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Abstract: Breast cancer, ranking first among women’s cancers worldwide, develops from the breast
tissue. Study of the breast tissue is, therefore of great significance to the diagnosis and treatment of
breast cancer. Exosomes, acting as an effective communicator between cells, are in the ascendant in
recent years. One of the most important cargoes contained in the exosomes is microRNAs, belonging
to the non-coding RNA family. When the exosomal microRNAs are absorbed into the intracellular
location, most of the microRNAs will act as tumor promoters or suppressors by inhibiting the
translation process of the target mRNA, thus affecting the behavior of other stromal cells in the tumor
microenvironment. At present, growing research focuses on the different types of donor cell sources,
their contribution to cancer, miRNA profiling, their biomarker potential, etc. This review aims to state
the function of diverse miRNAs in exosomes medicated cell–cell communication and the potency
of some specific enriched miRNAs as molecular markers in clinical trials. We also describe the
mechanism of anti-cancer compounds through exosomes and the exploration of artificially engineered
techniques that lead miRNA-inhibitors into exosomes for therapeutic use.
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1. Introduction

1.1. Breast Cancer

Breast cancer is one of the most common female malignant tumors and threatens the physical
and psychological health of women around the world. About 1.3 million cases of mammary cancer
worldwide are diagnosed and 450,000 people’s lives are being taken every year [1]. Moreover, it
was reported by the American Cancer Society that breast cancer ranked first in the incidence rate
among American women′s cancer between 1975 and 2014 [2], ranking second in mortality (after lung
cancer) [3]. According to the latest report, there were approximately 268,670 new breast cancer patients
in 2018 in the United States, which resulted in 40,000 deaths [2].

Breast carcinoma is a complex disease of morphological and molecular heterogeneity, characterized
by three morphological grades and over four different molecular subtypes (at the gene expression
level) [4]. According to the consensus reached at the St. Gallen International Expert Conference of
breast cancer in 2015 and 2017 [5,6], breast cancer was clinically classified into four major subtypes:
triple negative, hormone receptor (HR)-negative and human epidermal growth factor receptor 2
(HER2)-positive, HR-positive and HER2-positive, HR-positive and HER2-negative (Table 1). For
different types of breast tumors, there are great differences in the treatment options.
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Table 1. Subtypes of breast tumor (summarized from St. Gallen conference of 2015 and 2017).

Subtypes Classification HER2 HR

Triple negative TNBC 1 (−) ER 2 (−), PgR 3 (−)

HR (−) and HER2 (+) HER2-positive (+) ER (−), PgR (−)

HR (+) and HER2 (+) (+) ER and/or PgR (+)

HR (+) and HER2 (−)

Luminal-A like (−)

ER and/or PgR (+); Multi-parameter molecular
marker ‘good’ if available; High ER/PR; clearly

low Ki-67 (low proliferation [7]); low grade
(well-differentiated [8])

Intermediate (−) Multi-parameter molecular marker ‘intermediate’
if available.

Luminal-B like (−)

ER and/or PgR (+); Multi-parameter molecular
marker ‘bad’ if available; Lower ER/PR; clearly
high Ki-67 (high proliferation [7]); histological

grade 3 (poorly differentiated [8])
1 TNBC, triple negative breast cancer; 2 ER, estrogen receptor; 3 PgR, progesterone receptor.

1.2. Tumor Microenvironment (TME)

As known to us all, the constant growth of tumor metastasis is responsible for most cancer
deaths [9]. Since Paget first proposed the famous ‘seed and soil’ hypothesis (1989), the relationship
between the microenvironment and the tumor has caused widespread concern that tumor metastasis
was not an accidental event, it happened only when those cancer cells with potential to metastasize
(the ‘seed’) were compatible and familiar with proper organ microenvironment (the ‘soil’) [9–11]. The
TME often refers to an area that is close to the existence of the solid tumor. Apart from breast cancer
cells, the TME also contains plenty of other different types of cells including vascular endothelial cells
(VECs), cancer-associated fibroblasts (CAFs), immune cells like tumor-associated macrophages (TAMs),
myeloid-derived suppressor cell (MDSCs), T lymphocytes, B lymphocytes, as well as myoepithelial
cells, adipocytes, etc. Moreover, some non-cellular components are also involved, covering the
extracellular matrix (ECM), exosomes, soluble cytokines or signaling molecules [12,13]. It is worth
noting that the physical characteristics of the tumor microenvironment are also different from normal
tissues, such as hypoxia, acidity, high interstitial fluid pressure [13,14].

Cancer-associated fibroblasts (CAFs), which are considered as ‘activated fibroblasts’, constitute
a major intracellular component of tumor stroma in the microenvironment [15]. CAFs can be
derived from quiescent fibroblasts with altered phenotype and effects [16], epithelial cells through
the epithelial-mesenchymal transition (EMT) [15–17], endothelial cells through the endothelial-
mesenchymal transition (EndMT) [17,18], bone marrow-derived cells [19,20], and so on [18]. Through
the secretion of different types of cytokines and growth factors, CAFs can have interactions with
cancer cells, inflammatory cells, and other various cells and affect the occurrence and progression of
tumors. For example, CAFs can secrete stromal-cell-derived factor 1 (SDF-1/CXCL12) [21], vascular
endothelial growth factor (VEGF) [22], platelet-derived growth factor (PDGF) [18], fibroblast growth
factor (FGF) [23], etc., to induce angiogenesis and promote tumor cells’ proliferation; degrade and
remodel ECM by producing the members of matrix metalloproteinase family (MMPs) [24], resulting in
the decrease of the ability of cell adhesion and contribute to metastasis. There are certain effects on the
local immunity of tumors [16] by secreting interleukin-6 (IL-6), IL-10, IL-8, C-X-C motif chemokine
ligand 9 (CXCL9), CXCL10, etc.

