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Abstract: (1) Background: Upland cotton (Gossypium hirsutum L.) is the most important natural
fiber worldwide, and it is extensively planted and plentifully used in the textile industry. Major
cotton planting regions are frequently affected by abiotic stress, especially drought stress. Drought
resistance is a complex, quantitative trait. A genome-wide association study (GWAS) constitutes an
efficient method for dissecting the genetic architecture of complex traits. In this study, the drought
resistance of a population of 316 upland cotton accessions was studied via GWAS. (2) Methods: GWAS
methodology was employed to identify relationships between molecular markers or candidate genes
and phenotypes of interest. (3) Results: A total of 8, 3, and 6 SNPs were associated with the euphylla
wilting score (EWS), cotyledon wilting score (CWS), and leaf temperature (LT), respectively, based on
a general linear model and a factored spectrally transformed linear mixed model. For these traits,
7 QTLs were found, of which 2 each were located on chromosomes A05, A11, and D03, and of which 1
was located on chromosome A01. Importantly, in the candidate regions WRKY70, GhCIPK6, SnRK2.6,
and NET1A, which are involved in the response to abscisic acid (ABA), the mitogen-activated protein
kinase (MAPK) signaling pathway and the calcium transduction pathway were identified in upland
cotton at the seedling stage under drought stress according to annotation information and linkage
disequilibrium (LD) block analysis. Moreover, RNA sequencing analysis showed that WRKY70,
GhCIPK6, SnRK2.6, and NET1A were induced by drought stress, and the expression of these genes was
significantly different between normal and drought stress conditions. (4) Conclusions: The present
study should provide some genomic resources for drought resistance in upland cotton. Moreover,
the germplasm of the different phenotypes, the detected SNPs and, the potential candidate genes
will be helpful for molecular marker-assisted breeding studies about increased drought resistance in
upland cotton.

Keywords: association analysis; drought tolerance; upland cotton; single-nucleotide polymorphism
(SNP)

1. Introduction

Water shortages are among the most serious limitations to global agricultural production due to
the complexity of water-deficient environments and climatic variation [1,2]. Drought is an important
and complicated abiotic stress that affects the growth, development, and reproduction of plants.
Drought limits cotton (Gossypium hirsutum L.) productivity and fiber quality, drought resistance is a
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complex, quantitative trait controlled by more than two genes [3,4]. It is, therefore, of great significance
to improve the drought tolerance of cotton and increase its yield under drought stress conditions.

Allotetraploid upland cotton (Gossypium hirsutum L.; AADD, 2n = 4× = 52) is one of the most
important economic crop species. It produces the most significant natural fiber worldwide, is a source
of seed oil, and it accounts for approximately 95% of cotton production worldwide [5]. Upland cotton
is the northern-most cultivated species and accounts for approximately 99% of the cotton planting
area in China. Upland cotton has made important contributions to the development of modern
cotton production and the cotton spinning industry [6,7]. Upland cotton is highly regarded by the
government in relation not only to people’s lives and economic sources of cotton farmers but also to
the economic development of cotton planting areas. As a glycophyte, cotton is more tolerant to abiotic
stress than other staple crop species. However, during the past few years, the frequent occurrence of
extreme weather events and environmental factors, such as drought stress, have affected the growth,
development, yield, and fiber quality of cotton [8]. In Pakistan, cotton production decreased by 34%
from 14.593 million bales in one year to 9.687 million bales the following year on account of water
deficit [9]. China is one of the world’s largest producers and consumers of cotton [10]. With the rapid
adjustment of cotton areas in China, cotton planters have moved to cities and towns and have begun
participating in secondary and tertiary industries; thus, the major cotton planting region gradually has
moved to the northwestern territories in China [11]. In recent years, the northwestern inland cotton
region, which includes all of Xinjiang, the Hexi Corridor in Gansu, and the western region of the Helan
Mountains of Inner Mongolia, has substantially developed and has become the largest cotton-growing
region among three main cotton-growing regions (the cotton region in the Yangtze River basin, the
cotton region in the Yellow River basin, and the northwestern inland cotton region) in China in terms of
yield, total production, and planting acreage [12,13]. Water is one of the significant resources in arid and
semiarid regions for farming. However, the northwestern inland cotton region is located just in the arid
region in China, and the arid region in northwestern China is one of the most drought-stressed regions
worldwide [14]. Therefore, it is a great challenge and formidable task for researchers to determine
suitable drought resistance cultivation techniques and cultivate drought-tolerant cotton varieties.

Genome-wide association study (GWAS) methodologies are widely employed to identify
relationships between molecular markers or candidate genes and phenotypes of interest. This
method takes advantage of high-density SNP markers, associates molecular polymorphisms with a
phenotype, and offers advantages over traditional linkage analyses such as more accurate positioning
and mapping, simultaneous assessments of multiple alleles at a locus, and no requirements for linkage
group construction [15,16]. Compared with biparental QTL studies, GWASs capture the available
allelic diversity at loci while achieving greater physical resolution because of their lower linkage
disequilibrium (LD) in diversity panels and because biparental mapping is unable to explore the
full extent of allelic diversity that would be present in diverse germplasms [17]. Therefore, GWASs
constitute an efficient method for dissecting the genetic architecture of complex traits and represent a
powerful tool for crop breeding [18]. GWASs have been successfully applied in many plant species
such as Arabidopsis [19], rice [20], maize [21], and wheat [22]. It has been successfully applied in
cotton to elucidate the genetic basis of fiber quality [23,24], yield [25], verticillium wilt disease [26],
and fusarium wilt disease [27]; however, this method has yet to be applied to drought resistance
traits. Recently, with respect to cotton studies, the release of the genome sequence of Texas marker-1
(TM-1) has provided inestimable genomic information for future GWASs on other important traits
in cotton [28,29]. Using significantly identified SNPs, GWAS analysis is a powerful tool for genomic
selection and increases the accuracy of prediction. The general linear model (GLM) and mixed linear
model (MLM) are the most commonly used algorithmic models in GWASs. In most previous related
studies, these two models were often used in GWAS analyses. However, the computational complexity
of the two models is tremendous. With the development of bioinformatics, efficient mixed model
association expedited (EMMAX) has been used to study genotypes and phenotypic traits, it represents
an efficient analytical method, and this method can reduce the computational time for analyzing large
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GWAS datasets from years to hours [30]. The factored spectrally transformed linear mixed model
(FASTLMM) has also been used to analyze GWAS data and runs an order of magnitude faster than
current efficient algorithms [31].

