate) refers to the BH-adjusted p-value returned by eBayes function in limma package.
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2.4. Functional Annotations and Enrichment Analysis of DEGs

2.4.1. Gene Ontology Analysis of DEGs

Based on DAVID analysis, a total of 12 GO functional terms were enriched with adjusted p < 0.01
and a minimum gene count > 6 (Table 3). Among these dysregulated GO terms, response to chemical
stimulus (GO:0042221, Z-score = −0.34) was the most significantly enriched into biological process
(BP) (Adj. p = 2.64 × 10−4), while membrane fraction (GO:0005624, Z-score = −0.89), insoluble fraction
(GO:0005626, Z-score =−0.89), and cell fraction (GO:0000267, Z-score =−0.82) from cellular components
(CC) were considered as the top three decreased terms (Figure 4). Interestingly, two GO terms relevant
to asthma were also enriched: increased secretory granule (GO:0030141, Z-score = 0.63) and more
active extracellular region (GO:0005576, Z-score = 0.42).

Table 3. GO (gene ontology) term enrichment of DEGs between the asthmatics and healthy controls.

GO Term Description Count 1 Z-score Adj. p 2 Category

GO:0042221 Response to chemical stimulus 34 −0.34 2.64 × 10−4 BP
GO:0032501 Multicellular organismal process 69 0.12 1.74 × 10−3 BP
GO:0018149 Peptide cross-linking 6 0.00 2.50 × 10−3 BP
GO:0005576 Extracellular region 51 0.42 1.67 × 10−8 CC
GO:0044421 Extracellular region part 31 0.18 4.21 × 10−7 CC
GO:0005615 Extracellular space 21 −0.65 4.33 × 10−4 CC
GO:0030141 Secretory granule 10 0.63 2.75 × 10−3 CC
GO:0031012 Extracellular matrix 13 0.28 4.33 × 10−3 CC
GO:0000267 Cell fraction 24 −0.82 6.39 × 10−3 CC
GO:0005624 Membrane fraction 20 −0.89 6.10 × 10−3 CC
GO:0005578 Proteinaceous extracellular matrix 12 0.00 5.90 × 10−3 CC
GO:0005626 Insoluble fraction 20 −0.89 7.52 × 10−3 CC

1 Count denotes the number of DEGs in this GO term; 2 Adj. p refers to the adjusted p-values computed by DAVID.
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2.4.2. KEGG Pathway Analysis of DEGs

Based on KEGG pathway mapping, DEGs were significantly enriched in 12 pathways (FDR < 0.05)
involved in cancer, arachidonic acid metabolism, linoleic acid metabolism, calcium signaling,
aldosterone-regulated sodium reabsorption, and so on (Table 4). It is worth noting that 7 down- and
3 up-regulated genes involved in cancer were also enriched (FDR = 3.24 × 10−5, Z-score = −1.26),
which is consistent with the previous report that asthma status was associated with decreased risk
of aggressive bladder cancer [22]. Moreover, the pathway associated with bladder cancer was also
enriched (FDR = 1.17 × 10−2) with a suppressed trend (Z-score = −0.58). Arachidonic acid metabolism
was the second most significant pathway (FDR = 1.42 × 10−4). Its abnormal metabolism has been
observed in asthma [23,24]. Dysregulated linoleic acid metabolism (FDR = 7.69 × 10−3) was the third
enriched pathway. Woods et al. proposed that fatty acid levels were associated with the risk of asthma
in young adults [25]. Black et al. argued that increasing dietary intake of n-6 linoleic acid had resulted
in increased arachidonic acid and PGE2 production, with a consequent increase in the likelihood
of asthma [26]. Our results also found the calcium signaling pathway was significantly suppressed
in asthma (FDR = 1.17 × 10−2, Z-score = −1.34). An abnormal calcium signaling pathway has been
linked with many diseases. Mahn et al. reported that the dysregulation of Ca2+ homeostasis was
probably related to abnormal asthmatic phenotype [27]. Our result supports the fact that peroxisome
proliferator-activated receptors (PPAR) are associated with obstructive lung disease [28]. Thus, PPAR
may also be a potential target of asthma. Interestingly, a novel pathway named Hematopoietic cell
lineage was significantly enriched in this study, suggesting some components in this pathway may be
associated with asthma pathogenesis.

