

Figure S1. Lower stem symptoms of tomato infected with *Ralstonia solanacearum* view under a light microscope at 10X magnification. (A) A longitudinal stem section of the 8S cultivar, and (B), the brown discoloured longitudinal section stem of the infected 8S cultivar. A cross section cut through the stems of the (C) control and (D) the infected 8S cultivar.

Figure S2. The morphological symptoms presented by tomato plants after infection with *Ralstonia solanacearum*. (A) The mature untreated 8S cultivar. (B) An infected 8S cultivar. (C) Colonies of *R. solanacearum* isolated from the stem of an infected 8S cv, plated on SMSA-media. (D) A single colony isolated from the SMSA-media culture that was re-plated onto TTC-media. Avirulent colonies are identified as having a dark red colour while virulent colonies present with a white-pink colour. The strain shows a mucoid or fluidal morphology, indicating virulence. (E) An untreated "Moneymaker" tomato cv. (F) A "Moneymaker" cv. with known susceptibility to *R. solanacearum*, treated with the strain isolated from the SMSA-media.

Table S1. Information guide of tomato (*Solanum lycopersicum*) cultivars used in this study, indicating high/intermediate resistance to a variety of viral, bacterial, fungal and nematode pathogens.

	Disease Resistance Phenotypes									
	STAR 9001	STAR 9006	STAR 9008	STAR 9009						
	(1R)	(6R)	(8S)	(9S)						
High	Va:1 / Vd:1	Va:1 / Vd:1	Va:1 / Vd:1	Va:1 / Vd:1						
Resistance	Fol:1-2 / <u>Rs</u>	Fol:1-2 / <u>Rs</u>	Fol:1-2	Fol:1-2						
Intermediate resistance	Ma, Mi, Mj,	Ma, Mi, Mj, Lt,	Ma, Mi, Mj, <u>Rs</u> , Lt, TSWV,	Ma, Mi, Mj, <u>Rs</u> , Lt, TSWV,						

<u>Abbreviation key:</u>

Scientific Name	Common Name	Abbreviation
	Viral Pathogens	
Tomato spotted wilt virus	Tomato spotted wilt	TSWV
	Bacterial Pathogens	•
Ralstonia solanacearum	Bacterial wilt	Rs
	Fungal Pathogens	
Fusarium oxysporum f.sp. lycopersici	Fusarium wilt	Fol
Leveillula taurica	Powdery mildew	Lt
Verticillium albo-atrum	Verticillium wilt	Va
Verticillium dahliae	Verticillium wilt	Vd
	Nematode Pathogens	
Meloidogyne arenaria	Root-knot	Ма
Meloidogyne incognita	Root-knot	Mi
Meloidogyne javanica	Root-knot	Mj
*The above information was	obtained from the S	stark Ayres online webpage:

https://www.starkeayres.co.za/com_variety_docs/Tomatoes-Determinate-varieties-Crop-

TableWebsite.pdf (accessed 27/05/2019).

Figure S3. The disease severity index of the four tomato cultivars (1R, 6R, 8S, 9S) after infection with *Ralstonia solanacearum* and incubation over a time period of 15 days. A score of 0 indicated no leaves wilted and scores of 1–5 indicated 25%, 26–50%, 51–75%, 76–90% and 91–100% wilting respectively. The metabolic phenotypes were subsequently analysed and compared at 15 day.

Figure S4. A representative UHPLC-MS base peak intensity (BPI) chromatogram (ESI(+) mode) overlay showing the metabolite profiles of tissues from the *Solanum lycopersicum* cultivar '1R' before and after treatment with *R. solanacearum.* (a) The 1R treated leaf sample, (b) The 1R control leaf sample, (c) The treated 1R stem sample, (d) The 1R control stem sample, (e) The 1R treated root sample, (f) The 1R control root sample. The y-axis represents the relative abundance (%) of the metabolite fragments at their respective retention times (min). Throughout the article, the results obtained from ESI(-) mode were graphically presented in the figures due to many of the metabolites ionizing better in the negative mode.

Figure S5. Computed PCA scores plots of the UHPLC-MS ESI(–) data of the extracts prepared from the leaf, stem and root tissues of four *Solanum lycopersicum* cvs. treated with *Ralstonia solanacearum*. The labels C and T refer to the control and treatment of the four cultivars (1R, 6R, 8S, and 9S). The ellipse on the score plots represents Hoteling's T2 with a 95% confidence interval.

