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Abstract: Inflammatory bowel disease (IBD) is a worldwide healthcare problem calling for the
development of new therapeutic drugs. Angelica sinensis and Zingiber officinale Roscoe are two common
dietetic Chinese herbs, which are traditionally used for complementary treatment of gastrointestinal
disorders. As bioactive constituents, volatile and pungent substances of these two herbs could be
effectively extracted together by supercritical fluid extraction. In this study, the supercritical fluid
extract of Angelica sinensis and Zingiber officinale Roscoe (AZ-SFE) was obtained by an optimized
extraction process and it was chemically characterized. The anti-inflammatory effect and underlying
mechanism of AZ-SFE were evaluated in a lipopolysaccharide (LPS)-induced RAW264.7 cell model and
a 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model. AZ-SFE notably inhibited the
production of NO in LPS-stimulated macrophages, and it inhibited the proliferation of Concanavalin
A (Con A)-induced splenocytes with suppression of the Th1 immune response. In vivo, the study
demonstrated that AZ-SFE significantly alleviated disease activity, colonic shortening, macroscopic
damage and histological injury of TNBS-treated rats with reduction of oxidative stress, suppression
of inflammatory cytokines, and modulation of hepcidin and serum iron. These findings suggested
that AZ-SFE may be a promising supplement for current IBD therapy.

Keywords: Angelica sinensis; Zingiber officinale Roscoe; inflammatory bowel disease; supercritical
fluid extract; anti-inflammatory

1. Introduction

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is a
worldwide healthcare problem characterized by chronic and recurring inflammation in the intestinal
tract [1,2]. Up to date, the pathogenesis of IBD has not been clearly clarified, which may be relevant to
genetic susceptibility, environmental factors, and intestinal flora, subsequently affecting the immune
response, resulting in inflammation [2,3]. Also, oxidative stress could activate inflammatory mediators,
which should not be neglected [4]. More seriously, it has been widely accepted that IBD is an important
risk factor for the development of colorectal cancer [5]. Current treatments of IBD mainly rely on the
usage of aminosalicylic acids, corticosteroids, thiopurines, and biologic drugs [6]. However, these
drugs are often expensive and associated with side effects or undesirable clinical efficacy [7]. Therefore,
investigation of novel therapeutic drugs for IBD treatment is needed.

Finding potential therapeutic candidates from natural products based on food and complementary
and alternative medicine has become attractive, due to their long history of use. In recent years, a series
of herbal compounds with anti-inflammatory effects have been reported with the possibility of treatment
for IBD, such as gingerol, curcumin, resveratrol and anthocyanins [8–10]. Plant-derived substances
capable of ameliorating IBD symptoms could potentially enlarge the scope of drug candidates.
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Angelica sinensis and Zingiber officinale Roscoe are two common dietetic Chinese herbs which
are traditionally applied for complementary treatment of gastrointestinal disorders [11]. The major
components of them in common are volatile oils, which are a group of constituents with various
bioactivities, including anti-inflammatory, anti-oxidant, and anti-cancer activities [12,13]. Previous
studies proved the anti-inflammatory effects of Angelica sinensis’s volatile oils on acute inflammation
model rats [14], and essential oils from Zingiber officinale Roscoe could inhibit leukocyte migration
to exert an anti-inflammatory effect [15]. In addition, gingerols and their derivatives, as important
constituents in Zingiber officinale Roscoe, are non-volatile pungent compounds with multiple functions,
which have been reviewed by Butt et al. [16]. Specifically, gingerols showed protective effects on
IBD mice and rats by reducing cytokines and adjusting oxidative stress [17,18]. A random clinical
trial indicated that the supplementation of ginger powder orally could improve treatment of UC
patients with significant reduction of malonic dialdehyde (MDA) [19]. Furthermore, our previous
study proved the chemo-preventive potential of Angelica sinensis on an Azoxymethane/Dextran sodium
sulphate induced colorectal cancer model [20]. Taken together, the combination of Angelica sinensis and
Zingiber officinale Roscoe have potential for the treatment of IBD.

It is well known that choosing the proper extract method is necessary for the improvement of
extract quality and yield. Supercritical fluid extraction is an efficient and environmentally friendly
method to extract non-polar constituents from vegetal sources, especially for those thermal unstable
compounds [21]. It is a great choice to extract potential anti-colitis components from the two above
mentioned herbs by this method.

Many animal models have been applied to study IBD, such as chemical-induced colitis models,
models of spontaneous colitis, and genetically engineered animal models. Among them, chemically
induced models are most commonly used due to their reproducibility and ease of operation [22].
The chemical substance 2,4,6-trinitrobenzenesulfonic acid (TNBS) is commonly used for induction
of IBD, and many previous studies used a TNBS-induced rodent model to evaluate the therapeutic
potency of various substances on IBD [7,23].

Therefore, the first aim of this study was to obtain the supercritical fluid extract of Angelica
sinensis and Zingiber officinale Roscoe (AZ-SFE) after optimization of extraction process parameters by
orthogonal experimental design and to characterize it. In addition, the anti-inflammatory potential of
AZ-SFE in vitro was investigated by detecting NO production on lipopolysaccharide (LPS)-induced
RAW264.7 cells. Moreover, the anti-colitis effects of AZ-SFE on a TNBS-induced colitis rat model were
evaluated through different biological activities.

2. Results

2.1. Qualitative Analysis of AZ-SFE Based on GC/MS Analysis

The qualitative analysis of AZ-SFE was based on NIST14 Standard Reference Database and
literature references. As shown in Table 1, 34 compounds in AZ-SFE were identified, accounting for
more than 95% of the total peak area. The component with the largest normalized peak area was
Z-ligustilide (30.90%), followed by 6-gingerol (16.08%). Considering the lack of standard substances
for other major compounds, such as zingiberene and α-farnesene, their contents were not detected in
subsequent studies.