The use of genetic and genomic analyses to identify DNA markers associated with drought
resistance can facilitate breeding strategies for crop improvement [17]. It is a useful and effective
method to study target traits controlled by several genes, such as those that provide drought stress
resistance. Screening materials in controlled greenhouse and growth chambers can greatly shorten the
time needed and can improve the efficiency in screening for drought tolerance. Moreover, screening
for upland cotton drought tolerance at the seedling stage in the greenhouse is conducive to the efficient
screening of many materials in appropriate time and space. Based on previous sequencing data, the
objectives of this study were to explore the genetic variation of 316 upland cotton accessions and use a
GWAS to identify candidate regions and genes associated with drought resistance traits in order to
develop tools for use in upland cotton breeding programs.

2. Results

2.1. Analysis of Phenotypic Drought Resistance Traits

In order to systematically explore the genetic basis and mechanism of drought resistance traits of
upland cotton, a set of 316 accessions was selected from a natural population of 355 cultivars or lines
(Figure 1a,b), and the leaf temperature (LT), cotyledon wilting score (CWS), euphylla wilting score
(EWS), and leaf chlorophyll content (LC), which are target traits of these accessions related to drought
resistance, were evaluated and analyzed under two different greenhouse environments (denoted as
GR-2017 and GR-2018). For all 316 upland cotton accessions, the CWS and EWS ranged from 0 to 6 in
both GR-2017 and GR-2018. The CWS had an average value of 4.0 and 3.9 in GR-2017 and GR-2018,
respectively. The EWS had the same mean value of 2.5 in both environments, and the LC exhibited a
wide range of 37.20–67.85 with a mean value of 52.70 in both environments (Figure 1c–f, Supplementary
Table S1).

2.2. Phylogenetic Analyses and Linkage Disequilibrium

To explore drought resistance of upland cotton, we collected a total of 316 upland cotton cultivars,
including 286 cultivated accessions from the major cotton cultivation regions such as the Yangtze
River basin region (YZR), the Yellow River basin region (YR), the northern specific early maturation
region (NEM), and the northwestern inland region (NW) and foreign region (FR), including others
from America, Tajikistan, and Uzbekistan. Based on the pair-wise genetic distance determined using
whole genome SNP markers among the 316 accessions, we explored the phylogenetic relationships of
these cotton germplasms, which could be divided into three divergent groups (Figure 2a). To further
support the result, a principal component analysis (PCA) was performed by using select SNP markers.
These groups could be identified according to principal components 1, 2, and 3 by a three-dimensional
diagram (Figure 2b). Combining the results of the phylogenetic tree with population structure, we
observed that most of these accessions from every subpopulation had mixed ancestry. We could
not identify obvious geographic subpopulations, possibly because of the introduction of cotton to
China from other countries in the early 20th century, which indicated that these accessions might have
experienced gene flow or introgression in cotton breeding.

Linkage disequilibrium (LD) was indicated by the r2 value and decreased with physical distance
between SNPs. By using all selected SNPs, the extent of LD for every group and all accessions was
measured when the LD decreased to half of the maximum value. The observed extent of LD decay in
the population was estimated to be 488 kb, with an r2 = 0.42 at half of the maximum value. According
to the results of the LD analysis in conjunction with ecological region, the LD decay occurred at 351 kb
(r2 = 0.42) in the YR region and at 408 kb (r2 = 0.42) in the NW region, but it increased to 584 kb
(r2 = 0.43) in the YZR region (Figure S1).
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Figure 1. Phenotypes and frequency histograms of the mean values of drought resistance traits of 316 
accessions. (a) Growth of the cotton population at the seedling stage under normal water conditions; 
(b) Typical phenotypes of the cotton population at the seedling stage after drought stress; (c, d, e and 
f) Frequency histograms of the mean values of the CWS, EWS, LC and LT traits of 316 accessions. 
CWS: cotyledon wilting score; EWS: euphylla wilting score; LC: leaf chlorophyll content; LT: leaf 
temperature. 
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subpopulation had mixed ancestry. We could not identify obvious geographic subpopulations, 

Figure 1. Phenotypes and frequency histograms of the mean values of drought resistance traits of 316
accessions. (a) Growth of the cotton population at the seedling stage under normal water conditions; (b)
Typical phenotypes of the cotton population at the seedling stage after drought stress; (c–f) Frequency
histograms of the mean values of the CWS, EWS, LC and LT traits of 316 accessions. CWS: cotyledon
wilting score; EWS: euphylla wilting score; LC: leaf chlorophyll content; LT: leaf temperature.
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In this study, we used the GLM to compute the association signal of all four traits (no significant 
association makers were detected for the LC trait in this study) first. Seventeen SNP loci associated 
with three traits (LT, the EWS, and the CWS) related to drought tolerance and two SNP loci 
surpassed the threshold of significance of 0.01 (−log10(p) ≥ 6.53) (Table 1 and Figure 3). With respect 
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associations were found to be significant for three SNP loci associated with LT (Figure 3d). However, 
no peak SNPs from this model were detected for the CWS and EWS (Supplementary Table S2). 

Figure 2. Population structure of 316 upland cotton accessions. (a) Phylogenetic tree of the
natural population, FR: foreign region; NEM: the northern specific early maturation region; NW:
the northwestern inland region; YR: the Yellow River basin region; YZR: the Yangtze River basin region;
(b) Principal component analysis of upland cotton, each dot represents an accession.