Table 4. Enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways for DEGs using
Molecular Signatures Database from GSEA (Gene Set Enrichment Analysis) online tool.

KEGG Pathway FDR 1 Expression Pattern 2 Z-score Gene

(1) Pathways in cancer 3.24 × 10−5 3↑+ 7↓ −1.26
NOS2, MMP1, VEGFA,
DAPK1, FOS, KIT, FN1,
RUNX1T1, EPAS1, AR

(2) Arachidonic acid metabolism 1.42 × 10−4 3↑+ 2↓ 0.45 CYP2J2, ALOX15, GPX3,
HPGDS, PTGS1

(3) Linoleic acid metabolism 7.69 × 10−3 2↑+ 1↓ 0.58 CYP2J2, ALOX15, AKR1B10

(4) Calcium signaling pathway 1.17 × 10−2 1↑+ 4↓ −1.34 NOS2, ITPR1, AVPR1A,
PTGFR, TRPC1

(5) Aldosterone-regulated
sodium reabsorption 1.17 × 10−2 0↑+ 3↓ −1.73 IRS2, INSR, SCNN1G

(6) Bladder cancer 1.17 × 10−2 1↑+ 2↓ −0.58 MMP1, VEGFA, DAPK1
(7) Arginine and proline
metabolism 1.95 × 10−2 2↑+ 1↓ 0.58 NOS2, ODC1, PYCR1

(8) PPAR signaling pathway 3.34 × 10−2 2↑+ 1↓ 0.58 MMP1, CD36, FABP6
(9) Leishmania infection 3.39 × 10−2 1↑+ 2↓ −0.58 NOS2, FOS, HLA-DQB1
(10) Cytokine-cytokine receptor
interaction 3.51 × 10−2 2↑+ 3↓ −0.45 VEGFA, KIT, CXCL2, CXCL6,

CSF2RB
(11) ECM-receptor interaction 4.39 × 10−2 2↑+ 1↓ 0.58 FN1, CD36, CD44
(12) Hematopoietic cell lineage 4.62 × 10−2 3↑+ 0↓ 1.73 KIT, CD36, CD44
1 FDR denotes the FDR q-value provided by GSEA online tool; 2

↑ refers to the status of up-regulated DEGs, and ↓
refers to the status of down-regulated DEGs.

2.4.3. Potential Target Sites of Transcription Factors and Regulatory MicroRNAs

Using the GSEA online tool, 9 DNA-binding motifs with FDR < 0.05 were identified and are listed
in Supplementary Material S4. Among them, a forked transcription factor FOXO4 and its downstream
targeting genes RIT1, CLC, FKBP5, AGR2, CD36, RUNX2, NTRK2, GRK5, GATA2, ST6GAL1, SLC7A1,
SLC18A2, and SERPINB10 were enriched. The previous studies showed that FOXOs were involved
in multiple cellular processes, such as stress resistance, cell cycle, apoptosis, and metabolism [29]. In
asthmatic patients, the increased expression of AGR2 and RUNX2 would lead to excessive secretion of
mucin [30,31]. GATA2 positively regulated the expression of IL-33 receptor (ST2), which stimulated
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the production of several pro-inflammatory factors in mast cells [32]. Furthermore, the increased
expression of IL-13 promoted the sialylation of MUC4β N-glycans by ST6GAL1 and inhibited the
proliferation of damaged epithelial cells in asthmatic patients [33]. The damaged epithelial cells can
produce fibroblast-promoting growth factors, which aggravated the airway remodeling response [34].