As described by Kalluri et al. [15], tumors can also be seen as a wound, accompanying inflammatory
reactions. Different immune cells in the tumor microenvironment have different effects, thus creating
a balance between carcinogenesis and tumor suppressor. Tumor-associated macrophages (TAMs)
belong to bone marrow-derived cells with important roles in innate and adaptive immunity [25].
They are very abundant and highly infiltrating in the tumor microenvironment, and the richer
density the macrophages, the worse the prognosis of patients [26]. TAMs can be derived from the
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following types of cells: blood monocytes, blood monocyte-related myeloid-derived suppressor cells,
tissue-resident macrophages [27]. They can be recruited to tumor sites by cytokines (colony-stimulating
factor-1(CSF1), chemokine (C–C motif) ligand 2 (CCL2), CCL5, etc.), and differentiate into TAMs [27].
Generally speaking, there are two subtypes of TAMs— classically (M1)- and alternatively-activated
(M2) macrophages [12]. M1 macrophages have antineoplastic effect with the function of secreting tumor
necrosis factor-α (TNF-α), IL-23, IL-12, etc., while M2 phenotype will express IL-10, CCL20, transforming
growth factor-β (TGF-β), etc., to promote tumor [28]. In addition, TAMs can excrete cytokines such as
epidermal growth factor (EGF), PDGF, VEGF, CCL2, CXCL8 to promote angiogenesis [29]; participate
in CSF1 (secreted from breast cancer cell) and EGF (contributed by activated macrophages) feedback
loop to cause metastasis [29]; and accumulate in hypoxic area [26].

In brief, it must be emphasized that tumor microenvironment is critical for tumor behaviors:
occurrence, progression, invasion and metastasis, prognosis and drug resistance [29,30].

1.3. Exosomes

Exosomes, a branch of extracellular vesicles (EVs), are encased in cell membranes made up of
lipid bilayers with a diameter of 30–100 nm and cup-shape appearance [31,32]. Almost all eukaryotic
cells can secrete exosomes, including tumor cells and normal stromal cells, but it is reported that cancer
cells express more exosomes than normal proliferation cells [32,33].

The biogenesis of exosomes [34–36] mainly consists of the following steps: (1) cell endocytosis:
inward depression to form early endosome and enclose some intracytoplasmic contents (2) gradually
mature to form late endosomes, also known as intracellular multivesicular bodies (MVBs); and (3) the
MVBs will be degraded by lysosome or recycled by fusing with the plasma membrane and releasing
the intraluminal vesicles (ILVs), namely exosomes. Interestingly, different cells may select different
contents into exosomes, but the selection mechanisms need to be further explored [34]. Accordingly,
exosome has various surface receptors, including lipids (phosphatidylserine), sialoadhesin (CD169),
tetraspanins (CD9, CD63, CD81, etc.), antigen presentation (MHC I, MHC II), and adhesion molecules
(integrins, lactadherin, etc.) [36]. There are also several main mechanisms for the process of recipient
cells’ uptake [37]: (1) the T cell receptor- major histocompatibility complex (MHC) interaction; (2) fusion
with membrane of recipient cells; (3) cell phagocytosis; and (4) adhesion molecules interaction.

Recently, exosomes have come under increasing interest from researchers, mainly because they
have been found to wrap many biomolecules, such as DNAs, mRNAs, non-coding gene family
(microRNA, lncRNA), proteins, and lipids [38]. Carrying these active biomolecules, exosomes have
also been found to circulate in body fluids, such as blood (plasma or serum), urine, feces, breast milk and
saliva, so that exosomes are able to transmit intercellular regulatory information to the both surrounding
and distant sites, which indicates the potential to be non-invasive biomarkers [39]. Increasing articles of
exosomes reported extensive involvement in physiological and pathological processes, such as placental
physiology [40], angiogenesis and increased heart function [41], endometrial-embryo interactions [42],
and pituitary tumors [43]. Here, we mainly focus on the role of exosomes in breast cancer.

1.4. MicroRNAs

In 1993, Lee et al. reported the first discovery of miRNA that gene lin-4 encoded small RNA
molecules to regulate the expression of protein lin-14 in Caenorhabditis elegans [44]. MicroRNAs
(miRNAs) are small RNA molecules with single chains that do not encode proteins. They usually have
a length of about 19 and 25 nucleotides, most of which negatively regulate the post-transcriptional level
of target messenger ribonucleic acids (mRNAs) by binding to the 3′-untranslated region (UTR) [45].
Three possible mechanisms may be involved in the process: repression of translation initiation,
post-initiation inhibition and target mRNA destabilization, resulting in the degradation of mRNA or
translation inhibition [46].

In recent years, numerous studies have shown that varieties of microRNAs function in direct
or indirect interactions between breast cancer cells and components of TME [47,48]. For example,
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miR-373 and miR-520c can raise the invasion and metastasis of tumor by inhibiting metastasis-related
gene CD44 [49]. Moreover, miRNAs can be circulated in body fluid and the expression of miRNAs
in peripheral blood may be used as a biological marker for the differential diagnosis and prognosis
of breast tumors [7,39]. Exosomal miRNA profiling analyses were reported and compared, such
as between drug-resistant and non-drug-resistant cells [50,51], normal mammary epithelial cells
(MCF-10A) and MCF-7 [52], ER-positive (MCF-7) and triple negative (MDA-MB-231) cancer cell
lines [53], HER2-positive and triple negative cancer patients [54], from canine mammary cells [55].
Liu et al. [56] integrated small RNA sequencing information of 17 diseases and built up an open
EVmiRNA database for public searching of miRNA profiles.

This review mainly focuses on the bioactivity and underlying mechanism of exosomal microRNAs
in the change of tumor microenvironment during the initiation and development of breast cancer.

2. The Role of miRNAs in Exosomes in the Intercellular Crosstalk

2.1. Exosomes from Cancer Cells Can Provide MicroRNAs to Modify the Stromal Cells in the Tumor
Microenvironment for Their Own Advantage (Table 2)

The synthesis of microRNAs may occur in extracellular microvesicles. Melo et al. [57] reported that
exosomes derived from mammary tumor cells (MDA-MB-231, MCF-7, 4T1) can specifically aggregate
pre-miRNAs, as well as other proteins of the RISC complex, and then generate the mature miRNAs
(up-regulated: miR-10a, -10b, -21, -27a, -155, -373) inside. When non-tumorigenic mammary epithelial
cells (MCF-10A) and exosomes of tumor cells (MDA-MB-231) were co-cultured, the cancerization of
normal cells was promoted, and Dicer enzyme (an important instrumental enzyme in the formation of
mature miRNAs) could be seen as a controlling factor of this process. When MCF-10A was co-injected
with exosomes derived from serum of breast cancer patients or healthy controls into nude mice, the
former could form tumors with higher level of Dicer while the latter could not. Furthermore, exosomal
miR-210 from tumor cells could transfer to endothelial cells to promote angiogenesis and metastasis
and the secretion process of exosomes was also proved to be dependent on neutral sphingomyelinase
2 (nSMase2) enzyme (regulate ceramide biogenesis) [58,59]. Singh et al. [59] proved that nSMase2
or ceramide could promote the level of exosomal miR-10b, resulting in enhanced invasion ability of
non-malignant cells by inhibiting the expression of homeobox D10 (HOXD10) [60] and KLF4. Other
miRNAs such as miR-1246 [61] were also found to be secreted from breast cancer cells and change the
behaviors of normal epithelial cells (Table 2).