Figure S6. Computed PCA scores plots of the UHPLC-MS (ESI+) data of the extracts prepared from the leaf, stem and root tissues of four *Solanum lycopersicum* cvs. treated with *Ralstonia solanacearum*. The labels C and T refer to the control and treatment of the four cultivars (1R, 6R, 8S, and 9S). The ellipse on the score plots represents Hoteling's T2 with a 95% confidence interval.

Figure S7. Computed OPLS-DA models for the ESI(–) data processing of leaf, stem and root tissue extracts of the four tomato cultivars (1R, 6R, 8S, and 9S). The labels C and T refer to the control and treatment of the four cultivars. The ellipse in each model represents Hoteling's T2 with a 95% confidence interval.

Figure S8. Computed OPLS-DA models for the ESI(+) data processing of leaf, stem and root tissue extracts of the four tomato cultivars (1R, 6R, 8S, and 9S). The labels C and T refer to the control and treatment of the four cultivars. The ellipse in each model represents Hoteling's T2 with a 95% confidence interval.

Figure S9. OPLS-DA model for the ESI(-) data processing of leaf tissue extracts of the tomato '1R' cv., control (1RC: Green) and treated (1RT: Blue). (a) An OPLS-DA plot showing the group separation, (b) The corresponding OPLS-DA loading S-plot. Relevant variables far out in the loadings S-plot (x,y > 0.05) were selected and represent possible discriminating variables. (c) A receiver operating characteristic (ROC) curve summarises the ability of a binary classifier (S-plot), with a classifier having a perfect discrimination producing a ROC curve that passes through the top left corner to indicate 100% sensitivity and specificity. (d) The response permutation test plot (n = 100) for the OPLS-DA model.

Figure S10. Heatmap analysis (Pearson distance and complete linkage rule applied) showing the individual fold changes of the 42 differential metabolite ions identified in the stem tissue between the four tomato (*Solanum lycopersicum*) cultivars upon treatment with *Ralstonia solanacearum*. Shown is a heatmap of the mean peak intensity of each annotated metabolite following normalization and Pareto scaling of the data. The colour scheme is noted in the legend above, indicating fold change increases (red), decreases (green) and significant changes between cv. conditions (yellow borders). Each row represents a discriminant metabolite feature provided in Table S2. The first four columns show the control tomato cultivars while the last four indicate the treated cultivars.

Figure S11. Heatmap analysis (Pearson distance and Ward's linkage rule applied) showing the individual fold changes of the 59 differential metabolite ions identified in the root tissue between the four tomato (*Solanum lycopersicum*) cultivars upon treatment with *Ralstonia solanacearum*. Shown is a heatmap of the mean peak intensity of each annotated metabolite following normalization and Pareto scaling of the data. The colour scheme is noted in the legend above, indicating fold change increases (red), decreases (green) and significant changes between cv. conditions (yellow borders). Each row represents a discriminant metabolite feature provided in Table S2. The first four columns show the control tomato cultivars while the last four indicate the treated cultivars.

Table S2. Annotated metabolites identified in tissues of *Ralstonia solanacearum*-infected tomato cultivars using UHLPC-QTOF-MS and chemometric analyses applied towards the identification of signatory/discriminatory biomarkers associated with the host response. The metabolite ions were annotated according to the Metabolomics Standards Initiative (MSI) level 2.