Similarly, 24 potential regulatory microRNAs were identified (FDR < 0.05) (Supplementary
Material S5). A previous study showed that the expression level of microRNA-181a was higher
in the acute asthma patients compared to the healthy controls at the beginning of asthma, then
dropped to the control level when there were no new airway stimuli. Therefore, microRNA-181a is a
potential pro-inflammatory factor in asthma [35]. Mohamed et al. reported that the overexpression of
microRNA-26a would increase hypertrophy of human airway smooth muscle cells and promote airway
remodeling by inhibition of GSK-3β [36].

2.4.4. Effect of Chromosomal Position on the Expression of DEGs

For many chromosomal loci, gene mutation and dysregulation of gene expression often result in
many diseases including prostate cancer [37] and breast cancer [38]. Genome-wide linkage analysis
of asthma and airway responsiveness showed that chromosome 12q24.31 contained a locus that was
crucial in intermediate phenotype for asthma in a Hispanic population of Costa Rica [39]. Subsequently,
Ferreira et al. found that chromosome 11q13.5 locus was significantly associated with the risk of
allergic sensitization, in turn, increasing the risk of subsequent development of asthma in Australia [40].
In this study, gene position enrichment analysis of 153 DEGs revealed that 9 asthma-related genes
were located on chromosome 3 (Figure 5). Among them, 5 up-regulated genes (CSTA, GATA2, CPA3,
P2RY14, and AADAC) and 1 down-regulated gene (HEG1) were located in q21 region (FDR = 9.65 ×
10−5), while the remaining 3 down-regulated genes (LTF, ITPR1, BHLHE40) were located out of q21
region on chromosome 3. Our results indicated that chr3q21 was a new locus associated with asthma.
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2.5. Identification of Hub Genes Based on PPI Network Construction

To better understand the mechanism of asthma and identify the crucial hub genes among the DEGs,
PPI network was constructed using network analysis, which enables the analysis of protein-protein
interaction for multiple genes using NetworkAnalyst [41]. To categorize gene functions, genes in this
network were divided into three groups: hub genes highly interacting with other neighbor genes (CD44,
KRT6A, LTF, SERPINB2, MUC5B, and CEACAM5), bridge genes connecting different communities
(e.g., MUC5AC, CLCA1, POSTN, SP1, and EGFR) and leaf-node genes with one neighbor (e.g., CPA3,
BAG1, MNF1, and APP), as shown in Figure 6.
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Figure 6. Protein-protein interaction network associated with asthma was constructed based on the
DEGs with fold change > 1.5. The up- and down-regulated DEGs are marked in red and green circles,
respectively. The solid lines and dashed lines represent the interactions predicted based on the IMEx
interactome database and STRING database (v11.0), respectively. According to the degree of each node,
six proteins with degree ≥ 10 were regarded as the hub proteins, and their corresponding genes were
thought to be the hub genes, including CD44 (degree = 59), KRT6A (degree = 23), LTF (degree = 18),
MUC5B (degree = 13), CEACAM5 (degree = 11), and SERPINB2 (degree = 10).

Within this network, CD44 encoding a cell surface adhesion receptor was the most highly ranked
hub gene (degree = 59). A previous study showed that CD44 was significantly up-regulated in the
bronchial epithelium in asthmatics compared with the controls [42]. Higher expression of CD44
in blood eosinophils could regulate the recruitment and function of leukocytes in asthmatics and
are considered as a marker of bronchial asthma [43]. KRT6A are a member of type II epithelial
keratins, which are intermediate filament-forming proteins that provide mechanical support and
fulfil a variety of additional functions in epithelial cells. The presence of KRT6A was associated
with pachyonychia congenital [44], as well as renal carcinoma [45] and breast cancer progression [46].
Genome-wide expression profiling with linkage analysis revealed that the transcription level of KRT6A
significantly increased in peripheral blood mononuclear cells (PBMCs), airway brushing cells (ABCs),
and bronchioalveolar lavage (BAL) when asthmatics were exposed to cockroach allergen [47]. In line
with this, a recent proteomic study of asthma also found that KRT6A was up-regulated in the blood of
asthmatics [48]. Therefore, KRT6A was considered as an important marker for asthma. Lactotransferrin
(LTF), also called lactoferrin, is an iron-binding glycoprotein and servers as an immune-modulator
and anti-inflammatory factor. Transcriptome analysis showed that LTF was significantly up-regulated
during the development of asthma [49]. LTF could reduce pollen-induced airway inflammation
in a mouse model of allergic asthma [50]. Immunoglobulin receptor CEACAM5, also known as
CD66e, is a member of the carcinoembryonic antigen (CEA) family and involved in cell signaling, cell