Table 1. Qualitative analysis of Angelica sinensis and Zingiber officinale Roscoe’s supercritical fluid
extract (AZ-SFE) based on GC/MS analysis.

No. Retention Time (min) Compound Name Molecular Formula

1 13.211 Decanal C10H20O
2 17.137 α-Curcumene C15H22
3 17.202 β-Copaene C15H24
4 17.305 Zingiberene C15H24
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5 17.422 α-Farnesene C15H24
6 17.480 β-Bisabolene C15H24
7 17.706 β-Sesquiphellandrene C15H24
8 18.114 Hedycaryol C15H26O
9 19.129 Zingiberenol C15H26O

10 19.770 Zingerone C11H14O3
11 19.930 N-Butylphthalide C12H14O2
12 20.003 β-Eudesmol C15H26O
13 20.378 N-Butylidenephthalide C12H12O2
14 20.824 Dehydronerolidol C15H24O
15 21.54 Senkyunolide C12H16O2
16 22.060 Z-Ligustilide C12H14O2
17 23.657 E-Ligustilide C12H14O2
18 28.392 Hexadecanoic acid C16H32O2
19 29.718 Senkyunolide H C12H16O4
20 33.626 Linoleic acid C18H32O2
21 35.346 Panaxynone C17H22O
22 36.219 6-Paradol C17H26O3
23 37.934 6-Shogaol C17H24O3
24 38.917 6-Gingerdione C17H24O4
25 40.638 6-Gingerol C17H26O4
26 42.513 6-Gingerol monoacetate C19H28O5
27 43.613 8-Shogaol C19H30O4
28 44.435 6-Gingerdiol 3,5-diacetate C21H32O6
29 44.758 8-Gingerdione C19H28O4
30 46.518 6-Dehydrogingerdione C17H22O4
31 46.731 8-Gingerol C19H30O4
32 49.500 10-Shogaol C21H32O3
33 50.353 10-Gingerdione C21H32O4
34 55.218 10-Dehydrogingerdione C21H30O4

2.2. Optimization of Extraction Process of AZ-SFE by Orthogonal Experimental Design

The orthogonal experimental design was conducted for the optimization of three parameters
(extraction pressure, temperature, and time) in the extraction process of AZ-SFE. As indicated in Table 2,
experiment number 6 (55 ◦C, 30 MPa, extraction for 1 h) possessed the highest colligation score among
experimental results. The importance ranking of three factors was: B (temperature) > A (pressure) >

C (time), based on R value. Variance analysis indicated that extraction temperature was significant,
while extraction pressure and time were non-significant (Table 3). Taken together, optimum extraction
parameters were as follows: Extraction pressure at 30 MPa, extraction temperature at 55 ◦C, extraction
for 1 h. For validation of the stability of the process, the experiment was conducted at optimal condition
three times, and extracts obtained were analyzed by HPLC and GC/MS (Figure 1). The average yield of
AZ-SFE was 2.88 ± 0.10%, content of ligustilide was 14.20 ± 0.11% (m/m), and content of 6-gingerol was
8.19 ± 0.19% (m/m). Particularly, more than 95% of ligustilide and 6-gingerol in plant materials were
extracted under optimized conditions. Furthermore, the normalized area of each peak was stable with
RSD less than 5% by GC/MS analysis. Hence, AZ-SFE with stable quality was acquired, which could
be further studied.
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Table 2. Results of orthogonal experimental design for extraction optimization of AZ-SFE. A represented
extraction pressure, B represented extraction temperature, C represented extraction time and D
was blank.

Run
Factor Evaluation Index

A B C D Yield
(%)

Ligustilide
Content (%)

6-Gingerol
Content (%) Score

1 1 1 1 1 1.74 15.51 8.03 76.23
2 1 2 2 2 1.84 15.14 8.99 79.34
3 1 3 3 3 2.20 15.19 8.91 85.35
4 2 1 2 3 1.88 15.04 9.58 80.96
5 2 2 3 1 2.35 14.25 7.74 83.77
6 2 3 1 2 2.92 14.05 8.50 94.65
7 3 1 3 2 1.68 13.68 9.70 75.17
8 3 2 1 3 2.06 15.54 8.66 83.04
9 3 3 2 1 2.29 12.58 9.57 83.23

K1 80.31 77.45 84.64 81.08
K2 86.46 82.05 81.18 83.05
K3 80.48 87.74 81.43 83.12
R 6.15 10.29 3.46 2.04

Table 3. Variance analysis of orthogonal experimental design for extraction optimization of AZ-SFE.
p < 0.05.

Factor DF Anova SS Mean Square F P

Pressure 2 73.65 36.83 9.12 0.0988
Temperature 2 159.43 79.71 19.75 0.0482 *

Time 2 22.36 11.18 2.77 0.2652
Error 2 8.07 4.04
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Figure 1. GC/MS total ion chromatogram of three batches of AZ-SFE extracted by optimized 
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2.3. Effects of AZ-SFE and Major Components on Cell Viability of RAW264.7 Cells 

As shown in Figure 2, only the highest dose (40 μg/mL) of AZ-SFE detected significantly reduced 
cell viability of RAW264.7 cells, by approximately 30%. AZ-SFE ranging from 0–20 μg/mL without 
cytotoxicity was studied further. Meanwhile, the effects of ligustilide and 6-gingerol on cell viability 
of RAW264.7 cells were assessed. Results indicated that there was no significant cell proliferation 
inhibition (cell viability < 80%) at the concentrations of 2.5–80 μM for both ligustilide and 6-gingerol. 