2.3. Genome-Wide Association Study

There was abundant variation in the phenotype of cotton at the seedling stage under drought
stress. To obtain insight into the genetic variants associated with drought tolerance at the seedling
stage in upland cotton, based on the 316 cotton accessions, we investigated the phenotypic data for
4 traits and conducted a genome-wide association study to analyze and identify the genetic loci of
those traits. For the analysis, multifarious distinct models, including the GLM and the FASTLMM,
were used for different traits.

In this study, we used the GLM to compute the association signal of all four traits (no significant
association makers were detected for the LC trait in this study) first. Seventeen SNP loci associated
with three traits (LT, the EWS, and the CWS) related to drought tolerance and two SNP loci surpassed
the threshold of significance of 0.01 (−log10(p) ≥ 6.53) (Table 1 and Figure 3). With respect to these
SNP loci, 64.7% and 35.3% were situated in the A subgenome and D subgenome, respectively; 47.1%
were distributed on chromosome A05; and 11.8% and 35.2% were distributed on chromosome A11
and chromosome D03, respectively. Among these associated SNP loci, eight associations with the
EWS were identified (Figure 3a), three associations with the CWS were identified (Figure 3b), and six
associations with LT were identified (Figure 3c). In the FASTLMM, 3 associations were found to be
significant for three SNP loci associated with LT (Figure 3d). However, no peak SNPs from this model
were detected for the CWS and EWS (Supplementary Table S2).
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Table 1. Summary of loci associated with drought tolerance traits identified by a GWAS in upland cotton.

Trait SNP Locus Chromosome p Value Major Allele Minor Allele Minor Allele Freq.

EWS A05:89580589 A05 2.67 × 10−6 C A 0.10
EWS A05:89717711 A05 5.28 × 10−7 T C 0.19
EWS A05:89762730 A05 5.14 × 10−7 C G 0.20
EWS A05:89762936 A05 8.70 × 10−7 G A 0.19
EWS A05:89984532 A05 1.62 × 10−6 A G 0.19
EWS A05:90061632 A05 7.20 × 10−6 G A 0.17
EWS A05:90150044 A05 1.05 × 10−6 A G 0.21
EWS A11:86279835 A11 7.42 × 10−7 A G 0.11
CWS A01:92213571 A01 2.31 × 10−6 A G 0.18
CWS A05:4580354 A05 2.80 × 10−6 T A 0.42
CWS A11:45127798 A11 1.46 × 10−6 T C 0.06

LT D03:20786242 D03 2.65 × 10−6 T C 0.24
LT D03:25327187 D03 1.71 × 10−6 A T 0.18
LT D03:25327414 D03 1.45 × 10−6 T C 0.18
LT D03:25669014 D03 2.66 × 10−6 A C 0.22
LT D03:25729410 D03 3.96 × 10−7 A G 0.21
LT D03:25991794 D03 4.04 × 10−7 A G 0.19

2.4. Prediction of Candidate Genes and Identification of Favorable Haplotypes

To further explore drought tolerance based on EWS traits, we analyzed the candidate genes
associated with these traits in depth. In the genomic region from 89.0–90.6 Mb, seven SNPs were found,
and the SNP locus A05:90061632 showed significant marker–trait associations, with −log10(p) values
as high as 7.14 (Figure 2a). A significant association was found to peak at SNP A05:89717711. However,
the flanking sequence of the SNP (T/C) aligns with the intronic region of the Gh_A05G3447 gene, which
is annotated as an unknown protein. Moreover, we found two significant loci at SNP A05:89762730
and SNP A05:89762936, which are located at 89.76 Mb on chromosome A05. Unfortunately, although
two SNPs (C/G, G/A) were located within the same Gh_A05G3452 gene that encodes nuclear RNA
polymerase C2, their flanking sequences were in the position of the intronic region, making it highly
difficult for us to further study them. We further performed an LD block analysis for six significant
SNPs (A05:89717711, A05:89762730, A05:89762936, A05:89984532, A05:90061632, and A05:90150044)
associated with the EWS trait. One LD block (89.70–90.60 Mb) was ultimately found on chromosome
A05 (Figure 4a,b). According to the result of the gene annotation, there were 61 putative genes in this
LD block (Supplementary Table S3). To analyze the genes in this LD block, we further performed a
transcriptome sequencing analysis for the accession (G8). We identified a gene, Gh_A05G3499, which
was named WRKY70. With increasing drought stress, the expression of this gene first declined but
then significantly increased in the leaves and roots (Figure 4c,d).
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Figure 3. Genome-wide associated study (GWAS) of 316 upland cotton accessions. Manhattan plots of
GWAS by using general linear model (GLM) for EWS (a), CWS (b), and LT (c), respectively and by
using factored spectrally transformed linear mixed model (FASTLMM) for LT (d). The SNP loci of the
red lines (−log10(p) ≥ 5.53) were considered suggestive association makers; the SNP loci of the blue
lines (−log10(p) ≥ 6.53) were considered significant association makers. Each dot represents an SNP.
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Association signal of the EWS in the region from 89.0–90.6 Mb on chromosome A05. (b) Distribution 
of the LD block on chromosome A05. The pair-wise LDs between the SNPs are indicated as D’ 
values, where the grey and dark red colors indicate 0 and 1, respectively. (c,d) Expression level of the 
candidate gene Gh_A05G3499 (WRKY70) calculated based on RNA-seq analysis of leaves and roots. 
(e) Box plots for phenotypic values of the haplotypes on chromosome A05 for the EWS trait. (f) 
Percent stacking bar chart of several types of haplotypes for the EWS trait. CK: 75% ± 5% of RWC; T1: 
60% ± 5% of RWC; T2: 45% ± 5% of RWC; T3: 30% ± 5% of RWC. The asterisks indicate the 
significance of Student’s t-test and ** means 1% level of significance. FH: favorable haplotype; HH: 
heterozygous haplotype; UFH: unfavorable haplotype; EWS: euphylla wilting score. The black 
multiplication sign indicates the mean value, the middle black line indicates the median, the box 
represents the range from the 25th to 75th percentile of all the data, and the outer dots are outliers. 