Peak ^a	Rt (min)	Observed mass (m/z)	Tentative compound identification	Chemical formula	Pubchem CID	Error (mDa)	Diagnostic <i>m/z</i> fragment ions ^b	Metabolite tissue presence	<i>p</i> -value (Corr)	Reference^c
			Н	ydroxycinnam	ic acid (HCA) derivati	ves			
1	0.87	341.104	Caffeoylglycoside (I)	C15H18O9	5281761	8.2	179 [M-H-hex] ⁻ 135 [M-H-hex-COOH] ⁻	L/S/R	9.409 x 10 ⁻⁰⁵	[1]
2	1.42	341.091	Caffeoylglycoside (II)	C15H18O10	5281761	3.9	179 [M-H-hex] ⁻ 135 [M-H-hex-COOH] ⁻	L/R	0.00146141	[1]
3	1.64	371.059	Caffeoylglucaric acid (I)	C ₁₅ H ₁₆ O ₁₁	689043	-5.5	209 [M-H-caff] ⁻ 191 [quin-H] ⁻ 179 [M-H-hex] ⁻ 147 [M-H-hex-OH] ⁻ 135 [caff-H-COOH] ⁻	L/R	0.020125	[2,3]
4	2.07	371.054	Caffeoylglucaric acid (II)	C15H16O11	689043	-6.8	210 [M-H-caff] ⁻ 191 [quin-H] ⁻ 179 [M-H-hex] ⁻ 147 [M-H-hex-OH] ⁻ 135 [caf-H-COOH] ⁻	L	0.0122359	[2,3]
5	2.83	353.082	trans-3-Caffeoylquinic acid	C ₁₆ H ₁₈ O ₉	25210304	-3.7	191 [quin-H] ⁻ 179 [M-H-hex] ⁻ 135 [caff-H-COOH] ⁻	L/S/R	0.0327546	[4]
6	2.99	355.065	Feruloylglycoside (I)	C ₁₆ H ₂₀ O ₉	13962928	-	341 [M-H-CH ₃] ⁻ 193 [M-H-hex] ⁻	L/S	4.25 x 10 ⁻⁰⁵	[5,6]
7	3.26	341.086	Caffeoylglycoside (III)	$C_{15}H_{18}O_9$	5281761	-2.4	179 [M-H-hex] ⁻ 135 [M-H-hex-COOH] ⁻	L/R	0.756175	[1]

8	3.42	353.010	<i>cis</i> -3-Caffeoylquinic acid	C16H18O9	1794427	-	707 [2M-H] ⁻ 191 [quin -H] ⁻ 179 [caff-H] ⁻ 135 [caff-H-COOH] ⁻	L/R	0.00226525	[4]
9	3.98	385.072	Sinapoylglycoside (I)	C17H21O10	5280406	-	223 [M-H-hex] ⁻ 207 [M-H-hex-OH] ⁻ 179 [M-H-2CH ₃ -hex-OH] ⁻	L/S	3.17 x 10 ⁻⁰⁶	[7]
10	4.08	431.150	Sinapoylglycoside (II)	C ₁₇ H ₂₀ O ₁₁	5280406	-	385 [M-H-FA] ⁻ 223 [M-H-hex] ⁻ 207 [M-H-hex-OH] ⁻ 179 [M-H-2CH ₃ -hex-OH] ⁻	L/R	0.000170975	[7]
11	4.10	367.102	trans-5-Feruloylquinic acid	C17H20O9	101024370	-	191 [quin-H] ⁻ 135 [M-H] ⁻	L/S/R	5.66 x 10 ⁻⁰⁹	[6]
12	4.41	353.083	trans-5-Caffeoylquinic acid	C ₁₆ H ₁₈ O ₉	12310830	-4.5	191 [quin-H] ⁻ 135 [caff-H-COOH] ⁻	L/S/R	0.0222839	[4]
13	5.07	355.100	Feruloylglycoside (II)	C16H20O9	13962928	-4.2	341 [M-H-CH3] ⁻ 193 [M-H-hex] ⁻	L/S/R	1.56 x 10 ⁻⁰⁸	[5,7]
14	5.21	385.109	Sinapoylglycoside (III)	C17H21O10	5280406	-5	223 [M-H-hex] ⁻ 207 [M-H-hex-OH] ⁻ 179 [M-H-2CH ₃ -hex-OH] ⁻	L/S/R	4.22 x 10 ⁻⁰⁵	[7]
15	5.27	353.051	trans-4-Caffeoylquinic acid	C ₁₆ H ₁₈ O ₉	9798666	-	191 [quin - H] ⁻ 179 [caff-H] ⁻ 173 [quin-H-H ₂ O] ⁻ 135 [caff-H-COOH] ⁻	L	0.00105657	[4]
16	5.71	353.051	<i>cis</i> -5-Caffeoylquinic acid	C16H18O9	1794425	-	191 [quin-H] ⁻ 135 [M-H-COOH] ⁻	L/R	0.0420246	[4]
17	5.79	337.089	trans-5-Coumaroylquinic acid	C16H17O8	90478782	-8	191 [quin-H] ⁻ 163 [M-H-coumaric acid]- 119 [M-H] ⁻	L	3.84 x 10 ⁻⁰⁶	[5,8]