Figure 1. GC/MS total ion chromatogram of three batches of AZ-SFE extracted by optimized parameters.

2.3. Effects of AZ-SFE and Major Components on Cell Viability of RAW264.7 Cells

As shown in Figure 2, only the highest dose (40 µg/mL) of AZ-SFE detected significantly reduced
cell viability of RAW264.7 cells, by approximately 30%. AZ-SFE ranging from 0–20 µg/mL without
cytotoxicity was studied further. Meanwhile, the effects of ligustilide and 6-gingerol on cell viability
of RAW264.7 cells were assessed. Results indicated that there was no significant cell proliferation
inhibition (cell viability < 80%) at the concentrations of 2.5–80 µM for both ligustilide and 6-gingerol.
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Figure 2. Cell viability of RAW264.7 cells after 24 h treatment of (a) AZ-SFE, (b) ligustilide, and (c) 6-
gingerol detected by MTT assay. B represented medium group and V represented vehicle control 
group. Data are expressed as mean ± SD (n = 5) of three independent experiments. ** p < 0.01 versus 
vehicle control group. 

2.4. Effects of AZ-SFE and Major Components on NO Production in LPS-Induced RAW264.7 Cells 

LPS significantly induced the production of NO compared with the blank control. Gradient 
concentrations of AZ-SFE could reduce the level of NO in a dose-dependent manner (Figure 3a). 
Moreover, the combination of two major components, ligustilide and 6-gingerol, according to their 
proportion in AZ-SFE, suppressed the production of NO with the same trend as AZ-SFE, but more 
moderately (Figure 3b). On one hand, they contributed to more than half of the inhibitory effect at 
the highest dose (54.08% vs 86.37%) with less than half of the content of AZ-SFE, indicating their 
predominant effects. On the other hand, the inhibition rates between AZ-SFE and combination of 
ligustilide and 6-gingerol were significantly different, indicating that other compounds also took part 
in the suppression of NO production, which should not be ignored (Figure 3c). Therefore, the total 
AZ-SFE instead of a combination of ligustilide and 6-gingerol was used for in vivo study. 

Figure 2. Cell viability of RAW264.7 cells after 24 h treatment of (a) AZ-SFE, (b) ligustilide, and (c)
6-gingerol detected by MTT assay. B represented medium group and V represented vehicle control
group. Data are expressed as mean ± SD (n = 5) of three independent experiments. ** p < 0.01 versus
vehicle control group.

2.4. Effects of AZ-SFE and Major Components on NO Production in LPS-Induced RAW264.7 Cells

LPS significantly induced the production of NO compared with the blank control. Gradient
concentrations of AZ-SFE could reduce the level of NO in a dose-dependent manner (Figure 3a).
Moreover, the combination of two major components, ligustilide and 6-gingerol, according to their
proportion in AZ-SFE, suppressed the production of NO with the same trend as AZ-SFE, but more
moderately (Figure 3b). On one hand, they contributed to more than half of the inhibitory effect at
the highest dose (54.08% vs 86.37%) with less than half of the content of AZ-SFE, indicating their
predominant effects. On the other hand, the inhibition rates between AZ-SFE and combination of
ligustilide and 6-gingerol were significantly different, indicating that other compounds also took part
in the suppression of NO production, which should not be ignored (Figure 3c). Therefore, the total
AZ-SFE instead of a combination of ligustilide and 6-gingerol was used for in vivo study.
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Figure 3. Effects of AZ-SFE and a combination of ligustilide and 6-gingerol on NO production in 
lipopolysaccharide (LPS)-induced RAW264.7 cells. Cells were pretreated for 1 h in the presence or 
absence of (a) AZ-SFE or (b) the combination of ligustilide and 6-gingerol, in a ratio according to their 
content in AZ-SFE, and then stimulated with LPS (1 μg/mL) for 24 h. (c) The inhibition rate was 
calculated by the formula indicated in Section 4.7. Data are expressed as mean ± SD (n = 3) of three 
independent experiments. * p < 0.05 and ** p < 0.01 versus LPS group. ## p < 0.01 between two 
compared groups. 

2.5. Effects of AZ-SFE on Splenocyte Proliferation and Cytokine Secretion 

With the stimulation of 5 μg/mL of Concanavalin A (Con A), splenocytes of rats in the TNBS 
group were obviously proliferated ex vivo compared with blank control. Treatment with SFE (5, 10 
and 20 μg/mL) could dose-dependently and significantly inhibit the Con A-induced proliferation 
(Figure 4a). Also, the levels of IFN-γ and IL-2 in supernatants were decreased by administration of 
AZ-SFE (Figure 4b,c). 

 

Figure 3. Effects of AZ-SFE and a combination of ligustilide and 6-gingerol on NO production in
lipopolysaccharide (LPS)-induced RAW264.7 cells. Cells were pretreated for 1 h in the presence or
absence of (a) AZ-SFE or (b) the combination of ligustilide and 6-gingerol, in a ratio according to
their content in AZ-SFE, and then stimulated with LPS (1 µg/mL) for 24 h. (c) The inhibition rate
was calculated by the formula indicated in Section 4.7. Data are expressed as mean ± SD (n = 3) of
three independent experiments. * p < 0.05 and ** p < 0.01 versus LPS group. ## p < 0.01 between two
compared groups.