Int. J. Mol. Sci. 2019, 20, 4037 10 of 19

proliferation, cell repair responses, and the maintenance of the intact bronchial epithelium [51]. A
previous study showed that the expression of CEACAM5 was increased in smoking and non-smoking
severe asthma [52]. Consistent with this, the up-regulation of CEACAM5 was also observed in the
epithelium in severe neutrophilic asthma [53].

Within bridge genes, MUC5AC is a glycoprotein and significantly increased when the respiratory
tract was exposed to external stimulus [54]. High expression of MUC5AC was observed in bronchial
epithelial cells of patients with severe asthma [55]. A recent study showed that IL-13 response genes
(SERPINB2, POSTN, and CLCA1), protease genes (CPA3 and TPSAB1), and a nitric oxide synthase
gene (NOS2) were significantly up-regulated in the epithelium of mild asthma [11].

To provide a comprehensive PPI network structure, the well-established network community
recognition algorithm InfoMap [56] was applied and three distinct communities (marked with royal
blue, dark turquoise or magenta areas) were obtained (p < 0.001). Combined with gene enrichment
analysis, we found that they were associated with the regulation of response to stimulus, cytoskeleton,
and response to lipid, respectively (Figure 6). This result suggested that the occurrence of asthma may
be associated with the disturbance of lipid and abnormal cytoskeleton when epithelium cells were
exposed to the stimulus.

2.6. Identification of Candidate Small Molecules

Using the 10 DEGs with fold change > 1.5 as seeds, 20 potential asthma-related chemical molecules
with |score| > 0.6 and p < 0.05 were screened using a Connectivity Map (CMap)-based systems approach.
Among them, 17 molecules probably promote the progression of asthma, such as Prestwick-1082,
ricinine, and milrinone. On the contrary, 3 molecules have potential therapeutic effects, including
catechin, lomefloxacin, and boldine (Table 5).

Table 5. List of small molecules enriched from CMap database.

Molecules Enrichment Score p-Value

Catechin −0.7995 0.0066
Lomefloxacin −0.7101 0.0072

Boldine −0.6635 0.0250
Prestwick-1082 0.6944 0.0099

Ricinine 0.7297 0.0102
Milrinone 0.7751 0.0153
Econazole 0.7981 0.0170

Acetohexamide 0.6542 0.0181
Cefsulodin 0.7900 0.0192

Nifuroxazide 0.7567 0.0199
Alimemazine 0.7744 0.0289
Progesterone 0.7258 0.0309

Zoxazolamine 0.7206 0.0390
Colistin 0.6503 0.0404

Methapyrilene 0.7618 0.0427
Tiapride 0.6832 0.0436

Fluocinonide 0.7451 0.0466
Ganciclovir 0.7389 0.0466

Quinisocaine 0.6790 0.0479
Mexiletine 0.7615 0.0492

Catechins were one kind of polyphenols and showed various biological and pharmacological
activities in antioxidative [57], anti-carcinogenic [58], and antiallergic effects [59]. Catechins from green
tea could significantly inhibit the migration of inflammatory cells by suppressing MMP-9 expression
and ROS generation in endothelial cells in a murine model of asthma [60]. Recently, Patel et al.
confirmed that catechins from Acacia catechu showed inhibitory effects on ovalbumin-induced allergic
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asthma by inhibiting the activity of the histidine decarboxylase enzyme, and the author suggested that
catechin can be used for the treatment of allergic inflammatory disease in humans [61].