Figure 4. LD block on chromosome A05 and identification of the candidate gene Gh_A05G3499.
(a) Association signal of the EWS in the region from 89.0–90.6 Mb on chromosome A05. (b) Distribution
of the LD block on chromosome A05. The pair-wise LDs between the SNPs are indicated as D’ values,
where the grey and dark red colors indicate 0 and 1, respectively. (c,d) Expression level of the candidate
gene Gh_A05G3499 (WRKY70) calculated based on RNA-seq analysis of leaves and roots. (e) Box plots
for phenotypic values of the haplotypes on chromosome A05 for the EWS trait. (f) Percent stacking bar
chart of several types of haplotypes for the EWS trait. CK: 75% ± 5% of RWC; T1: 60% ± 5% of RWC;
T2: 45% ± 5% of RWC; T3: 30% ± 5% of RWC. The asterisks indicate the significance of Student’s t-test
and ** means 1% level of significance. FH: favorable haplotype; HH: heterozygous haplotype; UFH:
unfavorable haplotype; EWS: euphylla wilting score. The black multiplication sign indicates the mean
value, the middle black line indicates the median, the box represents the range from the 25th to 75th
percentile of all the data, and the outer dots are outliers.
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We also analyzed the types of haplotypes for the EWS trait to further find favorable haplotypes
for the six significantly associated SNPs. According to results of the association analysis, three
kinds of haplotypes (TT-CC-GG-AA-GG-AA, TC-CG-GA-AG-GA-AG, and CC-GG-AA-GG-AA-GG)
were found on the basis of these SNP alleles (T/C, C/G, G/A, A/G, G/A, and A/G). The haplotype
(TT-CC-GG-AA-GG-AA) included 109 accessions, accounted for 71.7% of all the haplotypes, and was
used as the favorable haplotype (FH) because this haplotype had positive phenotypic effects on the EWS
and showed less leaf wilting than the other haplotypes. The mean value (2.0) of the favorable haplotype
(FH) for the EWS trait was obviously lower than the average (3.7) of the corresponding haplotype
(CC-GG-AA-GG-AA-GG, considered unfavorable haplotype, UFH), which included 19 accessions.
The third haplotype was considered a heterozygous haplotype (HH, TC-CG-GA-AG-GA-AG) and
included 24 accessions, with the mean value of 2.9 for EWS trait (Figure 4e). According to the result
of the percent stacking bar chart, the favorable haplotype (FH) accounted for a greater proportion of
the lines with less leaf wilting than the other haplotypes. When the EWS was equal to or less than
0.7, there were no unfavorable haplotype (UFH) accessions, and favorable haplotype (FH) accounted
for 90.5%. However, while the value was equal to or greater than 4.9, the favorable haplotype (FH)
accounted for only 20%, and the unfavorable haplotype (UFH) and heterozygous haplotype (HH)
accounted for 40% each (Figure 4f).

When the seedlings of upland cotton were under drought stress, we found that the cotyledons
of seedlings wilted early, after which the euphylla became gradually wilted. The degree of wilting
was asynchronous in numerous upland cotton accessions with different drought resistances. Here, the
underlying genetic loci associated with the CWS (cotyledon wilt score) trait were also detected. Three
SNPs were significantly associated with the CWS trait; these SNP loci were positioned at 9,221,3571,
4,580,354, and 45,127,798 on chromosomes A01 (1), A05 (1), and A11 (1), respectively (Figure 3b). We
analyzed a peak SNP, which was located at 4,580,354 on chromosome A05. This SNP had a MAF
of 0.42 in the natural population and led to delimiting a 0.45 Mb candidate region that included 46
genes (Supplementary Table S4). Moreover, one LD block (4.30–4.83 Mb) was found on chromosome
A05 (Figure 5a,b). When analyses of the candidate region and LD block were combined, one gene,
Gh_A05G0418, was found to be located approximately 0.14 Mb away from the peak SNP A05:4580354
and encoded CBL-interacting protein kinase 6 (CIPK6), which is homologous to the gene AT4G30960
in Arabidopsis. Based on the results of RNA-seq, with increasing drought stress, the expression of
this gene gradually increased, after which it ultimately peaked and reached an extremely significant
expression in leaves and roots of the accession compared to control treatments under severe drought
conditions (Figure 5c,d). Moreover, we found that the gene showed a significant expression level under
the same treatment (T3) in the leaves and roots of the variety.

We further analyzed the types of haplotypes for the CWS trait to find favorable haplotype for
significantly associated SNPs. With respect to the wilting score mean of the three types of haplotypes,
the favorable haplotype (AA), heterozygous haplotype (AT), and unfavorable haplotype (TT) scores
were 3.21, 3.95, and 4.07, respectively. In the natural population, the favorable haplotype (FH) accounted
for 50%, the heterozygous haplotype (HH) accounted for 34%, and the unfavorable haplotype (UFH)
accounted for only 16% (Figure 5e). Based on the result of the percent stacking bar chart, different
wilting scores were distributed among the three types of haplotypes. As can be seen, as the wilting
score increased gradually, the proportion of the favorable haplotype (FH) decreased (Figure 5f).
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Figure 5. LD block on chromosome A05 and identification of the candidate gene Gh_A05G0418. (a)
Association signal of the CWS in the region from 4.30–4.83 Mb on chromosome A05. (b) Distribution of
the LD block on chromosome A05. The pair-wise LDs between the SNPs are indicated as D’ values,
where the grey and dark red colors indicate 0 and 1, respectively. (c,d) Expression level of the candidate
gene Gh_A05G0418 (CIPK6) calculated based on RNA-seq analysis of the leaves and roots. (e) Box
plots of the phenotypic values of the haplotypes on chromosome A05 for the CWS trait. (f) Percent
stacking bar chart of several types of haplotypes for the CWS trait. CK: 75% ± 5% of RWC; T1: 60% ±
5% of RWC; T2: 45% ± 5% of RWC; T3: 30% ± 5% of RWC. The asterisks indicate the significance of
Student’s t-test, and * and ** mean the 5% and 1% levels of significance, respectively. FH: favorable
haplotype; HH: heterozygous haplotype; UFH: unfavorable haplotype; CWS: cotyledon wilting score.
The black multiplication sign indicates the mean value, the middle black line indicates the median, the
box represents the range from the 25th to 75th percentile of all the data, and the outer dots are outliers.
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In addition, we further analyzed another peak SNP associated with the CWS trait, which was at
position 45,127,798 on chromosome A11 and had a MAF of 0.06 in the population; the R2 value for
this association was 9.64%. The marker explained 9.64% of the variation. Moreover, one LD block
(45.0–45.8 Mb) was found on chromosome A11 (Figure 6a,b). There were three predicted genes in the
designated candidate region (Supplementary Table S4). One gene, Gh_A11G1858, was homologous to
the AT4G33950 gene in Arabidopsis thaliana. The gene AT4G33950 is named SnRK2.6/OST1 (sucrose
non-fermenting 1-related protein kinase 2.6/OPEN STOMATA 1), which encodes a protein kinase
superfamily protein. According to the RNA-seq analysis, the expression of this gene was gradually
upregulated under mild (T1) and moderate drought conditions (T2) but decreased under the severe
drought conditions in the leaves and roots of the accession (Figure 6c,d). Moreover, the expression of
this gene was significant in T2 compared to control treatments in the leaves.