2.5. Effects of AZ-SFE on Splenocyte Proliferation and Cytokine Secretion

With the stimulation of 5 µg/mL of Concanavalin A (Con A), splenocytes of rats in the TNBS
group were obviously proliferated ex vivo compared with blank control. Treatment with SFE (5, 10
and 20 µg/mL) could dose-dependently and significantly inhibit the Con A-induced proliferation
(Figure 4a). Also, the levels of IFN-γ and IL-2 in supernatants were decreased by administration of
AZ-SFE (Figure 4b,c).
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Figure 4. Effects of AZ-SFE (5, 10 and 20 μg/mL) on splenocyte proliferation and cytokine production. 
Cells treated without Con A and AZ-SFE were the blank control group, and cells incubated only with 
Con A were the Con A group. (a) Cell viability was detected by MTT assay, (b) IFN-γ and (c) IL-2 in 
supernatants were measured by ELISA. Data are presented as mean ± SD (n = 6). * p < 0.05, ** p < 0.01 
versus Con A group. 

2.6. Effects of AZ-SFE on Body Weight and Disease Activity Index 

Rats treated by TNBS presented diarrhea the day after modelling (Day two), with some of them 
displayed obvious blood adhesion to the anus. In the TNBS group, the body weights were dropped 
through experiment period accompanied with a loss of appetite, mucous or loose stools, and fecal 
occult blood. After treatment with AZ-SFE and mesalazine, the body weight of rats recovered 
obviously (Figure 5a). Also, the issues of stool consistency and fecal blood were improved in all 
treatment groups. As indicated in Figure 5b, the disease activity index (DAI) score on Day eight in 
the TNBS group was significantly higher than that in control group. And the DAI scores in AZ-SFE 
and mesalazine groups were significantly lower than that in TNBS group. The macroscopic 
appearances of colon in different groups were shown in Figure S1. 
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Cells treated without Con A and AZ-SFE were the blank control group, and cells incubated only with
Con A were the Con A group. (a) Cell viability was detected by MTT assay, (b) IFN-γ and (c) IL-2 in
supernatants were measured by ELISA. Data are presented as mean ± SD (n = 6). * p < 0.05, ** p < 0.01
versus Con A group.

2.6. Effects of AZ-SFE on Body Weight and Disease Activity Index

Rats treated by TNBS presented diarrhea the day after modelling (Day two), with some of them
displayed obvious blood adhesion to the anus. In the TNBS group, the body weights were dropped
through experiment period accompanied with a loss of appetite, mucous or loose stools, and fecal
occult blood. After treatment with AZ-SFE and mesalazine, the body weight of rats recovered obviously
(Figure 5a). Also, the issues of stool consistency and fecal blood were improved in all treatment groups.
As indicated in Figure 5b, the disease activity index (DAI) score on Day eight in the TNBS group was
significantly higher than that in control group. And the DAI scores in AZ-SFE and mesalazine groups
were significantly lower than that in TNBS group. The macroscopic appearances of colon in different
groups were shown in Figure S1.
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Figure 5. Effects of AZ-SFE (30 and 60 mg/kg) and mesalazine (400 mg/kg) on (a) body weight change,
(b) disease activity index, (c) length of colons, and (d) macroscopic score of colons in TNBS-induced
colitis rat model. Data are presented as mean ± SD of 6 rats per group. * p < 0.05, and ** p < 0.01 versus
TNBS group.
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2.7. Effects of AZ-SFE on Colon Length and Macroscopic Score

The colon length of each rat was measured before cutting longitudinally, and the results showed
that the colons in TNBS group became shorter than those in control group. Treatment with AZ-SFE
(30 and 60 mg/kg) markedly relieved the shortening of the colon. The macroscopic changes were
observed and compared among all groups. The colons of TNBS-treated rats displayed mucosal
edema, hyperemia, colonic wall thickening, ulceration, necrosis, and tissue adhesion, while colons in
control group were healthy with normal appearances. The macroscopic scores in TNBS group were
significantly increased compared to the control group. Treatment with mesalazine and two doses of
AZ-SFE markedly reduced the macroscopic lesions in colonic tissue, resulting in significantly decreased
scores. The colon length and macroscopic score were shown in Figure 5c,d, respectively.

2.8. Effects of AZ-SFE on Histopathology Improvement

Hematoxylin and eosin (H&E) stained colonic tissue specimens were observed under microscope
to analyze histological features (Figure 6a). In the control group, the colons showed intact mucosa,
and clear crypt structure with adequate goblet cells. However, the TNBS group displayed severe
infiltration of inflammatory cells, deformed or disappeared crypt, ulcers, and thickened blood vessel
walls, representing a high level of histological damage. The samples in AZ-SFE and mesalazine groups
indicated progressive amelioration of pathological states with reduction of inflammatory infiltration
and significant lower histological scores compared with TNBS group (Figure 6b).
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dismutase (SOD), which was recovered with the intervention of AZ-SFE and mesalazine. The MDA 
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TNBS group significantly increased compared with that in control group. After the treatment of AZ-
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Figure 6. Effects of AZ-SFE (30 and 60 mg/kg) and mesalazine (400 mg/kg) on histological change
of TNBS-induced colitis in rats. (a) Representative H&E staining slices from colonic tissues, original
magnification 100× I. Control group; II. TNBS group; III. Mesalazine group; IV–V. AZ-SFE groups (30
and 60 mg/kg). (b) Histological scores. Data are presented as mean ± SD of 6 rats per group. ** p < 0.01
versus TNBS group.