Grassi et al. found that antibiotic lomefloxacin can treat acute exacerbations of chronic
bronchitis [62]. Using the signalome screening method, Todd et al. reported that lomefloxacin
showed significant effects on multiple pro-inflammatory signaling pathways that are constitutively
activated in the auto-inflammatory disease TNF receptor [63]. However, no study has been performed
concerning the usage of lomefloxacin for asthma treatment.

Boldine is a natural alkaloid from the leaves and bark of the Chilean boldo tree, Peumus boldus,
and had anti-inflammatory [64] and antioxidant properties [65]. However, potential therapeutic effects
on asthma have not been reported.

Taken together, the compounds catechin, lomefloxacin, and boldine may be potential drugs for
the treatment of asthma caused by inflammation and allergy. However, further experiments will be
needed to confirm the meta-analysis results.

2.7. Crosstalk Pathway of Asthma

To further explore the molecular mechanism of disease pathogenesis, functional enrichment
analysis based on the BIOCARTA, REACTOME, and Pathway Interaction Database was performed by
using the ToppGene Suite with the threshold of BH-FDR < 0.05.

Six categories were enriched, including 1) genes encoding ECM and ECM-associated proteins
(M5889); 2) ECM-affiliated proteins, ECM-regulators and secreted factors (M5885); 3) HIF-1α
transcription factor network; 4) FOXA1 transcription factor network; 5) termination of O-glycan
biosynthesis, and 6) interleukin-4 and 13 signaling (Table 6). Interestingly, two asthma-associated
pathways (M5889 and M5885) were enriched from the BIOCARTA database. Changes observed
during airway remodeling in chronic asthmatic patients include excessive extracellular matrix
(ECM) production and collagen deposition, increased airway smooth muscle mass, and mucus
hypersecretion [66]. Abnormal deposition of ECM protein and/or ECM-associated proteins causes
airway stiffening and narrowing, and differences in ECM protein expression may represent a specific
asthma phenotype [67]. Our results strongly support that the accumulation of ECMs is essential for
the development and progression of airway remodeling in asthma. Some components of ECMs may
be novel therapeutic targets in the treatment of airway diseases by suppressing airway remodeling
and inflammation.

Table 6. The enriched pathways from BIOCARTA, REACTOME and Pathway Interaction Database.

Pathway ID Name Database FDR Count 1

M5889 Genes encoding ECM and
ECM-associated proteins BIOCARTA (v6.0) 1.40 × 10−2 26

M5885 ECM-affiliated proteins, regulators and
secreted factors BIOCARTA (v6.0) 2.42 × 10−2 20

1470923 Interleukin−4 and 13 signaling REACTOME 1.40 × 10−2 8

138045 HIF−1-alpha transcription factor network
Pathway
Interaction
Database

2.15 × 10−2 6

137979 FOXA1 transcription factor network
Pathway
Interaction
Database

2.23 × 10−2 5

1268737 Termination of O-glycan biosynthesis REACTOME 2.61 × 10−2 4
1 Count denotes the number of DEGs in this term.

It is also worth noting that the networks driven by transcription factors HIF-1α and FOXA1 and
the signaling mediated by the interleukin-4 and 13 (IL4 and IL13) receptors were enriched for asthma
(Figure 7). Previous studies revealed that HIF-1α was a master regulator of inflammation and was
up-regulated in the immune cells and lung tissues of asthma patients [68–70].
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In addition, hypoxia-induced HIF-1α could increase the expression of MUC5AC via
NF-kB-mediated signaling pathway in asthma. Knocking down HIF-1α by siRNA decreased MUC5AC
expression under hypoxia even in IL-1β-treated cells. The above results suggest that HIF-1α may be a
therapeutic target for asthma [71].