Based on the analysis of the haplotypes, the average values of the wilting score of the three
haplotypes, favorable haplotype (CC), heterozygous haplotype (TC), and unfavorable haplotype (TT)
were 1.71, 4.34, and 3.87, respectively (Figure 6e). Based on the results of the percent stacking bar chart,
the favorable haplotype (FH) accounted for only 5% of the natural population and was distributed in
regions associated with a relatively low wilting score (Figure 6f).

To further explore drought tolerance based on the LT trait, we analyzed the candidate genes
associated with these traits in depth. In the genomic region from 25.3–26.0 Mb, five SNPs (D03:25327187,
D03:25327414, D03:25669014, D03:25729410, and D03:25991794) were found (Figure 3c,d). When
analyses of the candidate region and LD block were combined (Figure 7a,b), 48 genes were found in
the candidate region (Supplementary Table S5). The gene Gh_D03G0728 is named NET1A, which is
homologous to AT4G30960 (CIP1) in Arabidopsis and encodes COP1-interactive protein 1. This gene
was induced in the leaves and roots in response to drought stress (Figure 7c,d).

Additionally, we analyzed the types of haplotypes for the LT trait to further identify favorable
haplotype for five significantly associated SNPs. Similarly, there were three types of haplotype
(AA-TT-AA-AA-AA, AT-TC-AC-GA-AG, and TT-CC-CC-GG-GG) based on the SNP alleles (A/T, T/C,
A/C, G/A, and A/G). Because osmotic adjustment substances such as abscisic acid (ABA) accumulate
under drought stress, osmotic pressure in guard cells gradually increases and induces stomatal pore
apertures to become narrow or to completely close. As a result, plant transpiration decreases, and the
temperature of leaves consequently increases. This mechanism is more important for drought-resistant
plants in order to protect their growth and development process than for drought-sensitive materials.
Therefore, the haplotype AA-TT-AA-AA-AA was regarded as the favorable haplotype (FH) because
the mean value (34.6 °C) of the haplotype for the LT trait was higher than the average (33.7 °C) of the
corresponding haplotype (TT-CC-CC-GG-GG, considered an unfavorable haplotype (UFH)). The mean
(34.0 °C) of the haplotype AT-TC-AC-GA-AG was in between that of the favorable haplotype (FH) and
the unfavorable haplotype (UFH); this haplotype was regarded as a heterozygous haplotype (HH)
(Figure 7e). Although the LT was equal to or greater than 35.4 °C, the unfavorable haplotype (UFH)
and heterozygous haplotype (HH) were not found among the natural population (Figure 7f).
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Figure 6. LD block on chromosome A11 and identification of the candidate gene Gh_A11G1858.
(a) Association signal of the CWS in the region from 45.0–45.8 Mb on chromosome A11. (b) Distribution
of the LD block on chromosome A11. The pair-wise LDs between the SNPs are indicated as D’ values,
where the grey and dark red colors indicate 0 and 1, respectively. (c,d) Expression level of the candidate
gene Gh_A11G1858 (SnRK2.6) calculated based on RNA-seq analysis of the leaves and roots. (e) Box
plots of the phenotypic values of the haplotypes on chromosome A11 for the CWS trait. (f) Percent
stacking bar chart of several types of haplotypes for the CWS trait. CK: 75% ± 5% of RWC; T1: 60% ±
5% of RWC; T2: 45% ± 5% of RWC; T3: 30% ± 5% of RWC. The asterisks indicate the significance of
Student’s t-test, and * and ** mean the 5% and 1% levels of significance, respectively. FH: favorable
haplotype; HH: heterozygous haplotype; UFH: unfavorable haplotype; CWS: cotyledon wilting score.
The black multiplication sign indicates the mean value, the middle black line indicates the median, the
box represents the range from the 25th to 75th percentile of all the data, and the outer dots are outliers.
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Figure 7. LD block on chromosome D03 and identification of the candidate gene Gh_D03G0728.
(a) Association signal of the LT in the region from 25.3.0–26.0 Mb on chromosome D03. (b) Distribution
of the LD block on chromosome D03. The pair-wise LDs between the SNPs are indicated as D’ values,
where the grey and dark red colors indicate 0 and 1, respectively. (c,d) Expression level of the candidate
gene Gh_D03G0728 calculated based on RNA-seq analysis of the leaves and roots. (e) Box plots of the
phenotypic values of the haplotypes on chromosome D03 for the LT trait. (f) Percent stacking bar chart
of several types of haplotypes for the LT trait. CK: 75% ± 5% of RWC; T1: 60% ± 5% of RWC; T2: 45% ±
5% of RWC; T3: 30% ± 5% of RWC. The asterisks indicate the significance of Student’s t-test and **
means and 1% levels of significance. FH: favorable haplotype; HH: heterozygous haplotype; UFH:
unfavorable haplotype; LT: leaf temperature. The black multiplication sign indicates the mean value,
the middle black line indicates the median, the box represents the range from the 25th to 75th percentile
of all the data, and outer dots are outliers.
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3. Discussion