Some highly metastatic/drug-resistant tumor cells can affect other tumor cell lines with low
metastatic/non-drug resistance by secreting miRNAs in the exosomes, which is more convenient for
their excessive growth. Different chemotherapeutic drugs-resistant MCF-7 cell lines were reported
to secrete different miRNAs such as miR-222 [62,63], -23a [64], -100 [65], and -149 [66], etc., to
non-drug-resistant cells to improve their resistance, leading to treatment failure (Table 2). In addition,
some in vitro experiments also showed that after incubating purified exosomes from the metastatic
cell line MDA-MB-231, the mobility and anchorage-independent ability (metastatic behaviors) of low
metastatic MCF-7 cells were all increased and the underlying mechanism was related to exosomal miR-9
and miR-155 [67,68]. Genetically manipulated cells can also increase the level of specific microRNAs in
exosomes and be absorbed by the original cell lines [69,70], which prompts a therapeutic direction.

Not only breast-related cells, but other stromal cells in the microenvironment can also uptake the
external exosomes derived from the tumor cells, and then the contained miRNAs will be transported
into them and affect their behavior, providing a favorable environment for the growth of the tumor
(Figure 1). Exosome-mediated transfer of miR-105 [71] and miR-939 [72] could increase the permeability
and destroy the integrity of vascular endothelial cells, leading to enhanced metastasis by targeting the
zonula occludens 1 (ZO-1) gene and VE-cadherin, respectively. From data of clinical trials, exosomal
miR-105 was proved to be associated with the incidence of metastasis [71]. Yan’s study [73] also
demonstrated that the level of miR-105 increase in the exosomes secreted from breast cancer cells was
induced by oncogene MYC, and then transferred to CAFs. They also showed that miR-105 targeted
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at MAX-interacting protein 1 (MXI1) to activate MYC signaling and reprogram CAFs. Interestingly,
whether under the circumstances of efficient nutrition or not, reprogrammed CAFs would ultimately
promote tumor growth by leading to different metabolic pathways (glucose and glutamine metabolism
with sufficient or metabolic waste decomposition, such as lactic acid and ammonium) and regulating the
components of TME to provide energy to fuel cancer cells [73], which was similar to exosomal miR-122
transferred to lung fibroblasts and brain astrocytes [74]. In a recent study, after overexpressing miR-940
in breast cancer cells, treatment of human mesenchymal stem cells (MSCs) with exosomes contained
culture medium- was shown to promote osteogenesis in vitro by acting on Rho GTPase-activating
protein 1 (ARHGAP1) and family with sequence similarity 134, member A (FAM134A) [75]. The
well-designed in vivo experiment also demonstrated that exosomes (labelled with CD63 (exosomes’
marker) fused red fluorescent) were derived from miR-940 overexpressed cancer cells and absorbed
by host cells (labelled with GFP) under confocal microscopy, which caused osteoblastic lesions by
implanting cancer cells onto the calvarial bones/tibial sites of immunodeficient mice [75]. The growing
expression of miR-770 (acting as a tumor suppressor, direct targets at STMN1) from TNBC cells to
tumor-associated macrophages (TAMs) through exosome delivery modulated more differentiation to
M1 phenotype instead of M2 phenotype and inhibited drug-resistance [76].
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and tumor growth [78,79].

Figure 1. Tumor cells can secrete exosomes which contain diverse microRNAs to modify
low-metastatic or non-resistant cancer cells and the stromal cells in the tumor microenvironment such as
tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), endothelial and epithelial
cells, mesenchymal cells (MSCs) for their own advantage.

Cancer-produced exosomes may also be regulated by the physical conditions of microenvironment
like hypoxia, an unignored feature of solid tumors that motivates tumor deterioration [77]. By using
a miR-210 specific reporter system, elevated miR-210 was visually proved to be transferred from
hypoxic cancer cells to proximal endothelial cells via exosomes both in vitro and in vivo, which may be
interceded by hypoxia-inducible factor-1α (HIF-1α) and restrain the expression of vascular remodeling
related genes, like Ephrin A3 and PTP1B, to support angiogenesis and tumor growth [78,79].
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Table 2. Evidence supporting a role for exosomal microRNAs in cancer cell-cell communication (from cancer cells).

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-10a, 10b, 21,
27a, 155, 373 (↑)

Cancer cell
(MDA-MB-231, MCF-7,

67NR, 4T1)

Epithelial cells
(MCF-10A,
NMuMG)

HOXD10
(miR-10b), PTEN

(miR-21)

Tumorigenesis (in
a Dicer-dependent

manner)

Pre-miRNAs, Dicer
(CD43-mediated accumulation),
AGO2, and TRBP are present in

exosomes of cancer cells to
generate mature miRNAs.

[57]

miR-210 (↑)
Cancer cell (4T1, MCF-7,

MDA-MB-231-D3H1,
MDA-MB-231-D3H2LN)

Endothelial cells
(HUVECs) ephrin-A3 Angiogenesis;

metastasis

nSMase2 is important to
regulate exosomal miRNAs,

which will transfer to
endothelial cells to promote

metastatic initiation efficiency.

[58]

Twist miR-10b (↑) Cancer cell
(MDA-MB-231, MCF-7)

Epithelial cells
(MCF-10A, HMLE)

HOXD10 (inhibit
the expression of

the pro-metastatic
gene, RHOC),

KLF44

Invasion
nSMase2 or ceramide promotes

the exosome-mediated
miR-10b secretion.

[59,60]

miR-1246 (↑) Cancer cell
(MDA-MB-231, MCF-7)

Epithelial cells
(MCF-10A, HMLE)

CCNG2 (tightly
regulated through

the cell cycle)

Cell proliferation;
invasion; drug

resistance

Exosomal miR-1246 functions
in regulating breast tumor

progression and has the
potential for applications in
miRNA-based therapeutics.

[61]

miR-221/222 (↑) Cancer cell
[MCF-7/Tam]

Cancer cell
[MCF-7/WT
(tamoxifen
sensitive)]

ERα, p27 (cell
cycle arrest,

autophagy, and
angiogenesis)

Drug resistance
(tamoxifen)

EV-secreted miR-221/222 serves
as signaling molecules to

mediate the communication of
tamoxifen resistance.