18	5.92	385.184	Feruloylglucaric acid (I)	C ₁₆ H ₁₈ O ₁₁	445858		209 [M-H-fer] ⁻ 193 [fer-H] ⁻ 147 [M-H-hex-OH] ⁻	L/S/R	2.32 x 10 ⁻⁰⁶	[2]	
19	6.15	343.100	Dihydrocaffeic acid hexoside	C15H20O9	348154	-6.8	181 [M-H] ⁻ 163 [M-H] ⁻ 137 [M-H] ⁻ 119 [M-H] ⁻	L	0.000535216		
20	6.36	367.102	cis-5-Feruloylquinic acid	C17H20O9	101024370	-5.5	191 [quin-H] ⁻ 135 [M-H] ⁻	L/S/R	0.018923	[6]	
21	6.44	529.156	Feruloylquinic acid hexoside	C ₂₃ H ₃₀ O ₁₄	-	1.3	367[M-H-hex] ⁻ 191 [quin-H] ⁻	R	0.00115873	[9]	
22	6.58	469.225	4-Hydroxycoumarin rhamnose hexoside (I)	C ₂₁ H ₂₆ O ₁₂	54682930		504 [M-H+Cl] ⁻ 439 [M-H-CH ₃ -OH] ⁻ 307 [M-H-hex] ⁻ 179 [M-H-rham-hex+H ₂ O] ⁻ 161 [hydroxycoumarin-H] ⁻	L/R	0.000192581		
23	6.67	337.146	cis-5-Coumaroylquinic acid	C ₁₆ H ₁₇ O ₈	6441280		191 [quin-H] ⁻ 163 [M-H-coum] ⁻	L/S	3.84 x 10 ⁻⁰⁶	[5,8]	
24	6.82	469.225	4-Hydroxycoumarin rhamnose hexoside (II)	C ₂₁ H ₂₆ O ₁₂	54682930		504 [M-H+Cl] ⁻ 439 [M-H-CH ₃ -OH] ⁻ 307 [M-H-hex] ⁻ 179 [M-H-rham-hex+H ₂ O] ⁻ 161 [hydroxycoumarin-H] ⁻	L	1.27 x 10 ⁻⁰⁸		
25	10.41	591.171	Feruloyl sinapoyl glucaric acid	C ₂₇ H ₂₈ O ₁₅	-	-2.9	397 [M-H] ⁻ 385 [M-H-223] ⁻ 223 [sinapic acid-H] ⁻ 193 [fer-H] ⁻	L	5.04 x 10 ⁻⁰⁶	[2]	
	Hydroxycinnamic acid amides (HCA amides)/Phenylamides (PhA)										

26	2.32	251.1384	Caffeoyl putrescine	C13H19N2O3	5280559	-0.6	234 [M+H-OH] ⁺ 145 [M+H-put-H ₂ O] ⁺ 89 [M+H-caff] ⁺	L/R	3.10 x 10 ⁻⁰⁶	[1,6,7,10]
27	3.81	265.157	Feruloyl putrescine	$C_{14}H_{20}N_2O_3$	5281796	1.7	531 [2M+H] ⁺ 177 [M+H-put] ⁺ 145. 117 [M+H-C ₉ H ₉ O ₂] ⁺ 89 [M+H-fer] ⁺	L/R	0.00184852	[6,10]
28	4.91	351.127	trans-Feruloyl serotonin	$C_{20}H_{19}N_2O_4$	5969616	-2.5	337[M-H-CH ₃]- 178 [M-H-CH3-C ₁₀ H ₁₀ NO]- 163 [M-H-fer]-	L/S/R	2.76 x 10 ⁻¹⁰	[11]
29	5.08	411.184	Caffeoylputrescine glycoside	C ₁₉ H ₂₇ N ₂ O ₈	129850233	2.8	321 [M-H]- 249 [M-H-hex]- 179 [caff-H]- 135 [caff-H-COOH]-	L/S/R	4.97 x 10 ⁻⁰⁹	[5]
30	5.82	351.126	cis-Feruloyl serotonin	C20H19N2O4	5969616	-7.7	337[M-H-CH ₃]- 178 [M-H-CH3-C ₁₀ H ₁₀ NO]- 163 [M-H-fer]-	L/S/R	0.000253978	[11]
31	6.47	295.105	Sinapoyl putrescine	C15H22NO4	-		279 [M+H-OH] ⁺ 89 [M+H-sinapic acid] ⁺	L/R	0.00162172	[10]
32	7.79	444.165	Coumaroyltyramine glycoside	C23H26NO8	5372945	6.7	444 [M-H] ⁻ 282 [M-H-hex] ⁻	L/R	0.00792325	[5]
33	7.8	284.132	Coumaroyltyramine	C ₁₇ H ₁₇ NO ₃	5372945	1.6	149 [M+H-C ₈ H ₇ O-OH] ⁺ 136 [M+H-coum] ⁺	L/R	8.10 x 10 ⁻⁰⁵	[10,12]
34	7.96	300.127	Coumaroyl dopamine	C ₁₇ H ₁₇ NO ₄	11630793		300 [M+H] ⁺	L	0.000425363	[13]