Drought stress significantly affects the growth and development, yield, and fiber quality of cotton
by restricting and affecting plant height, leaf weight, stem weight, node number, transpiration rate,
stomatal conductance, and so on. [8]. The seedling stage is one of the critical stages in the upland cotton
growth cycle and especially lays the central foundation for subsequent growth. Although the seedling
stage of upland cotton frequently encounters drought stress, there have been few studies of drought
stress in upland cotton via genome-wide association studies thus far. Recently, the drought resistance
of cotton treated with polyethylene glycol 6000 (PEG 6000) was reported [32]. Many genome-wide
association studies have been employed to dissect complex traits in plants under drought stress and
have proven to be effective for identifying candidate regions and candidate genes for these traits. In
this study, a genome-wide association study was performed for phenotypic traits of cotton growing
in soil under drought stress conditions at the seedling stage. The responses of 316 upland cotton
accessions from different ecological regions to drought stress greatly differed according to phenotype
traits (CWS, EWS, LT, and LC). In the present study, LD was calculated by using 33,557 SNPs averaged
approximately 400 kb across the whole genome. LD decay was higher when SLAF sequencing
technologies were used rather than resequencing or next-generation sequencing technologies, which
find and identify high densities of SNPs and have been used in recent studies [23]. The higher LD in
this study means fewer SNP loci were found to cover the whole genome. According to our analysis
of the phylogenetic relationship of the natural population, we found that Stoneville 2B (STV2B) was
divided into a YR (Yellow River basin region) group, in which some accessions were together with
Deltapine 20, and a YZR group, which included Deltapine 14, Deltapine 15, and Deltapine 531. The
results of this study are similar to those in that modern Chinese cultivars developed from Stoneville 2B
(STV2B) were determined to be planted mainly in the Yellow River basin cotton-growing region, and
Deltapine were determined to be planted in all major cotton-growing regions in China [25].

According to the results of the GWAS of the 316 upland cotton accessions, 17 SNPs were found
on chromosomes A01, A05, A11, and D03 via other traits (the CWS, the EWS, and LT). Plant cells
are subjected to a series of physiological reactions under drought or osmosis stress; water extrusion,
reduction in osmotic potential (OP), and even plasmolysis can occur in the mesophyll cells of plants,
which results in leaf rolling and ultimately gives rise to wilting of the plant leaves with increasing
drought stress [33,34]. Leaf wilting of the upland cotton accessions from different ecological areas
was not synchronized, and the leaves started to wilt after the cotyledon seedlings wilted. Moreover,
the phenotypic data of the CWS were different from the EWS, which was verified by results from
the association analysis. Generally, on account of the existence of LD, the deviation, and lack of data
collection and statistical analysis, some of the most significant SNPs may not lie within the authentic
loci in terms of reinforcing the significance to verify the SNPs [35]. LD may be combined with the use of
SNPs in marker-assisted selection (MAS) if the linkage is strong enough to restrain the recombination
that was found between the SNP and causal gene, which can emerge as governing the favorable
phenotype. Moreover, methods used in molecular breeding programs for reducing SNPs have been
explored in sugar beets [36].

One QTL that contained 61 and 14 genes was found on chromosomes A05 and A11, respectively,
for the EWS trait (Supplementary Tables S3 and S6). According to annotation information and RNA-seq
data, the gene Gh_A05G3499 is homologous to AT3G56400 in Arabidopsis, which encodes WRKY
DNA-binding protein 70 (WRKY70). WRKY70, with one WRKY domain and a CCHC zinc finger
motif, is a member of the WRKY family [37], and many studies have indicated that WRKY TFs play
a significant role in the abiotic stress response [38,39]. In addition to their critical role in the plant
abiotic stress response, WRKY proteins have been implicated in the regulation of developmental
processes such as leaf senescence and trichome development [37]. Furthermore, studies have found
that WRKY54 and WRKY70 cooperate as negative regulators of osmotic stress and that WRKY46,
WRKY54, and WRKY70 negatively regulate drought resistance in Arabidopsis [40,41]. In this study, the
gene Gh_A05G3499 (WRKY70) was induced in the leaves and roots by drought stress. According to the
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results of RNA sequencing, we inferred that this gene not only may be involved in drought stress but
also may regulate developmental processes. In the candidate region of SNP A05:4580354 for the CWS
trait, we found 46 genes according to the LD block, six of which had an unknown function, and other
annotated genes.

The gene Gh_A05G0418 is homologous to AT4G30960, which encodes CBL-interacting protein
kinase 6 (CIPK6) in Arabidopsis thaliana. Previous studies revealed that the transcripts of the AtCIPK6
gene largely accumulated in abscisic acid-treated seedlings compared to basal level expression, and
overexpression of the AtCIPK6 gene enhanced plant resistance to salt stress but increased sensitivity to
ABA [42]. In Brassica napus, researchers found that activation of BnCIPK6 confers ABA hypersensitivity
to Arabidopsis plants, and overexpression of BnCIPK6 in Arabidopsis cipk6 mutants completely rescued
the ABA-insensitive phenotypes of this mutant, which further indicates that BnCIPK6 is involved in the
plant response to ABA [43]. Similarly, expression of the GhCIPK6 gene was induced by salt, drought,
and ABA treatments in Gossypium hirsutum. Moreover, overexpression of GhCIPK6 significantly
increases tolerance to salt, drought, and ABA stresses in transgenic Arabidopsis thaliana, which suggests
that GhCIPK6 plays a significant role and can serve as a positive regulator in response to salt and
drought stresses [44]. Another gene, Gh_A11G1858, on chromosome A11 is named SnRK2.6/OST1 and
encodes a protein kinase superfamily protein. The sucrose non-fermenting-1-related protein kinase 2
(SnRK2) family consists of ten members in both the Arabidopsis (SnRK2.1–10) and rice (known as osmotic
stress/ABA-activated protein kinases (SAPK1–10)) genomes, and the members are serine/threonine
protein kinases that function as central and positive regulators of the ABA signaling pathway [45].
Half of SnRK2s are activated by ABA, including SnRK2.2, 2.3, 2.6, 2.7, and 2.8 [46]. These proteins
are key regulators of the ABA signaling pathway and play a significant role in controlling stomatal
regulation in response to drought stress [47,48].