[62]

miR-222 (↑) Cancer cell (MCF-7/Adr) Cancer cell
(MCF-7/sensitive)

Drug resistance
(adriamycin)

Exosomes are effective in
transmitting drug resistance

and the delivery of miR-222 via
exosomes may be a mechanism.

[63]



Int. J. Mol. Sci. 2019, 20, 3884 7 of 27

Table 2. Cont.

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-23a, 29a, 1246,
222, 452 (↑) Cancer cell (MCF-7/Doc) Cancer cell

(MCF-7/sensitive)

Sprouty2 [regulate
invasion and
metastasis]

(miR-23a), PTEN
(miR-222), APC4

(miR-452)

Drug resistance
(docetaxel)

Abundant miRNAs of Doc/exo
in pathways implicated in

therapy failure.
[64]

miR-100, 222,
30a (↑)

Cancer cell (MCF-7/Doc,
MCF-7/Adr)

Cancer cell
(MCF-7/sensitive) PTEN (miR-222)

Drug resistance
(docetaxel,

adriamycin)

The involvement of miRNAs in
pathways implicated in cancer

pathogenesis, membrane
vesiculation, and
therapy failure.

[65]

miR-23a, 24, 149,
222 (↑) Cancer cell (MCF-7/Adr) Cancer cell

(MCF-7/sensitive)

Sprouty2
(miR-23a), PTEN

p27 (miR-24),
(miR-222)

Drug resistance
(adriamycin)

Adr/exo loaded miRNAs for its
production, release and which

were associated with Wnt
signaling pathway. Adr/exo

was able to increase the overall
resistance and regulate

gene levels.

[66]

miR-9, miR-155 (↑) Cancer cell
(MDA-MB-231)

Cancer cells
(MCF-7)

PTEN (miR-9),
DUSP14 (miR-155) Tumor growth

Exosomal miRNAs can transfer
from highly metastatic cancer
cells to other low metastatic

cancer cells and can suppress
target genes in the

recipient cells.

[67,68]

miR-182 (↑)
Cancer cell (miR-182

transfected
MDA-MB-231)

Cancer cell (naïve
MDA-MB-231

cells)
Tumorigenesis

MiR-182 is packaged in
exosomes, detectable in

exosomes from cell culture
supernatant and human serum,

which may be transferred
between cells via a

microvesicle-dependent
mechanism.

[69]
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Table 2. Cont.

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-134 (↓)

Cancer cell
(miR-134-transfected
Hs578T, a TNBC cell

line; isogenic
sub-clone cells)

Cancer cells
(Hs578Ts(i)8
parent cells)

STAT5B (control
Hsp90)

Cellular
proliferation;

migration and
invasion; drug

resistance
(cisplatin,

anti-Hsp90 drug)

(1) The direct transfection or EV
delivery transport route of
miRNA achieved different

effects. (2) MiR-134 had clinical
relevance in breast tumors.

[70]

miR-105 (↑)

Cancer cell
(MDA-MB-231,
MCF-10A as the
control group)

Endothelial cells
(HMVECs)

ZO-1 (also called
tight junctions

protein 1,
migration-related

gene)

Metastasis

Exosome-mediated transfer of
cancer cell-secreted miR-105

efficiently destroys tight
junctions and the integrity of
these natural barriers against

metastasis.

[71]

miR-939 (↑)
Cancer cell

(MDA-MB-231-GFP
cells)

Endothelial cells
(HUVECs)

VE-cadherin (a
component of

adherens junction
involved in vessel

permeability)

Migration and
invasion

MiR-939 could (1) increase
HUVECs monolayer

permeability; (2) favor
trans-endothelial migration by

the disruption of the
endothelial barrier.

[72]

MYC
(oncogene) miR-105 (↑)

Cancer cell
(MDA-MB-231,
MCF-10A as the
control group)

CAFs
(patient-derived

primary fibroblasts
CAF265922; fetal

lung fibroblast cell
line WI-38; mouse

embryonic
fibroblast cell line

NIH3T3)

MXI1 Tumor growth

Reprogrammed CAFs would
ultimately promote tumor

growth by leading different
metabolic pathways under the

circumstances of efficient or
insufficient nutrition.

[73]
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Table 2. Cont.

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-122 (↑)

Cancer cell
(MDA-MB-361,
MDA-MB-468,
MDA-MB-231,

MDA-MB-231-HM,
SKBR3, BT4, MCF-10A
as the control group)

Lung fibroblast, brain
astrocytes, neurons PKM2, GLUT1

Reprogram
glucose

metabolism;
cancer cell

proliferation;
metastasis

Exosomal miR-122 inhibited the
glucose uptake by niche cells

and increased glucose
availability to cancer cells,

while inhibition of miR-122
decreases the incidence of

metastasis in vivo.

[74]

miR-940 (↑) Cancer cell
(MDA-MB-231)

Human mesenchymal
stem cells (MSC,

UCB408E6E7TERT-33)

ARHGAP1,
FAM134A Bone metastasis

miR-940 facilitates the
osteogenic differentiation of

human MSCs.
[75]

miR-770 (↓)
Cancer cell

(MDA-MB-231,
MDA-MB-468)

TAMs (THP-1 cell) STMN1
Drug resistance
(doxorubicin);

metastasis

miR-770 could (i) influence the
polarization of macrophages

which promote M1 phenotype
and inhibit M2 phenotype, (ii)

suppress the
doxorubicin-resistance and

metastasis of TNBC cells

[76]

HIF-1α miR-210 (↑) Cancer cell
(MDA-MB-231, 4T1)

Endothelial cells
(SVEC), macrophages
(Raw264.7), stem cells

(MBs-MSC),
fibroblasts (3T3), and

dendritic cells
(JAWS2).

Ephrin A3, PTP1B
(vascular

remodeling
related genes)

Angiogenesis
A miR-210 specific reporter

system to realize in vitro and
in vivo visualization.