35	8.21	474.174	Feruloyltyramine glycoside	C24H28NO9	-	-1.4	312 [M-H-hex] ⁻ 178 [M-H] ⁻	L/S/R	1.18 x 10 ⁻¹²	[5]
36	8.22	314.144	Feruloyl tyramine	C ₁₈ H ₂₀ NO ₄	5280537	-0.6	177 [M+H-C ₈ H ₈] ⁺ 164 [M+H-C ₉ H ₉ O ₂] ⁺ 137 [M+H-fer] ⁺ 121 [M+H-fer-OH] ⁺	L/R	7.77 x 10 ⁻¹⁵	[7,10]
37	8.35	330.136	Feruloyl dopamine	C ₁₈ H ₁₉ NO ₅	16119330		330 [M+H]+	L	1.19 x 10 ⁻⁰⁸	[13]
38	8.47	504.185	Feruloylmethoxytyramine glycoside	C25H30NO10	5352115	4.2	342 [M-H] ⁻ 327 [M-H] ⁻ 273 [M-H] ⁻	L/R	6.07 x 10 ⁻¹¹	[5]
39	8.56	498.1667	Diferuloyl spermidine	C27H37N3O6	-		498 [M+H]+	L/R	2.47 x 10 ⁻⁰⁹	[14]
				F	lavonoids					
40	4.96	771.202	Quercitin dihexose deoxyhexoside	C ₃₃ H ₄₀ O ₂₁	44259182	-0.6	609 [M-H] ⁻ 463 [M-H] ⁻ 301 [quercetin-H] ⁻ [M-hex] ⁻	L/S	0.00386845	[9] X
41	7.16	741.188	Quercitin hexose deoxyhexose pentose	C32H38O20	44259292	1.6	609 [M-H-pent] ⁻ 463 [M-H-deoxyhex-pent] ⁻ 301 [quercetin-H] ⁻ [M-hex] ⁻	L/S	0.0139979	[3]
42	7.87	725.197	Quercitin rutinoside pentoside	C ₃₂ H ₃₈ O ₁₉	_	-3.4	609 [M-H]- 301 [quercetin-H] ⁻ [M-hex] ⁻	L	0.00568073	Х