2.9. Effects of AZ-SFE on superoxide dismutase (SOD), malonic dialdehyde (MDA) and myeloperoxidase
(MPO)

As shown in Figure 7, TNBS administration significantly reduced the activity of superoxide
dismutase (SOD), which was recovered with the intervention of AZ-SFE and mesalazine. The MDA
levels in the colons of the TNBS group significantly increased in comparison with control group and
decreased after treatment with AZ-SFE and mesalazine. The myeloperoxidase (MPO) activity in TNBS
group significantly increased compared with that in control group. After the treatment of AZ-SFE and
mesalazine, the MPO levels were decreased.
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2.10. Effects of AZ-SFE on Inflammatory Cytokines in Serum

The levels of inflammatory cytokines (IL-6, TNF-α and IL-1β) were measured by ELISA. As shown
in Figure 8, TNBS treatment significantly enhanced the production of cytokines compared with control
group. Administration with two doses of AZ-SFE or mesalazine markedly inhibited the accumulations
of three tested cytokines.
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2.11. Effects of AZ-SFE on Serum Hepcidin and Serum Iron

Hepcidin levels in serum were increased in TNBS treated rats compared with the control group,
which were correlated with the similar tendency of IL-6, TNF-α, and IL-1β. However, treatment with
AZ-SFE (30 and 60 mg/kg) significantly decreased the high expression of hepcidin, and the effect of
AZ-SFE at 60 mg/kg was better than that of AZ-SFE at 30 mg/kg (Figure 9a). The serum iron was
measured by chemical colorimetry. As indicated in Figure 9b, the concentration of serum iron in TNBS
group was significantly lower than that in control group. After intervention by AZ-SFE or mesalazine,
concentrations of serum iron were increased. Particularly, mesalazine and AZ-SFE (60 mg/kg) groups
showed significant difference in comparison with TNBS group.
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3. Discussion

Natural products from medicinal and edible plants are supposed to be alternative treatments for
chronic inflammatory diseases [24,25]. The multiple active constituents in plants are considered to act
simultaneously on different targets to exert therapeutic effect [23]. In the present study, we optimized
the extraction process of AZ-SFE, and analyzed the extract both qualitatively and quantitatively by
GC/MS and HPLC methods, respectively. Subsequently, the obtained AZ-SFE with a stable quality
was applied to the ensuing bioactivity evaluation.

Macrophages as important immune cells play a vital role in the inflammation response. Shin
et al. found that macrophages could be accumulated and activated in dextran sodium sulphate
(DSS)-induced colonic tissues [26]. Activated macrophages can secrete many kinds of inflammatory
mediators, resulting in the progression of inflammatory diseases. LPS-induced RAW264.7 macrophages
are classically used to evaluate the anti-inflammatory effect in vitro. NO, a pro-inflammatory mediator
synthesized by iNOS, can be overproduced under the stimulation of LPS. Therefore, the inhibitory
ability of AZ-SFE on NO production was assessed to preliminarily evaluate the anti-inflammatory effect.
Results proved the anti-inflammatory activity of AZ-SFE, because of the significant and dose-dependent
suppression of NO production. The in vitro study encouraged us to further investigate the anti-colitis
activity of AZ-SFE on TNBS-induced rat model.

Immunological abnormity is one of the factors involving the pathogenesis of IBD [27].
Immunosuppressors like azathioprine have been applied for the treatment of moderate to severe
patients [6]. The spleen is an important immune organ, containing a large number of T lymphocytes
which can be non-specifically stimulated by Con A. IFN-γ can induce macrophages to produce TNF-α,
IL-1β, IL-2, and IL-6, which together aggravate inflammation and magnify Th1 response in a positive
feedback regulation [7]. The proliferation of ex vivo splenocytes induced by Con A was suppressed
by AZ-SFE. Additionally, the levels of IFN-γ and IL-2 in cell cultures were reduced by AZ-SFE in a
dose-dependent manner. Based on our findings, it could be speculated that the immunoregulating
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effect of AZ-SFE is related to the modulation of Th1 response, and the anti-colitis mechanism of AZ-SFE
involves immunoregulation.

In vivo study revealed an anti-inflammatory effect of AZ-SFE in TNBS-induced rats with the
alleviation of disease activity and macroscopic damage. Furthermore, histological evaluation supported
the reduction of pathological changes by AZ-SFE intervention. It has been widely accepted that oxidative
stress is one of the important pathogenic factors involving the development of IBD [28]. Oxidative stress
and the resulting lipid peroxidation could exacerbate free radical chain reactions, disrupt the integrity
of intestinal mucosa, and activate inflammatory mediators [29]. SOD is an important antioxidant
enzyme which is able to scavenge free radicals, and hinder oxidative damage [30]. MDA is a major
product of lipid peroxidation as a consequence of oxidative stress [31]. Our results showed that AZ-SFE
increased SOD activity and decreased MDA concentration in colonic tissue of TNBS-induced rats,
indicating the amelioration of intestinal injury was at least partly related to the reduction of oxidative
stress. Neutrophil infiltration is one of the most prominent histological features observed in IBD [29].
MPO activity can be used to evaluate the degree of neutrophil infiltration [32,33]. Our findings revealed
that increased MPO activity induced by TNBS could be weakened after administration of AZ-SFE at
test doses, showing the protective effect of AZ-SFE against tissue injury in experimental colitis.