[78]

HIF-1α miR-210 (↑)
Cancer cell

(MDA-MB-231,
SKBR3, MCF-7)

TME

Hypoxic cancer cells may
release more exosomes into
their microenvironment to

promote their own survival
and invasion

[79]

miR-9 (↑)
Cancer cell

(MDA-MB-231,
MDA-MB-468)

Normal fibroblasts
(isolated from

specimens belonging
to patients)

mainly involved in
cell motility and
ECM remodeling

pathways

Tumor growth;
migration and

invasion

(1) Enhance cell motility; (2)
enhance the switch to CAF

phenotype
[80]



Int. J. Mol. Sci. 2019, 20, 3884 10 of 27

2.2. Exosomes from Stromal Cells Can Transfer miRNAs to Cancer Cells and Contribute to Cancer Progression
(Table 3)

In turn, as the reports accumulated, stromal cells can also express exosomes to function in cancer
cells (Figure 2). For instance, miR-9 can be secreted in exosomes by both breast cancer cells and
CAFs [80]. When miR-9 is transferred from tumor cells, it can enhance the transformation of normal
fibroblasts (NFs) to CAFs and its migration and invasion abilities. Conversely, CAFs can secrete
miR-9 to tumor cells and NFs to promote tumor growth [80]. Dioufa et al. [81] observed that the
tumor-derived exosomes helped to transfer the tumor cells to the liver and then remain in the dormancy
state in the early stage of metastasis, which was characterized in slow proliferation, insensitivity to
chemotherapy and difficulty in discovery, resulting in recurrence and poor prognosis [82]. However,
exosomes from hepatic niche cells led to an increased mesenchymal to epithelial reverting transition
(MErT) of cancer cells, which was explained as the adaptation process of tumor cells in heterogeneous
organs [81]. Uen et al. [83] demonstrated that miR-122-5p, which was found in the human hepatoma
cells’ exosomes, would target at syndecan-1 (SDC-1) and promote breast cancer cell mobility.

A relatively higher level of miR-155 was detected in exosomes of breast cancer stem cells (CSC)
and chemo-resistant cancer cells. When sensitive cancer cells were co-cultured with resistant cells’
exosomes, the migration ability and chemoresistance was promoted [84]. Exosomal miR-23b was
reported to transit from bone marrow mesenchymal stem cells (BM-MSCs) to metastatic breast cancer
cells which were homing to bone marrow (BM2), and the BM2 cells could be induced to enter into
dormancy by inhibiting myristoylated alanine-rich C kinase substrate (MARCKS) [82]. Similarly,
miR-222/223 [85], miR-127 and miR-197 [86], miR-21 and miR-34a [87], miR-126a [88] in exosomes from
BM-derived cells also supported tumor growth in different ways such as drug resistance, dormancy,
metastasis, and angiogenesis (Table 3).

Interestingly, CAFs could secrete exosomes encapsulating with miR-221/222 [89], miR-21, -378e,
-143 [90] to enhance the development of cancer cells to a more aggressive phenotype with increased
stemness, EMT ability, etc. Additionally, exosomes from interleukin-4 (IL-4) activated TAMs,
upregulated the expression of miR-223 in breast cancer cells with co-culture systems, which further
promoted the invasiveness of cancer cells by disrupting the Mef2c-β-catenin pathway [91].

However, there are some reports that exosomal anti-cancer miRNAs would also be secreted by
stromal cells to fight with the malignancies (Table 3). MSC-derived exosomes shuttled miR-16 [92] and
miR-100 (inhibiting the mTOR/HIF-1α/VEGF pathway) [93] to the nearby cancer cells and decreased
their VEGF expression, subsequently resulting in inhibition of the endothelial cells’ vascular behavior.
After chemotherapy, the upregulation of miR-503 via exosomes in endothelial cells reduced cancer
cells’ proliferation and invasion through targeting cyclin D2 (CCDN2) and CCDN3 [94].
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Table 3. Evidence supporting a role for exosomal microRNAs in cancer cell-cell communication (from stromal cells).

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-9 (↑) CAFs

Cancer cell
(MDA-MB-231,
MDA-MB-468);

Normal
Fibroblasts

E-cadherin Migration, invasion,
cell proliferation

MiR-9 was an important player
in the crosstalk between cancer

cells and stroma.
[80]

miR-186, 23a,
-205 (↑)

The hepatic niche
(HepN)

Cancer cell
(MDA-MB-231)

Regulate
E-cadherin

transcription and
MErT induction

MErT

The normal tissue/HepN
derived exosomes in enabling

seeding and entry into the
dormancy of the cancer cells at

the metastatic site.

[81]

miR-23b (↑)
Bone marrow

mesenchymal stem
cells (BM-MSC)

Cancer cell (BM2
cell,

MDA-MB-231)

MARCKS (encode
a protein that
promotes cell
cycling and

motility)

Dormancy; drug
resistance

(docetaxel)

(1) They generated a bone
marrow-metastatic human

breast cancer cell line (BM2);
(2) Exosomal transfer of

miRNAs from the bone marrow
may promote breast cancer cell
dormancy in a metastatic niche.

[82]

miR-122-5p (↑) Human hepatoma
cells (Huh-7, Hep3B)

Cancer cells
(MCF-7) syndecan-1 (SDC1) Metastasis

Metastasis or mobility of breast
cancer cells might be affected by
circulating miR-122-5p and not

directly correlated with the
progression of breast cancer.

[83]

miR-155 (↑)
Breast CSC;

DOX-/PTX-resistant
MCF-7 cell line

Cancer cell
(MCF-7 cell,

MDA-MB-231)

TGF-β, C/EBP-β
and FOXO3a

EMT; migration;
chemoresistance

Exosomes may intermediate
resistance, and migration

capacity to sensitive cells partly
through exosome transfer

of miR-155.

[84]
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Table 3. Cont.

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-222/223 (↑)

MSC (naive MSC;
T47D,

MDA-MB-231-primed
MSCs)

Cancer cell
(MDA-MB-231,

T47D)

Cycle quiescence;
dormancy; drug

resistance
(carboplatin)

Breast cancer cells prime MSC
to release exosomal

miR-222/223, which in turn
promotes quiescence in a subset

of cancer cells and confers
drug resistance.

[85]

miR-127, 197, 222,
223 (↑)

BM stromal cells
(prepared from BM

aspirates of
healthy donors)

Cancer cell
(MDA-MB-231,

T47D)

CXCL12
(chemokine

family)

Cycle quiescence;
dormancy

(1) The transfer of miRNAs
from BM stroma to BC cells

might play a role in the
dormancy of BM metastases.

(2) Gap-junction maybe another
way of the transfer of miRNAs.

[86]

miR-21, 34a (↑) Human MSC
Cancer cell

(MCF-7,
osteosarcoma cell)

Cell proliferation

First comprehensive-omics
based study that characterized

the complex cargo of
extracellular vesicles secreted

by hMSCs and their role in
supporting breast cancers.

[87]

IL-13 miR-126a (↑) MDSC
Cancer cell (4T1,
MDA-MB-231);
IL-13+Th2 cell

S100A9 Lung metastasis;
angiogenesis

Doxorubicin treatment led to an
enhancement of IL-33 in breast
cancer cells, IL-13 receptor and

miR-126a in MDSCs in a
positive feedback loop manner.