43	7.90	609.146	Rutin	C ₂₇ H ₃₀ O ₁₆	5280805	6.4	301 [quercetin-H] ⁻	L/S/R	0.00260765	[1,3]
44	8.02	449.188	Eriodictyol glycoside	C21H22O11	13254473	-	287 [eriodictyl - H] ⁻ [M-hex] ⁻	L/R	0.00497438	[9,15]
45	8.17	463.089	Quercetin glycoside	C21H20O12	44259136	-2.9	301 [quercetin-H] ⁻ [M-hex] ⁻ 271 [M-H] ⁻	L/S	5.29 x 10 ⁻⁰⁹	[3]
46	8.83	593.149	Kaempferol 3-rutinoside	C ₂₇ H ₃₀ O ₁₅	71600048	-1.7	285 [M-H-2hex] ⁻	L/S	7.67 x 10 ⁻⁰⁸	[3,9]
47	9.12	447.218	Kaempferol-glycoside	$C_{21}H_{20}O_{11}$	5282102	4	285 [kaempferol-H] ⁻ [M-hex] ⁻	L/R	0.0456161	[3,9]
				01	ganic acids					
48	0.97	133.011	Malic acid	C ₄ H ₅ O ₅	525	-7	115 [M-H-H ₂ O] ⁻	L/S/R	5.30 x 10 ⁻⁰⁷	[15]
49	0.98	115.000	Fumaric acid	C4H4O4	444972	-1	71 [M-H-COOH] ⁻ 58 [M-H-C ₂ H ₂ O ₂]-	L	4.62 x 10 ⁻¹¹	[15]
50	2.06	191.026	Citric acid	C ₆ H ₈ O ₇	311	-7.2	173 [M-H-H ₂ O] ⁻ 111 [M-H-CO ₂ -2H ₂ O] ⁻	L/S/R	0.00193365	[3,15,16]
51	3.99	191.016	Isocitric acid	C ₆ H ₈ O ₇	1198	-3.1	173 [M-H-H ₂ O]- 111 [M-H-CO ₂ -2H ₂ O]-	L	0.000923945	[15,16]
52	4.77	323.131	Citrate pentoside	C11H16O11	-		191 [M-H-pen] ⁻ 175 [M-H-pent-OH] ⁻	L/S/R	1.24 x 10 ⁻⁰⁵	
53	5.07	175.036	Ascorbic Acid	C ₆ H ₈ O ₆	54670067	9.4	115 [M-H-C ₂ H ₅ O ₂] ⁻	L/S/R	0.00139602	[15]
				Amino a	cids & deriva	tives				
54	0.85	146.043	Glutamic acid	C5H8NO4	33032	-6.7	131 [M-H-NH ₂] ⁻ 128 M-H-OH] ⁻ 102 [M-H-COOH] ⁻	L/S/R	0.000502658	[15]
55	1.17	128.032	Pyroglutamic acid	C ₅ H ₆ NO ₃	7405	-2.7	84 [M-H-COOH] ⁻	L/S/R	1.08 x 10 ⁻⁰⁶	[15]
56	1.90	166.000	Phenylalanine	C9H12NO2	6140	-9.4	149 [M+H-NH ₃] ⁻ 121 [M+H-COOH] ⁺	L/S/R	0.000414821	[1,3]
57	2.3	218.1	Panthothenic acid	C9H17NO5	6613	-5.8	146 [M-H-C ₃ H ₅ O ₂] ⁻	L/R	0.00186588	[15]
58	5.92	172.095	Acetyl leucine/isoleucine	C ₈ H ₁₄ NO ₃	70912	-6.7	-	L/R	4.64 x 10 ⁻⁰⁷	

59	7.51	245.088	Acetyl Tryptophan	C13H14N2O3	2002	-7.4	203 [M-H-C ₂ H ₂ O] ⁻ 142 [M-H-NH ₃ -COOH-C ₂ H ₂ O] ⁻ 116 [M-H-C ₅ H ₈ NO ₃] ⁻	L/S	1.74 x 10 ⁻⁰⁸	[1,3,15]
60	7.71	219.078	Hydroxytryptophan	C ₁₃ H ₁₁ N ₂ O ₄	144		203 [M-H-OH] ⁻ 146 [M-H-C ₂ H ₄ NO ₂] ⁻ 116 [M-H-C ₃ H ₆ NO ₂] ⁻	L/S/R	0.00386036	
			H	ydroxybenzoid	c acid (HBA)	derivativ	ves			
61	3.00	153.018	Dihydroxybenzoic acid	C7H404	9338	-6.4	137 [M-H-OH]- 109 [M-COOH]-	L/S/R	0.0531	[1,17] X
62	3.31	285.055	Dihydroxybenzoic acid pentose	C12H13O8	-	-4.2	153 [M-H-pent] ⁻ 137 [M-H-OH] ⁻ 109 [M-COOH] ⁻	L/S/R	9.13 x 10 ⁻¹⁰	[1]
63	3.75	137.021	Salicylic acid	C7H6O3	338	-9.8	109 [M-H-OH] ⁻ 93 [M-H-COOH] ⁻	L/R	0.0005	Х
64	4.99	401.142	Benzyl alcohol hexose-pentose	C18H25O10	244	-2.4	269 [M-H-pent] ⁻ 107 [M-H-hex-pent] ⁻	L/S/R	0.002	[1,3]
65	5.59	445.138	Methylsalicylate hexose pentose	C19H26O12	11279		283 [M-H-hex] ⁻ 269 [M-H-hex-CH ₃] ⁻ 299 [M-H-pent-CH ₃] ⁻	L/S/R	6.32 x 10 ⁻⁰⁶	[3]
66	6.02	381.173	3-Methylbutyl 6-O-D-apio-b- Dfuranosyl-b- D- glucopyranoside	C ₁₆ H ₃₀ O ₁₀	-	-2.5	423 [M-H-C2H3O] ⁻ 249 [M-H-132 Da] ⁻ 179 [M-H-202 Da] ⁻	L/S/R	3.01 x 10 ⁻⁰⁹	[15]
67	6.16	299.076	Salicylic acid glycoside	C ₁₃ H ₁₆ O ₈	49859589	-10	137 [M-H-hex] ⁻	L/R	0.0033	[15]
68	6.34	435.089	Hydroxybenzoyl dihydroxybenzoic acid hexoside	C ₂₀ H ₁₉ O ₁₁	-	2.5	315 [M-H-120 Da] ⁻ 297 [M-H-138 Da] ⁻ 153 [M-H-hex] ⁻ 137 [M-H-hex-C6H5COOH] ⁻	L	0.0454	
69	7.36	315.063	Dihydroxybenzoic acid hexoside	C13H15O9	78522		153 [M-H-hex] ⁻ 109 [M-H-hex-COOH] ⁻	L	4.48 x 10 ⁻¹⁰	[2]