Pro-inflammatory cytokines are important in the pathogenesis of IBD. Increased levels of
pro-inflammatory cytokines have been detected in IBD patients [34,35]. TNF-α takes part in tissue
inflammation through recruitment of leukocytes in an inflamed area, stimulation of expression of
cytokines, and induction of cascade effects for other cytokines [36]. IL-6 also plays a vital role in the
progression of colonic inflammation, which can promote lymphocyte proliferation, and is important in
acute phase inflammation response [36,37]. IL-1β is another important cytokine to accelerate intestinal
inflammation by facilitating the production of IL-17A, indicating IL-1β to be a promising target in
IBD therapy [38]. Taken together, targeting pro-inflammatory cytokines is one of the therapeutic
approaches for IBD treatment. In the current study, the production of IL-6, TNF-α, and IL-1β in serum
of TNBS-induced rats was increased. Treatment with AZ-SFE in two doses significantly reduced the
expression of tested cytokines, with the dose of 60 mg/kg showing the better effect.

Anemia is one of the symptoms of IBD, whose pathogenesis is related to the abnormal elevation
of hepcidin, the key modulator of systemic iron homeostasis [39]. Hepcidin is an antimicrobial peptide
which is mainly generated in liver in response to iron overload, or upregulation by pro-inflammatory
stimuli, such as IL-6 [40]. The cellular iron export protein ferroportin is the receptor of hepcidin.
The combination of hepcidin and ferroportin contributes to the reduction of circulating iron. Therefore,
it is supposed that increased level of hepcidin leads to decreased serum iron, consequentially
iron-restricted impairment of erythropoiesis, and even anemia [41]. Many researchers have been
interested in finding the correlation between hepcidin and IBD, which up till now has not been fully
clarified. Some reported the elevated expression of hepcidin in IBD patients, while others claimed
no differences or even decreased hepcidin levels compared with healthy controls [42–44]. In the
TNBS-induced rat colitis model, the expression of hepcidin in the colon could be increased associated
with the activation of IL-6/STAT 3 pathway [45]. Also, hepcidin has been proposed to be directly
involved in IBD pathogenesis, since the severity of experimental colitis could be relieved in Hfe
knockout mice with low hepcidin expression [46]. Taken together, we intended to investigate the effect
of AZ-SFE on the regulation of hepcidin in our study.

To some extent, our results support the explanation that the higher hepcidin level in TNBS group
is the consequence of the more severe inflammation state, as Toblli et al. described [47]. Administration
of AZ-SFE and mesalazine decreased the production of hepcidin, indicating the potency of AZ-SFE on
the regulation of iron homeostasis. The expression of hepcidin was related to the production of IL-6,
as shown in our research, which was consistent with former research. Also, the serum iron level was
decreased in the TNBS group, while it was significantly increased by the administration of mesalazine
and AZ-SFE (60 mg/kg). On one hand, the increased expression of hepcidin lead to the decrease of
serum iron [41]. On the other hand, infiltrating cells may enter the blood and utilize serum iron for



Int. J. Mol. Sci. 2019, 20, 3816 14 of 21

their proliferation, and the sequestration of serum iron by iron storage proteins may lead to the low
level of serum iron [48]. These findings indicated that AZ-SFE could involve in the regulation of system
iron homeostasis, which may be related to its anti-inflammatory activity.

Furthermore, intestinal epithelial cells provide a physical barrier to protect the body from pathogens
as well as toxins [49]. The dysfunction of intestinal barrier, such as increased intestinal permeability
plays an important role in the pathogenesis of IBD. Therefore, the protection and improvement of
intestinal barrier function may be a potential therapeutic strategy for IBD [50]. The effects of AZ-SFE
on the intestinal barrier will be investigated in our further research.

4. Materials and Methods

4.1. Chemicals and Reagents

Ligustilide (S13M9D55861) was obtained from Shanghai Yuanye Biotechnology Co., Ltd.,
(Shanghai, China). 6-gingerol (MUST-16122205) was purchased from Chengdu Man Site Biotechnology
Co. Ltd., (Chengdu, China). Methanol and Acetonitrile were HPLC grade (Sigma-Aldrich, USA).
High glucose DMEM was purchased from Corning Incorporated (Corning, NY, USA). Fetal bovine
serum (FBS) was obtained from Biological Industries Ltd. (Herzliya, Israel). Penicilin/streptomycin
was obtained from Invitrogen (Carlsbad, CA, USA). TNBS (P2297–10 mL) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Mesalazine was obtained from Ethypharm Pharmaceutical Co.
Ltd., (Shanghai, China). All other reagents used were of analytical grade.

4.2. Plant Material and Preparation of AZ-SFE

Fresh Zingiber officinale Roscoe roots were bought in a local market (Beijing, China). Angelica
sinensis was purchased from Beijing Sanhe Yaoye Co., Ltd. (Beijing, China). They were identified at
the Beijing University of Chinese Medicine as per the identification standard of Pharmacopoeia of
the People’s Republic of China, 2015. Fresh Zingiber officinalle Roscoe roots were cut into slices and
dried at 40 ◦C. Then they were smashed into 40 mesh. Extraction was conducted using a HA220-50-06
supercritical fluid extraction system (Hua’an Supercritical Extraction Co., Ltd. Nantong, China).
Ground powders (40 mesh) of Angelica sinensis and Zingiber officinalle Roscoe were weighted and
extracted together at a ratio of 7:4 which is based on a traditional usage. When the temperatures in both
extraction and separation vessels met the requirement, liquid CO2 was pumped into the extraction
system at a flow rate of 25 L/h. The pressure of first separation vessel was 8 MPa; the temperature of
first separation vessel was 55 ◦C; while those of second separation vessel were system tail pressure
and 35 ◦C. After extraction, the products were collected from the first separation vessel, weighted and
stored at −20 ◦C for further analysis.