[88]

miR-221/222 (↑) CAFs

Cancer cell (MCF-7
cell line long-term

conditioned for
growth in estrogen

depleted
conditions)

ER (estrogen
receptor)

ER-negative
phenotype

CAF-secreted microRNAs are
directly involved in

ER-repression and may
contribute to the

MAPK-induced ER-repression
in breast cancer cells.

[89]
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Table 3. Cont.

Stimulant Cargo-microRNAs Donor Cells Recipient Cells Gene Targets Biological
Activities Major Findings Refs

miR-21, -378e,
-143 (↑)

CAFs; Normal
fibroblasts with

overexpressed miRs

Cancer cell (BT549,
MDA-MB-231,

T47D)

Cell growth;
stemness; EMT

CAFs strongly promote the
development of an aggressive
breast cancer cell phenotype.

[90]

IL-4 miR-223 (↑)

TAMs (isolated from
the peripheral blood

and activated by
adding IL-4)

Cancer cell
(SKBR3,

MDA-MB-231)

Mef2c (inhibit
proliferation and

granulocyte
function)

Invasion

MiR-223 may target at the
Mef2c-β-catenin pathway to

mediate breast cancer
cell invasion.

[91]

miR-16 (↑) MSC
Cancer cell (4T1);

Mouse endothelial
cell line (SVEC)

VEGF Angiogenesis

MiR-16 was partially
responsible for the

antiangiogenic effect of
MSC-derived exosomes.

[92]

miR-100 (↑) MSC

Cancer cell
(MDA-MB-231,
MCF-7, T47D);

Endothelial cells
(HUVECs)

mTOR Angiogenesis

MSC-derived exosomes induce
a decrease in the expression and

secretion of VEGF through
modulating the mTOR/HIF-1α

signaling axis in breast
cancer-derived cells.

[93]

miR-503 (↑) Endothelial cells
(HUVECs)

Cancer cell (A549,
HCT116,

MDA-MB-231,
U87)

CCND2, CCND3 Cell proliferation;
invasion

Increased plasmatic miR-503 in
breast cancer patients after
neoadjuvant chemotherapy,

which could be partly due to
increased miRNA secretion

[94]
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2.3. Circulating MicroRNAs in Exosomes Imply Their Potential Biomarker Value

Some circulating microRNAs contained in exosomes can potentially be regarded as predictive,
diagnostic and prognostic biomarkers for breast cancer (Table 4). The advantages of exo-miRs over
miRs are obvious: (1) Exo-miRs act as cell-cell communicator and circulate in the body fluids, such as
peripheral blood andbreast milk. Thus, the collection method is non-invasive, or simply a common
method like blood collection. When it comes to miRs, it is not easy to get tumor tissues and pathological
diagnosis is still the gold standard. (2) It has also been reported that the expression level of some
special exo-miRs have shown significant differences in early stages of cancer, even during dormancy
period. In this case, miRs in tumor tissues cannot be detected. (3) Post-operative monitoring is even
more important because recurrence and metastasis are still the greatest cause of breast cancer death.
Additionally, exo-miRs can be easily detected and constantly monitored.
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Table 4. Preclinical evaluation of exosomal cargo as cancer biomarkers.

Cargo Patient Cohorts Exosome Source
(Isolation Method) Assay Used Outcome and Utility Refs

miR-106a-3p, 106a-5p,
20b-5p, 92a-2-5p (plasma
miRNAs); miR-106a-5p,
19b-3p, 20b-5p, 92a-3p

(serum miRNAs)

400 plasma samples (from 200
BC patients and 200 healthy
controls (HCs)), 406 serum

samples (from 204 BC patients
and 202 HCs),

plasma (from 32 BC
patients and 32 HCs),

serum (from 32 BC
patients and 32 HCs)

qRT-PCR

Except for the expression of
miR-20b-5p, the expression patterns

of exosomal miRNAs were
concordant between plasma and

serum, indicating the potential use of
exosomal miRNAs as biomarkers.

[95]

miR-21, 1246 (↑)

exosomes from the conditioned
media of human breast cancer

cell lines, mouse plasma of
patient-derived orthotopic

xenograft models (PDX), and
human plasma samples from

16 patients

plasma
(ultracentrifugation,

ExoQuick)

next-generation small
RNA sequencing;

qRT-PCR

The combination of plasma exosome
miR-1246 and miR-21 is a better

indicator of breast cancer than their
individual levels.

[96]

miR-373 (↑)

168 patients with invasive
breast cancer, 19 patients with
benign breast diseases and 28

healthy women

serum (ExoQuick) RT-PCR
Serum levels of exosomal miR-373
are linked to triple-negative and

more aggressive breast carcinomas.
[97]

miR-155 (↑)

259 participants, including
patients with breast cancer or

benign breast tumors, members
of breast cancer families, and

matched healthy
female controls.

plasma
(ultracentrifugation) nest-qPCR

For patients with early stage or
localized breast cancer, there were

high levels of miR-155 in both plasma
and blood cells.

[98]

miR-130a-3p (↓)

40 pairs of breast cancer and
adjacent normal tissues, 40

pairs of blood samples from
patients with breast cancer and
healthy controls (confirmed as
invasive ductal breast cancer,

and no patient had received any
chemotherapy or radiotherapy

ahead of surgery.)

circulating blood
(ExoQuick Exosomal

Extraction Kit)

Lower levels of exosome-derived
miR-130a-3p are associated with

lymph node metastasis (p = 0.0019)
and advanced TNM stage

(p = 0.0014).

[99]
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Table 4. Cont.

Cargo Patient Cohorts Exosome Source
(Isolation Method) Assay Used Outcome and Utility Refs

miR-16 (↑), 30b (↓), 93 (↑) 111 BC patients, 42 DCIS
patients and 39 healthy women plasma TaqMan real-time PCR

(1) The levels of exosomal miR-16 were
higher in plasma of BC (p = 0.034) and
DCIS (p = 0.047) patients than healthy

women and were associated with
estrogen (p = 0.004) and progesterone

(p = 0.008) receptor status. (2) In
estrogen-positive patients miR-16 was

significantly enriched in exosomes
(p = 0.0001). (3) Lower levels of exosomal
miR-30b were associated with recurrence

(p = 0.034). (4) Exosomal miR-93 was
upregulated in DCIS patients (p = 0.001).