Cytokine receptors binding to IL-4 activate the JAK-STAT signaling pathway that regulates the
expression of downstream genes MMP1, ALOX15, CD36, VEGFA, FOS, NOS2, CLCA1, HIF-1α, TIMP1,
and FN1 [72]. All target genes, except for HIF-1α, were identified in this study. Therefore, targeting
this pathway through the inhibition of activating IL13 and IL4, and their receptors, and other pathway
components should have therapeutic effects on asthma.

3. Materials and Methods

3.1. Microarray Gene Expression Data Acquisition

Publicly available microarray gene expression datasets for asthma were retrieved from the Gene
Expression Omnibus Database (GEO) (http://www.ncbi.nlm.nih.gov/geo/) using the keyword “asthma”.
The raw datasets were manually checked and only those that met the following criteria were included
for subsequent analysis: 1) gene expression profiling in asthmatics and controls, 2) cell type: airway
epithelial cell, but not nasal epithelium, 3) gene expression data were generated by a single-channel
microarray platform (Affymetrix or Agilent chips), 4) availability of raw CEL or TXT files, and 5)
samples with detailed descriptions.

http://www.ncbi.nlm.nih.gov/geo/
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3.2. Quality Control and Individual Microarray Dataset Preprocessing

Quality control (QC) analysis was performed for each microarray data using the arrayQuality
Metrics package in R. Datasets were excluded from subsequent analysis when they failed to pass any
one of the following assessments: 1) pairwise distances between arrays, 2) boxplots; 3) MA plots [73].

Briefly, the raw Affymetrix CEL files were normalized using the robust multi-array averaging
(RMA) approach in the Affy package in Bioconductor Project with the following parameters: background
correction, normalization and summarization [74], and returning log2 transformed intensities. Raw
Agilent microarray data were normalized using the limma package, following background correction
using the normexp method, quantile normalization and log2 transformation [75]. All analyses were
performed with Bioconductor and R [76].

3.3. Data Integration and Batch Effect Removal

In this study, each dataset from all studies was preprocessed separately and then combined into
one large dataset for further analysis following the steps illustrated in Figure 1. Probe identifiers from
different microarray data were converted into Entrez gene IDs. If more than one probe mapped to a
gene, the probe with the largest interquartile range (IQR) was selected as described by Letellier et al. [77],
while a probe that mapped to multiple genes was excluded from further analysis.

The direct data integration (DDI) strategy presented in our previous publication [78] was applied
to combine the multiple datasets in this study. Specifically, the shared genes among all microarray
platforms used in this study were extracted, and then the multiple normalized datasets were merged
into a large dataset (i.e., gene expression matrix) for shared genes.

To reduce potential study-specific batch effects, the preprocessed and normalized individual
dataset was subjected to correction using the ComBat algorithm, which used the empirical Bayes
method to adjust the extreme expression ratios and stabilized gene variances across all other genes and
protected their reference from artifacts in the data [79]. The results of data integration and batch effect
removal were visualized using clustering dendrograms, created by R and ggtree package [80].

3.4. Identification of Differentially Expressed Genes

Differentially expressed genes (DEGs) in integrated datasets were identified using limma
package [75]. The linear fit, empirical Bayes (eBayes) statistics, and a false discovery rate (FDR)
correction for all data were conducted using lmFit function. Genes with fold change > 1.2 and FDR <

0.05 were considered as DEGs between asthmatics and healthy controls. In addition, fold change > 1.5
and FDR < 0.05 were provided as well, hence we could identify genes which were more closely related
to asthma.