70	7.68	425.2	Absisic acid hexose ester	C21H29O9	46173811	4.2	409 [M-H-OH] ⁻ 263 [M-H-hex] ⁻ 153 [M-H-C ₆ H ₇ O-hex] ⁻	L/R	0.00308631	[15]
				Steroidal gl	ycoalkaloids	(SGAs)				
71	10.18	1050.548	Hydroxytomatine	C50H83NO22	-		1164 [M+H+FA+3Na]+ 1096 [M+H+FA] ⁺ 578 [M+H-2hex-pent] ⁺ 416 [tomatidene +H] ⁺	L/S/R	0.003905	[3,18]
72	11.07	1032.540	Dehydrotomatine	C ₅₀ H ₈₁ NO ₂₁	101920881	-7.9	1076 [M+H+FA] ⁺ 576 [M+H-2hex-pent] ⁺ 527 [M+H+Na] ⁺ 414 [dehydrotomatidene+H] ⁺	L/S/R	9.59 x 10 ⁻⁰⁵	[18,19]
73	11.29	1092.560	Lycoperoside A/B/C	C52H85NO23	131751568	-2.3	960 [M+H-pent]+	L/S	7.09 x 10 ⁻⁰⁵	Х
74	11.37	1034.550	α-Tomatine (I)	C50H83NO21	28523	-5.1	740 [M+H-hex-pent] ⁺ 578 [M+H-2hex-pent] ⁺ 528 [M+H+Na] ²⁺ 416 [tomatidene+H] ⁺	L/S/R	0.00346284	[3,19]
75	11.66	1034.543	α-Tomatine (II)	C ₅₀ H ₈₃ NO ₂₁	28523	-6.4	740 [M+H-hex-pent] ⁺ 578 [M+H-2hex-pent] ⁺ 528 [M+H+Na] ²⁺ 416 [tomatidene+H] ⁺	L/S/R	0.000744116	[3]
76	11.80	1004.540	Tomatidine dihexoside dipentoside	C49H81NO20	65576	-3.4	870 [M-H]- 740 [M-H-hex-pent]- 578 [M-H-2pent-hex]- 416 [tomatidene-H]-	L/S/R	0.00085934	[3,18]
			1	1	Fatty acids					
77	13.93	327.213	Trihydroxy-octadecadienoic acid (I)	C ₁₈ H ₃₁ O ₅	129669152	-0.5	309 [M-H-H ₂ O] ⁻	L/S/R	7.10 x 10 ⁻⁰⁵	[3]
78	14.36	242.175	3-Amino-13-oxo-tridecanoic acid	C ₁₃ H ₂₄ NO ₃	5182019	1.2	225 [M-H-NH ₃] ⁻	L/R	3.30 x 10 ⁻⁰⁵	[15]

79	14.91	327.217	Trihydroxy-octadecadienoic acid (II)	C ₁₈ H ₃₁ O ₅	129669152	0.6	-	L//R	9.30 x 10 ⁻⁰⁵	[3]
80	15.01	329.227	Hydroxyoctadecanedioic acid (I)	C18H33O5	23052243	-8.7	271 [M-H-58] ⁻ 171 [M-H-158] ⁻	S/R	0.00237209	[1]
81	16.21	329.232	Hydroxyoctadecanedioic acid (II)	C ₁₈ H ₃₃ O ₅	23052243	-3	271 [M-H-58] ⁻ 171 [M-H-158] ⁻	L/R	8.77 x 10 ⁻⁰⁹	[1]

^aPeak numbers assigned based on each compound class elution order.