[100]

miR-200c (↑), -141 (↑)

259 human subjects, including
114 patients with breast cancer,
30 patients with benign breast

tumors, 21 women with a
family history of breast cancer,

and 94 healthy women

plasma
(ultracentrifugation) nest-qPCR

Circulating levels of miR-200c and
miR-141 are potential biomarkers for

early detection of breast
cancer metastases.

[101]

miR-223-3p (↑) 185 breast cancer patients,
20 healthy volunteers

plasma
(ultracentrifugation)

microRNA (miRNA)
microarray; RT-qPCR

(1) identify the invasive lesions of DCIS
patients diagnosed by biopsy; (2)
significantly associated with the

malignancy of breast cancer.

[102]

miR-21(↑), 105(↑), 155(↑)

53 breast cancer women (6 of
them were diagnosed as

metastatic patients) and 8
healthy donors

serum qPCR

During neoadjuvant treatment, exosomal
miRNA-21 expression levels directly
correlated with tumor size (p = 0.039)
and inversely with Ki67 expression

(p = 0.031).

[103]

miR-340-5p (↑), 17-5p (↓),
130a-3p (↓), 93-5p (↓)

16 patients with primary breast
cancer with recurrence and 16
without recurrence; 35 breast
cancer patients with and 39

without recurrence

serum (ExoQuick) qRT-PCR
There are different expression patterns of

miRNAs between tumor tissues
and serum

[104]
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Plasma- and serum-derived miR-106a-5p and miR-20b-5p, belonging to miR-106a-363 cluster on
chromosome X, showed an increasing trend in tissues and exosomes, indicating their role as potential
diagnostic biomarkers [95]. In addition, a combination of multiple markers may also be a possible way
to indicate the presence of breast cancer. For example, exosomal miR-12 and miR-1246 were proved
to be a potential combined indicator [96]. Cell-free miR-101 and miR-373 in blood serum exhibited
significant differences between malignant and benign tumors, and it is also worth noting that the
higher content of exosomal miR-373 was associated with malignant breast cancer like TNBC [97].
Gao et al. [98] also reported that high level of miR-155, which may be derived from blood cells exosomes,
was found in the early stage in cancer patients. Additionally, miR-130a-3p (tumor suppressor) [99],
miR-16, miR-30b and miR-93 [100], miR-200c and miR-141 [101], and miR-223-3p [102] in exosomes
also exhibited valuable functions to classify cancer stages (Table 4).

Recurrence often happens in breast cancer patients even after a mastectomy, which is totally
different from patients never being treated, so the development of molecular markers for recurrence
and treatment monitoring is very essential. High level of exosomal miR-21, -105, and miR-222 in
serum samples [103] could possibly become a complementary tool for prognostic and monitoring use
clinically because the level of miR-21 was proved to link with tumor size and Ki-67 expression during
the treatment. The miRNA profile was detected in clinical patients with or without recurrence, and the
level of miR-340-5p, miR-17-5p, miR-130a-3p, and miR-93-5p exhibited close relation with recurrence
rate in their logistic regression analysis [104].

When the sample (e.g., plasma, serum) are obtained, the usual method is to use ultracentrifugation
or commercial kits to extract and purify exosomes, and then use the transmission electron microscope
(TEM) to detect their diameter size (30–100 nm), western blot (WB) to determine surface biomarkers
(such as CD63, CD81, CD9), and other methods to confirm that the isolated EVs are exosomes, and to
preserve in low temperature afterwards. When testing microRNAs, experimental methods such as
RNA sequencing or qRT-PCR will be used. Exosomes uptake can be observed by PKH67 staining or
confocal microscopy detection of fluorescence. Furthermore, since miRNAs can easily get degraded
with time, different in situ and quantitative methods were also explored in order to detect the content of
exosomal miRNAs in a faster and better manner. A direct method without RNA isolation or purification
procedures, which was also evaluated in the terms of specificity, accuracy and efficiency, was used to
prove miR-106a in plasma as a potential diagnosis biomarker [105]. Zhai et al. [106] synthesized an
in situ probe which can quantitatively evaluate the level of miR-1246 in plasma exosomes with high
degree of sensitivity and specificity, which is a promising translation for clinical use. Likewise, other
reported methods for detecting exosomal miRNAs are mainly based on biosensors [107,108]; fluorescent
probes [109,110]; DNA enzyme probes [111]; green fluorescent protein (GFP) tag technology [112];
weight-dependent molecular sieves [113], etc.

It is necessary to develop more effective, specific, sensitive biomarkers and detection methods
to accelerate detection speed and improve patients’ compliance. In the future, this kind of reagent
will make it possible for a single drop of blood to verdict breast cancer, different from subtypes and
treatment response monitoring.

3. Therapeutic Method Targeting at the Exosomal microRNAs

The important role of exosomal miRNAs in cancer progress cannot be ignored, so it is also
significant (1) to develop new drugs targeting at vital miRNAs and (2) to achieve a novel treatment of
the exosomes with therapeutic microRNAs.
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The mechanisms of some clinical anticancer drugs from natural herbs or synthetic sources are
reported to be partly dependent on miRNAs as exosomal cargoes (Table 5). D Rhamnose β-hederin
(DRβ-H), a triterpenoid saponin, could reduce the growth and apoptosis of cancer cells by inhibiting
the secretion process of exosomes. Subsequently, some specifically encapsulated miRNAs, including
miR-130a and miR-425, were also downregulated [114]. Shikonin (SK) could also suppress exosome
release accompanying with reduced miR-128 [115] and restrain the cancer-promoting effects of
preadipocytes through disturbing miR-140/SOX9 signaling [116]. Epigallocatechin gallate (EGCG)
is being pointed out to express anti-cancer activity by inhibiting the macrophages infiltration in
TME through upregulating miR-16 in exosomes [117], and chemo-susceptibility could be elevated by
β-elemene through affecting the expression of resistance-related genes such as miR-34a, miR-452, Pgp,
and PTEN [118]. Hannafon et al. [119] reported that after docosahexaenoic acid (DHA) administration,
exosomes secreted from breast cancer cells mediated the increase of miR-23b and miR-320b in recipient
endothelial cells and decreased the expression of target genes and corresponding proteins (PLAU,
AMOTL1, NRP1, ETS2, respectively), thus inhibiting their tube formation and angiogenesis capability.