3.5. Gene Ontology and Pathway Enrichment Analysis

To study the function of DEGs, enrichment of gene ontology (GO) was performed using DAVID
(https://david.ncifcrf.gov/). The gene list was uploaded and analyzed using the annotation clustering
for biological processes (BP), cellular components (CC), and molecular functions (MF). GO terms
were considered to be significant when adjusted p < 0.01. The enrichment results were visualized
using GOplot package [81]. Additionally, the enrichment analysis of Kyoto Encyclopedia of Genes
and Genomes (KEGG)-based pathway was carried out using the GSEA online tool (http://www.
broadinstitute.org/gsea/msigdb/index.jsp) [82]; KEGG pathways were considered to be significant
when FDR < 0.05.

To identify up- or down-regulated terms based on DEGs, the Z-score proposed by Walter was
adopted and calculated using the following formula [81]:

Z− score =
Nup −Ndown
√

Count

https://david.ncifcrf.gov/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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where Nup, Ndown represent the number of up- or down-regulated genes between asthmatics and
healthy controls, respectively. The count is the number of DEGs belonging to this term.

To investigate the biological pathway most relevant to asthma, functional pathway enrichment
analyses of DEGs were performed using ToppGene Suite [83].

3.6. Protein-Protein Interaction Network Construction and Community Detection

To explore potential protein-protein interaction associated with asthma, DEGs with fold change >

1.5 were mapped to the PPI data using NetworkAnalyst [41] and its built-in IMEx Interactome, as well
as the STRING online database [84]. The PPI network was visualized using Cytoscape V3.5.1 [85].

The asthma-relevant hub-genes were screened using the node degrees calculated in Cytoscape,
and the detection of communities in the PPI network was performed with the InfoMap algorithm [56].

3.7. Target Gene Prediction of Key Transcription Factors and Regulatory MicroRNAs

Analysis of key transcription factors and their putative target genes was carried out using the
GSEA online tool [82]. The statistical significance was determined using hypergeometric distribution
and followed by Benjamini-Hochberg multiple testing. Significantly enriched TFs and microRNAs
were considered when FDR < 0.05.

3.8. Chromosome Position Effect on Gene Expression

To study whether chromosome position affected gene expression patterns, all DEGs were mapped
and enriched on chromosomes using the GSEA online tool. The mapping results (FDR < 0.01) were
visualized using the karyoploteR package [86].

3.9. Connection of DEGs and Small Chemical Molecules

The Connectivity Map was a database of gene expression patterns from cultured human cells
treated with bioactive small chemical molecules, in which 6100 groups of small molecule interference
experiments and 7056 corresponding gene-expression profiles were stored [87]. CMap analysis was
helpful in identifying bioactive molecules resulting in similar or adverse gene expression patterns.
DEGs with fold change > 1.5 were subjected to connective mapping analysis using the PharmacoGx
package [88], and the enrichment score (ES) was calculated. A molecule was considered beneficial for
asthma when ES < −0.5, while it was harmful when ES > 0.5.

4. Conclusions

To investigate the characteristics of gene expression profiles of bronchial epithelium from asthmatic
patients, data integration and systematic bioinformatics approaches were applied in this study. A total
of 78 significantly up-regulated and 75 down-regulated genes were identified. Further analyses revealed
that 10 differentially expressed genes are possibly instrumental in asthma, including up-regulated
CEACAM5, CLCA1, POSTN, CPA3, SERPINB2, KRT6A, CD44, MUC5AC, and down-regulated LTF
and MUC5B. Especially, the present study suggests that CD44, KRT6A, LTF, SERPINB2, MUC5B, and
CEACAM5 could serve as hub genes in asthma-relevant PPI network and could further act as the
biomarkers of asthma. Furthermore, the cross-talking of the IL-4/13 signaling pathway and networks
intermediated by transcription factor HIF-1α and FOXA1 play a crucial role in the pathogenesis of
asthma. Drug candidate prediction showed that compounds catechin, lomefloxacin, and boldine
may be potential drugs for the treatment of asthma caused by inflammation and allergy. Our results
elucidated the possible pathogenesis mechanisms of bronchial asthma and also provided several
targets for further investigation.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/16/
4037/s1.
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