Moreover, according to KEGG pathway and mapping analyses, the SnRK2.6 gene plays a role in
the mitogen-activated protein kinase (MAPK) signaling pathway and is induced by salt, drought, and
osmotic stresses. MAPK signaling genes activate various drought-related pathways to induce tolerance
in plants [49]. Leaf temperature (LT) is a measurement associated with multiple abiotic stresses and is
a drought tolerance-related QTL trait [50]. Previous research found one QTL on chromosome A06 [51]
and on chromosome D03 for the LT trait [4]. Similarly, all SNPs we found were located on chromosome
D03. In the candidate region for the LT trait, the gene Gh_D03G0728 (NET1A) was induced by drought
stress in this study. With respect to the homologous gene (CIP1), a previous study indicated that the
promoter activity of CIP1 can be induced by osmotic stress and ABA, and that cip1 loss-of-function
mutants have ABA-insensitive phenotypes [52]. We infer that this gene may be involved in drought
resistance. QTLs controlling chlorophyll content were studied and identified on chromosomes A02,
D05, and D10 via QTL analyses for cotton near-isogenic lines under drought stress [53], and these
QTLs were found on chromosomes A02 and D01 via the Cotton Marker Database based on G. hirsutum
× G. barbadense [51]. However, in this study, the leaf chlorophyll content (LC) was not significantly
associated with any loci in plants under drought stress.

In addition, in recent years, genes involved in drought resistance have been gradually
found in upland cotton; some of these genes encode transcription factors, such as GhMYB5 and
GhMAP3K40 [54,55], and other genes are involved in calcium-sensing, such as GhCIPK6, GhCDPK2,
and GhCDPK38 [44]. According to the latest study of drought stress in cotton, the RD2, HAT22, and
PIP2 genes were associated with drought tolerance and were identified via water culture experiments
of cotton plants treated with PEG 6000 [32]. Most of these genes have been studied for their response to
drought stress, which was still in the early stages or was performed in chemical reagent environments.
Moreover, it is extremely difficult for transgenic drought-resistant cotton to develop and even advance
to field production at present, as drought tolerance is a complex, quantitative trait that is controlled
by multiple genes. Hence, the study of drought tolerance in upland cotton still needs to be further
explored, especially in terms of the molecular mechanism of drought tolerance. Indeed, in order to
study the mechanism of gene or genes directly involved in the phenotype, it would be indispensable



Int. J. Mol. Sci. 2019, 20, 3888 16 of 22

to knock out the genes in these regions by methods such as those involving RNA interference, T-DNA,
or CRISPR/Cas9 and observe the resultant phenotype [56].

4. Materials and Methods

4.1. Plant Materials

The diversity panel for the GWAS consisting of 316 upland cotton (Gossypium hirsutum L.)
accessions was provided by the cotton early maturing breeding laboratory at the Cotton Research
Institute of Chinese Academy of Agricultural Sciences (CRI-CAAS). The natural population comprising
316 upland cotton cultivars or lines (Supplementary Table S1) used for the association analysis in this
study were from China, America, Uzbekistan, Israel, Tajikistan, and Azerbaijan, which aimed to capture
a high geographical diversity. The cultivars or accessions were divided into five groups according to
ecological area: (1) the NEM group (15 accessions from the northern specific early maturation region in
China), (2) the NW group (87 accessions from the northwestern inland region of China), (3) the YR
group (151 accessions from the Yellow River valley region in China), (4) the YZR group (42 accessions
from the Yangtze River valley region in China), and (5) the FR group (21 accessions from the United
States of America and 2 accessions from west and central Asia countries). The 316-genotype subset
of the natural population consisting of 355 cultivars or accessions in terms of cotton lint percentage,
fiber quality, and early maturity was selected on the basis of existing data and previous knowledge of
genome sequencing data under nonstress conditions [57]. All accessions had been self-pollinated for
more than four generations by planting under natural growing conditions.

4.2. Locations and Phenotyping

All 316 upland cotton cultivars and lines were planted during the winter and spring of 2017
and 2018 (designated GR-2017 and GR-2018, respectively) in the greenhouse at the Cotton Research
Institute of the Chinese Academy of Agricultural Sciences (CRI-CAAS), Anyang, Henan, China (36◦08′

N, 114◦48′ E). Summer seasons were avoided to limit confounding factors from extremely high heat
and the abundance of mixed gas and airflow produced by the fan drafts and cooling systems in the
greenhouse. The greenhouse experimental design consisted of randomized complete blocks with three
replications; each replication per material consisted of two 2000 cm3 plastic pots. A soil mixture of
(3:1:0.5 topsoil, substrate, and vermiculite, respectively) with 40 g of carbendazim (50%) per cubic
meter of mixture, was uniformly mixed and covered with plastic paper to sterilize the germplasm,
which were then exposed to air after 48 h. The seeds of the germplasm were soaked in water for 24 h
with carbendazim (500 times 50%) before planting. All pots were filled with 450 g of the soil mixture
and were watered to field capacity; excess water was allowed to drain for 48 h before planting. Each
genotype was planted with six seeds that were visually selected for having similar size and good quality
in each pot. Each pot was watered with 100 mL with a graduated cylinder every four days after cotton
emergence and then watered with 200 mL with a graduated cylinder at one-leaf stage every four days.
All seedlings were thinned to three plants per pot at one-leaf stage approximately 15 d post-planting,
and watering was stopped when the plants were at the three-leaf stage. The leaf chlorophyll content
(LC) of individual plants was measured by using a leaf chlorophyll meter (LC-502, Soil-Plant Analysis
Development (LC) Section, Minolta Camera Co., Osaka, Japan), and the leaf temperature of the second
leaf from the top of each plant was measured. In addition, the volumetric water content (VWC) of
the soil in each pot was measured daily for 35 d after planting, and individual plants were scored for
wilting. The wilting was scored every day for 7 consecutive days; the wilting was scored on a scale of 0
to 6, with 0 being no sign of wilting and 6 being completely wilted [58].