Increasing evidence indicated that exosomes are important carriers and they probably can be
manipulated to deliver tumor suppressor-miRNA or oncomiR-inhibitors to express their potential
therapeutic effects (Table 5). As described, exosomal let-7a from donor cells was specifically delivered
to epidermal growth factor receptor (EGFR)-expressing tumor sites for therapeutic use [120]. Recently,
O’Brien et al. [121] genetically modified MSCs by lentiviral transduction to enrich miR-379 in derivative
extracellular vesicle (EV), which showed significant anti-cancer activity in vivo by direct delivery.
Meanwhile, tumor-derived exosomes could also be engineered to overexpress miR-155, -142, and let-7i
by electroporation to mature dendritic cells and to trigger the immunity process [122], to load siRNAs or
miRNAs by sonication to knockdown oncogene like HER2 [123]. Co-transfection of antagomiR-222/223
into MSCs reversed tumor dormancy and drug resistance [85]. Gold nanoparticle (AuNP)-based gene
silencing technology could also load anti-gene/miRNA oligonucleotides [124], and locked nucleic acid
(LNA)-modified BM-MSCs could secrete anti-miR-142-3p oligonucleotides in exosomes and exert
inhibitory effects in vitro and in vivo [125].
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Table 5. EVs as drug delivery agents for cancer therapy.

Therapeutic
Cargo EV Source Recipient Cells Target Gene

Drug Loading
Techniques/POSSIBLE

Drugs
Biological Activities Key Findings Refs

antagomiR-222/223 MSCs
Cancer cell

(MDA-MB-231,
T47D)

Co-transfection
(Lipofectamine

RNAiMAX Reagent)

cycle quiescence;
dormancy; drug

resistance (carboplatin)

A novel therapeutic strategy
to target dormant breast

cancer cells.
[85]

miR-130a, 425 (↓) MCF-7

associated with
the mTOR, ErbB,

MAPK and TGF-β
signaling
pathways

DRβ-H cell proliferation
DRβ-H inhibited MCF-7/S

cell growth through reducing
exosome release.

[114]

miR-128 (↓) Cancer cell
(MCF-7)

Cancer cell
(MCF-7) Bax Shikonin (SK) cell proliferation

shikonin inhibits the
proliferation of MCF-7 cells
by reducing tumor-derived

exosomal miR-128.

[115]

miR-140 (↑)
Mouse

preadipocyte
(3T3L1, MBA-1)

MCF10DCIS cells SOX9 Shikonin (SK)

tumorigenesis;
regulating

differentiation,
stemness, and

migration

(1) MiR-140/SOX2/SOX9 axis
can regulate differentiation,

stemness, and migration.
(2) SK-treated preadipocytes
secrete exosomes with high
levels of miR-140, which can
inhibit nearby DCIS cells by

targeting SOX9 signaling

[116]

miR-16 (↑) Cancer cell (4T1) TAMs (RAW264.7) EGCG TME

EGCG up-regulates miR-16 in
tumor cells, which can be

transferred to TAM via
exosomes and inhibits TAM

infiltration and M2
polarization

[117]

miR-34a (↑),
452 (↓)

Cancer cell
(MCF-7/Doc,
MCF-7/Adr)

Cancer cell β-elemene reverse drug resistance
(docetaxel, adriamycin)

β-elemene effectively
sensitizes drug-resistant BCA
cells to Doc and Adr through

a signaling pathway that
involves miRNA and

gene regulation

[118]
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Table 5. Cont.

Therapeutic
Cargo EV Source Recipient Cells Target Gene

Drug Loading
Techniques/POSSIBLE

Drugs
Biological Activities Key Findings Refs

miR-23b, 320b (↑)

Cancer cell
(MDA-MB-231,
MCF-7, ZR751

and BT20)

Epithelial cells
(MCF-10A,
EA.hy926)

PLAU, AMOTL1
(miR-23b); NRP1,
ETS2 (miR-320b)

DHA angiogenesis
the microRNAs transferred by

exosomes mediate DHA’s
anti-angiogenic action.

[119]

let-7a

Donor cells
(express the

transmembrane
domain of PDGF

fused to the
GE11 peptide)

EGFR-expressing
breast cancer cells

Modified exosomes with
the GE11 peptide or

EGF on their surfaces

(1) Modified exosomes with
the GE11 peptide or EGF on

their surfaces delivered
miRNA to EGFR-expressing

cancer tissues;
(2) intravenously injected
exosomes targeting EGFR

delivered let-7a specifically to
xenograft breast cancer cells

in RAG2−/−mice.

[120]

miR-379 (↑) Engineered MSCs Cancer cells (T47D,
HCC-1954) COX-2 lentiviral transduction

Exploiting the tumor-homing
capacity of MSCs while

engineering the cells to secrete
EVs enriched with miR-379

holds exciting potential as an
innovative therapy for

metastatic breast cancer.

[121]

miR-155, -142, and
let-7i (↑) Cancer cells (4T1) Dendritic cells

IL-6, IL-17, IL-1b,
TGF-β, SOCS1,
KLRK1, IFN-γ,

and TLR4

electroporation
The modified exosomes

would be a hopeful cell-free
vaccine for cancer treatment.

[122]

anti-miR-142-3p
oligonucleotides MSCs Cancer cell (4T1

and TUBO)
APC (miR-142-3p);
P2 × 7R (miR-150)

LNA (locked nucleic
acid)-modified

MSCs-derived exosomes
could be used as a feasible

nano-vehicle to deliver drug
molecules like

LNA-anti-miR-142-3p in both
in vitro and in vivo studies.

[125]
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4. Conclusions and Future Perspectives

In the tumor microenvironment of breast cancer, the powerful regulatory effect of the exosomal
miRNA is obvious and true. Tumor cells, especially with the phenotype of malignancy and
drug-resistance, would secrete exosomes containing specific miRNAs to non-drug-resistant cancer
cells, and even to normal stromal cells. Conversely, macrophages, fibroblasts, and other stromal cells
could also transmit the exosomes to the cancer cells, which encouraged the erosion of cancer cells.

Although some progress has been made in this field, and some advanced understandings have
arrived, we still face difficulties. For example, there is only little research on the response of exosomes
to the changes of physical conditions during the carcinogenesis such as acidity and hypoxia in TME.
Additionally, no systematic and accepted method has been found in the separation of the exosomes
from plasma or serum yet, which may result in a non-reliable outcome. It is recognized that the
clinical use of molecular markers is very demanding. The conversion of exosomal miRNA in the
peripheral blood, which is clearly enriched and differentiated in basic scientific research, into a clinical
biomarker for diagnosis and detection requires more detailed screening and more support of clinical
data. A greater effort needs to be taken to exploit the deeper potential of miRNAs in exosomes, such
as revealing their mechanisms in depth, the modification of exosomes, and the development of new
clinical treatments.
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