^bhex, loss of hexose moiety (-162u); pent, loss of pentose moiety (-132u); rham, loss of rhamnose moiety (-147u); caff, caffeic acid moiety; fer, ferulic acid moiety; coum, coumaric acid moiety; put, putrescine moiety; quin, quinic acid moiety; FA, formic acid adduct (- 46u).

^c References indicated with an "X" can be found on the tomato metabolome database (MoTo) <u>http://www.ab.wur.nl/moto/</u>

References

- 1. Cichon, M.J.; Riedl, K.M.; Schwartz, S.J. A metabolomic evaluation of the phytochemical composition of tomato juices being used in human clinical trials. *Food Chem.* **2017**, *228*, 270–278.
- Nguyen, T.-K.-O.; Jamali, A.; Grand, E.; Morreel, K.; Marcelo, P.; Gontier, E.; Dauwe, R. Phenylpropanoid profiling reveals a class of hydroxycinnamoyl glucaric acid conjugates in *Isatis tinctoria* leaves. *Phytochemistry* 2017, 144, 127–140.
- Roldan, M.V.G.; Engel, B.; De Vos, R.C.H.; Vereijken, P.; Astola, L.; Groenenboom, M.; Van De Geest, H.; Bovy, A.; Molenaar, J.; Van Eeuwijk, F.; et al. Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. *Metabolomics* 2014, 10, 958–974.
- 4. Ncube, E.N.; Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Dubery, I.A.; Madala, N.E. Analyses of chlorogenic acids and related cinnamic acid derivatives from *Nicotiana tabacum* tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. *Chem. Cent. J.* **2014**, *8*, 66.
- Narváez-Cuenca, C.-E.; Vincken, J.-P.; Zheng, C.; Gruppen, H. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers. *Food Chem.* 2013, 139, 1087–1097.
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from *Lonicera henryi* L. (Caprifoliaceae) leaves by LC-MSn. *Phytochemistry* 2014, *108*, 252–263, doi:10.1016/j.phytochem.2014.08.023.
- 7. Jáuregui, O.; Medina-Remón, A.; Andrés-Lacueva, C.; Vallverdú-Queralt, A.; Medina-Remón, A.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Medina-Remón, A.; Andrés-Lacueva, C.; et al. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* 2010, *24*, 2986–2992.
- Voynikov, Y.; Zheleva-Dimitrova, D.; Gevrenova, R.; Lozanov, V.; Zaharieva, M.M.; Tsvetkova, I.; Najdenski, H.; Yagi, S.; Almoulah, N.F.; Momekov, G. Hydroxycinnamic acid amide profile of *Solanum schimperianum* Hochst by UPLC-HRMS. *Int. J. Mass Spectrom.* 2016, 408, 42–50.
- 9. Ncube, E.N.; Steenkamp, P.A.; Madala, N.E.; Dubery, I.A. Stimulatory effects of acibenzolar-s-methyl on chlorogenic acids biosynthesis in *Centella asiatica* cells. *Front. Plant Sci.* **2016**, *7*, 1469.
- Dastmalchi, K.; Cai, Q.; Zhou, K.; Huang, W.; Serra, O.; Stark, R.E. Solving the jigsaw puzzle of woundhealing potato cultivars: metabolite profiling and antioxidant activity of polar extracts. *J. Agric. Food Chem.* 2014, 62, 7963–7975.
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoylquinic acids and hydroxycinnamoyl-isocitric acids. *Chem. Cent. J.* 2017, *11*, 29.
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. *Food Chem.* 2016, 211, 215– 226.
- Itkin, M.; Rogachev, I.; Alkan, N.; Rosenberg, T.; Malitsky, S.; Masini, L.; Meir, S.; Iijima, Y.; Aoki, K.; De Vos, R.; et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. *Plant Cell* 2011, 23, 4507–4525.
- 14. Cataldi, T.R.I.; Lelario, F.; Bufo, S.A. Analysis of tomato glycoalkaloids by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* **2005**, *19*, 3103–3110.