4.3. GC/MS Analysis of AZ-SFE

GC/MS analysis of AZ-SFE was carried out on Agilent 7890B GC system coupled with 5977A
mass selective detector (Agilent Technologies Inc., Santa Clara, CA, USA) in electronic ionization mode
(ionization energy: 70 eV). The GC column was Agilent HP-5ms (30 m × 0.25 mm, 0.25 µm). AZ-SFE
was dissolved in chloroform for analysis. The heating temperature was as follows: Hold at 50 ◦C for
5 min, rise to 170 ◦C at the rate of 10 ◦C/min, and hold for 5 min; then rise to 230 ◦C at the rate of
3 ◦C/min and hold for 3 min; finally rise to 280 ◦C at the rate of 5 ◦C/min and hold for 5 min. Inlet
temperature and transmission line temperature were both 250 ◦C. Helium was used as carrier gas at a
flow rate of 1 mL/min. The injection volume was 1 µL with a split ratio of 10:1. Ion source temperature
was 230 ◦C and quadrupole the temperature was at 150 ◦C. The scan scale was 30–600 amu.

4.4. HPLC Analysis of AZ-SFE

The contents of ligustilide and 6-gingerol in AZ-SFE were detected by HPLC in a Thermo Ultimate
3000 HPLC system with a variable wavelength detector (Thermo Fisher Scientific Inc., San Francisco,



Int. J. Mol. Sci. 2019, 20, 3816 15 of 21

CA, USA) using an Inertsil ODS-C18 column (4.6 mm × 250 mm, 5 µm). The column temperature
was 30 ◦C, and 10 µL of the sample solution was injected for detection. AZ-SFE, ligustilide and
6-gingerol were dissolved in methanol as a sample solution and reference solution, respectively.
The flow rate was 1 mL/min. For detection of ligustilide, the mobile phase was methanol-water
(70:30), and the detection wavelength was 326 nm. For detection of 6-gingerol, the mobile phase was
acetonitrile-methanol-water (40:5:55), and the detection wavelength was 280 nm [51]. The specificity,
linearity, precision, repeatability, stability, and recovery rate of analytical methods were validated.

4.5. Optimization of Extraction Process of AZ-SFE

An L9 (34) orthogonal experiment design was conducted to investigate the optimum parameters
in the extraction process. The factors and levels were listed in Table 4 according to pre-experiments
and literature review. The extract yield, ligustilide content and 6-gingerol content were chosen as
evaluation indexes with weight coefficients of 0.5, 0.3, and 0.2, respectively. The colligation score
of each extraction was calculated based on weight coefficient after data normalization. Optimum
extraction parameters were screened by both visual analysis and analysis of variance by SAS 8.0.

Table 4. Factors and levels for orthogonal experiment design for optimization of SFE extraction process.

Level

Factor

Pressure (MPa) Temperature (◦C) Time (h)

A B C

1 20 35 1
2 30 45 2
3 40 55 3

4.6. Cell Culture and MTT Cell Viability Assay

The RAW264.7 cell line was obtained from the Cell Resource Center, Chinese Academy of Medical
Sciences (Beijing, China). RAW264.7 cells were cultured in high glucose DMEM supplemented with
10% FBS and 1% penicillin/streptomycin (complete medium) at 37 ◦C, 5% CO2. AZ-SFE was dissolved
in DMSO to be 10 mg/mL as stock solution. MTT cell viability assay was conducted at first to select
concentrations without cytotoxicity based on the method of Mosmann with minor modifications [52].
RAW264.7 cells were seeded in 96-well plates (1 × 104 cells/well) and cultured for 24 h. Then cells
were incubated with gradient concentrations of AZ-SFE (0.625 to 40 µg/mL), ligustilide (2.5 to 160 µM),
and 6-gingerol (2.5 to 160 µM) for 24 h. Then 10 µL of MTT solution (5 mg/mL) was added to each
well and the cells were cultured for another 4 h. The supernatants were discarded and the formazan
crystals formed in living cells were dissolved in DMSO. The plate was shaken in orbital shaker for
10 min, after which the optical density was measured at 490 nm using a microplate reader system
(SPECTROstar Nano, BMG LABTECH, Ortenberg, Germany). The medium group contained only
complete medium, and vehicle group contained 0.5% DMSO in complete medium. The cell viability
was calculated as follows:

Viability% = OD/OD0 × 100% (1)

Where OD represents the average optical density of samples at the same concentration, and OD0

represents for the average optical density of vehicle controls (0.5% DMSO in medium).

4.7. Measurement of NO Production in RAW264.7 Cells

RAW264.7 cells were seeded into 96-well plates (1 × 105 cells/well) and precultured for 24 h at
37 ◦C, 5% CO2. After discarding the supernatants, cells were treated with different concentrations of
AZ-SFE (0.625 to 20 µg/mL) or the combinations of ligustilide and 6-gingerol, at their corresponding
concentrations in AZ-SFE for 1 h. After stimulation with or without LPS (1 µg/mL) for 24 h, the cell
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supernatants were collected and detected for NO production by Griess method using a commercial
kit (Beijing BioDee Biotechnology Co. Ltd., Beijing, China) [53]. Briefly, 50 µL of supernatant was
mixed with the same volume of Griess reagent I and II. After incubation at room temperature for 5 min,
the optical density was measured at 540 nm. The concentration of NO was calculated by comparing
with sodium nitrite standard curve. The inhibition rate of NO was calculated as follows:

Inhibition rate% = (C1 − C)/(C1 − C0) (2)

Where C1 represents the average concentration of model controls (1 µg/mL LPS in medium),
C0 represents the average concentration of blank control and C represents the average concentration of
samples at the same concentration.