4.3. Genotyping and Phylogenetic Analysis

The 355 cotton accessions or varieties were genotyped using SLAF-seq with an Illumina HiSeq
2500 system (Illumina, Inc., San Diego, CA, USA) at Biomarker Technologies Corporation in Beijing.
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A sequencing dataset consisting of 355 cotton accessions or varieties was generated and consisted
of 96.10 Gb, which included 874.44 million paired-end reads with a length of ~80 bp. According to
the minor allele frequency (MAF), 81,675 SNPs with a MAF ≥ 0.05 were ultimately used for analyses,
and the 81,675 SNP markers covered all 26 chromosomes (http://www.ncbi.nlm.nih.gov/bioproject/
PRJNA314284/SRP071133) [59]. Based on these sequencing datasets, the genomic data were selected
again and mapped against the TM-1 genome to identify genomic variants [29]. According to the
standards of filtrating (integrity ≥ 0.5 and MAF ≥ 0.05), 33,557 SNPs were filtered from the sequencing
dataset of the 316 upland cotton cultivars or lines. These selected SNPs were used, and a phylogenetic
tree of all 316 accessions was constructed by MEGA 5 [60] software together with the neighbor-joining
algorithm (1000 bootstraps).

4.4. Population Structure and Linkage Disequilibrium (LD) Decay Analysis

The population structure of all 316 accessions was estimated via Admixture software for individual
ancestry and allele frequency correlations. Ten thousand iterations were performed with the maximum
likelihood method, and the number of populations (k) was tested from 2 to 20. The relative kinship
between individuals was calculated by SPAGeDi [61] software. Based on all the SNPs, the structure of
the cotton population of the 316 cultivars or lines was analyzed by the principal component analysis
(PCA) method of EIGEN [62] software. Pair-wise LD between markers was estimated as the squared
correlation coefficient (r2) of alleles by using GAPIT [63] software.

4.5. Genome-Wide Association Study Analysis

For all the SNPs from the 316 accessions and phenotypic data, we used the GLM with Q and
K matrices to perform an association analysis between the wilting, LC, and genetic data. Kinship
was derived from all the SNPs. The GLM was applied by using TASSEL version 5.2.34 software, and
FASTLMM was applied by using FASTLMM software for the analysis of genome-wide associations [31].
Bonferroni-corrected p values of ≤0.1 (p = 0.1/n = 2.98 × 10−6; n = total markers used, −log10(p) = 5.53,
red line in the Manhattan plots) and 0.01 (p = 0.01/n = 2.98 × 10−7 n = total markers used, −log10(p)
= 6.53, blue line in the Manhattan plots) were used as a threshold of significance and a suggestive
threshold to estimate whether significant associations existed for the GWAS. Based on the GWAS
results, SNP loci significantly associated with drought resistance traits were further analyzed.

4.6. Haplotype Analysis

Each haplotype was selected by the types of SNPs associated with the target traits.
The corresponding phenotypic value was calculated based on the average of the phenotypic value
among all accessions in the haplotype. According to the research objective of each target trait, the
favorable haplotype (FH) and other haplotypes were analyzed by using R software. On the basis of
the corresponding phenotypic value of the different haplotypes, box plots of each haplotype were
generated by using R software, and then percent stacking bar charts of several types of haplotypes
were analyzed by using statistical software.

4.7. RNA-seq Analysis

For the transcriptome analysis, we selected upland cotton accession G8, which was screened and
identified in a growth chamber at CRI-CAAS. Eight upland cotton leaf samples and root samples,
including three biological replicates of a single plant per replicate, were used for RNA sequencing.
Leaves and roots at four treatment times—the CK (RWC 75% ± 5%), T1 (RWC 60% ± 5%), T2 (RWC
45% ± 5%), and T3 (RWC 30% ± 5%)—were harvested, immediately frozen in liquid nitrogen, and
then stored at −80 °C, after which they were prepared for RNA extraction. For each sample, total RNA
was isolated using Column Plant RNAout (Tiandz, Beijing, China). The quality and concentration
of RNA were then verified using a NanoDropTM 2000 UV-vis spectrophotometer (Thermo Scientific,
Waltham, MA, USA). An Agilent 2100 Bio-analyzer (Agilent Technologies, Santa Clara, CA, USA)
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and RNase-free agarose gel electrophoresis were also used to qualify and quantify the 48 samples.
The mRNA was subsequently enriched using oligo (dT) magnetic beads (Qiagen) and then broken
into short fragments. The Illumina HiSeq™ 2000 platform using paired-end (PE) technology with raw
reads of approximately 100 bp in length of Gene Denovo Co (Guangzhou, China) was used to generate
transcriptome sequences. Clean reads were selected by removing low-quality reads, adaptor-containing
reads, and reads containing >5% N bases. A false discovery rate (FDR) was applied to determine the
threshold of p-values in multiple tests and analyses. Moreover, the DEGs were obtained according to
FDR ≤ 0.005 and |log2FC| ≥ 1.5.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/16/
3888/s1.
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GWAS Genome-wide association study
GLM General linear model
FASTLMM Factored spectrally transformed linear mixed model
EWS Euphylla wilting score
CWS Cotyledon wilting score
LT Leaf temperature
LC Leaf chlorophyll content
YZR the Yangtze River basin region
YR the Yellow River basin region
NEM northern specific early maturation region
NW northwestern inland region
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PCA Principal component analysis
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