4.8. Experimental Animals

Thirty male Sprague Dawley rats (180–200 g) were purchased from SPF Biotechnology Co., Ltd.
(Beijing, China) and maintained in the animal experiment center of Beijing University of Chinese
medicine. Animals were housed under controlled conditions of temperature (25 ± 2 ◦C) and humidity
(50 ± 10%) with a 12-h light-dark cycle, and fed with standard diet and water. The experimental
procedures were approved by the Animal Care and Research Ethics Committee of the Beijing University
of Chinese Medicine.

4.9. Induction of Experimental Colitis and Intervention with AZ-SFE

Rats were randomly divided into 5 groups (n = 6): Control group, TNBS group, positive drug
(mesalazine, 400 mg/kg) group, and AZ-SFE (30 and 60 mg/kg) groups. Colitis was induced by
intrarectal administration of a single dose of TNBS, as described previously, with modifications [54].
Briefly, rats were anesthetized by 10% chloral hydrate (3 mL/kg), and TNBS (100 mg/kg) dissolved
in ethanol (50%, v/v) was instilled into the colon, using a gavage needle lubricated by liquid paraffin,
and inserted into 8 cm from anus. To ensure the agent within the entire colon and avoid drug
leakage, rats were held in a head-down position for 3 min. Control group received only saline by the
same method.

From the next day after modeling, drugs were administered once a day by gavage (1 mL/100 g
body weight) for seven consecutive days. Then the rats were anesthetized and blood were collected
from abdominal aorta. The entire colons were collected, and washed in cold saline. All specimens
were stored at −80 ◦C before analysis.

4.10. Splenocyte Proliferation and Cytokine Detection

The spleens of rats in the TNBS group were aseptically taken out, and they were ground with PBS
and filtered through 200 mesh. After removing red blood cells by lysis and centrifugation, splenocytes
were obtained. Cells were precultured in RPMI 1640 complete medium (supplemented with 10%
FBS and 1% penicillin/streptomycin) for 2 h to remove adherent cells. Then cells in suspension were
counted and seeded into 96-well plates (5 × 105 cells/well). Cells were stimulated with 5 µg/mL
Con A to maintain inflammation status, and AZ-SFE (5, 10 and 20 µg/mL) were supplemented and
incubated for 24 h. Cells treated with Con A were named the Con A group, and cells without any
intervention were labelled blank control group. After incubation, culture medium in each well was
collected and centrifuged. Supernatants were collected for cytokine detection, and cells were cultured
with MTT in medium for another 4 h, for proliferation detection. The optical density was measured at
550 nm. The levels of IL-2 and IFN-γ in supernatants were measured using ELISA kits (RayBiotech
Inc., Norcross, GA, USA) according to the manufacturer’s instructions.
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4.11. Evaluation of DAI

Body weight, stool consistency and fecal bleeding of rats were monitored daily, and the DAI was
calculated as the average score of three above mentioned aspects. In weight loss, score 0 was assigned
for no weight loss compared with the original body weight, 1 for loss of 1–5%, 2 for loss of 5–10%, 3 for
loss of 10–20% and 4 for loss > 20%. For stool consistency, score 0 was assigned for normal stool, 2 was
assigned for loose stool and 4 was assigned for diarrhea. For fecal bleeding, score 0 represented no
blood, 2 represented occult blood and 4 represented obvious bleeding [55].

4.12. Evaluation of Macroscopic Damage

The colon was cut longitudinally and cleaned by cold saline for macroscopic observation.
The macroscopic severity of colonic mucosal damage was determined according to the criteria of Luk
et al. [56]. Briefly, the score was on a 0–10 scale. The more severe the damage was, the higher the
score was.

4.13. Histological Analysis

Colon samples were fixed in 10% formalin at room temperature for 48 h, and embedded in paraffin
blocks. Sliced sections (3 µm) were deparaffinized and stained with H&E. The sections were observed
and photographed under an ECLIPSE Ts2R microscope (Nikon Corp., Tokyo, Japan). Colonic damage
was evaluated according to previous standard [57] with a total score of 10.

4.14. Measurement of SOD, MDA and MPO in Colonic Tissue

Colonic tissues were homogenized, and the supernatants were collected for detection. The activities
of SOD and MPO, as well as the level of MDA were analyzed with commercial test kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

4.15. Measurement of Pro-inflammatory Cytokines in Serum

Blood samples collected from abdominal aorta were placed at room temperature for 2 h to clot,
and they were centrifuged at 3000 rpm for 10 min in order to collect serum. The levels of IL-6, TNF-α
and IL-1β in serum were detected using ELISA kits, according to the manufacturer’s instructions.
The kit for IL-6 was purchased from Cloud Clone Corp., (Wuhan, China), and those for TNF-α and
IL-1β were obtained from RayBiotech Inc. (Norcross, GA, USA).

4.16. Measurement of Hepcidin and Serum Iron

Serum hepcidin was measured by competitive ELISA (Cloud Clone Corp., Wuhan, China).
Concentrations of serum iron were detected by colorimetry using a test kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

4.17. Statistic Analysis

Data obtained were presented as the mean ± standard deviation (SD). Statistical analyses were
performed using one-way ANOVA, followed by Dunnett’s multiple comparisons tests for multiple
comparisons using in SAS 8.0. p < 0.05 was considered statistically significant.

5. Conclusions

Our present study prepared and characterized AZ-SFE. The ensuing in vitro and in vivo study
indicated the potential of AZ-SFE for relieving colitis by decreasing oxidative stress, suppressing
inflammatory mediators, inhibiting the Th1 immune response, and regulating iron homeostasis.
In conclusion, AZ-SFE derived from traditional Chinese herbs could be a promising supplement for
current IBD therapy, and the exact mechanism needs further investigation.
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IBD Inflammatory bowel disease
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