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Abstract: Reactive oxygen species (ROS) are highly reactive signaling molecules that maintain
redox homeostasis in mammalian cells. Dysregulation of redox homeostasis under pathological
conditions results in excessive generation of ROS, culminating in oxidative stress and the associated
oxidative damage of cellular components. ROS and oxidative stress play a vital role in the
pathogenesis of acute kidney injury and chronic kidney disease, and it is well documented that
increased oxidative stress in patients enhances the progression of renal diseases. Oxidative stress
activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by
degrading and recycling intracellular oxidized and damaged macromolecules and dysfunctional
organelles. In this review, we report the current understanding of the molecular regulation of
autophagy in response to oxidative stress in general and in the pathogenesis of kidney diseases.
We summarize how the molecular interactions between ROS and autophagy involve ROS-mediated
activation of autophagy and autophagy-mediated reduction of oxidative stress. In particular, we
describe how ROS impact various signaling pathways of autophagy, including mTORC1-ULK1,
AMPK-mTORC1-ULK1, and Keap1-Nrf2-p62, as well as selective autophagy including mitophagy
and pexophagy. Precise elucidation of the molecular mechanisms of interactions between ROS and
autophagy in the pathogenesis of renal diseases may identify novel targets for development of drugs
for preventing renal injury.
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1. Introduction

Reactive oxygen species (ROS) are short-lived oxygen-containing molecules that are generated
by enzymatic and non-enzymatic redox reactions during cellular aerobic metabolism [1,2]. ROS are
comprised of oxygen free radicals and non-radical derivatives of oxygen, including superoxide anion
(O2•−), hydroxyl (OH•), and hydrogen peroxide (H2O2). Oxygen free radicals are formed by partial
reduction of molecular oxygen, generating oxygen with one or more unpaired electrons, or by complete
reduction of oxygen, by accepting four electrons, resulting in the formation of water. ROS were
originally considered deleterious and thought to function exclusively as molecules damaging to cellular
components. However, during the past two decades or so, many studies have documented that ROS are
not just unwanted byproducts of cell metabolism, but play a pivotal role in both physiological processes
and the pathogenesis of diseases, including renal injury. Under normal physiological conditions, basal
levels of ROS maintained by redox homeostasis regulate signal transduction pathways involved in
numerous biological cellular responses, including cell proliferation, growth factor signaling, immune
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responses, differentiation, and autophagy [3,4]. To maintain cellular redox homeostasis, mammalian
cells produce antioxidant enzymes and non-enzyme agents including superoxide dismutase (SOD),
catalase, peroxidases, glutathione, and thioredoxin, which antagonize and detoxify ROS. SOD is a
key antioxidant enzyme system that converts O2•− to H2O2 and oxygen; subsequently, catalase or
the glutathione systems reduce H2O2 to H2O. All of the three isoforms of SOD are expressed in the
kidney [5]. Antioxidant enzymes, including SOD, are decreased in animal models of acute kidney
injury (AKI) [6–8] and dysregulate redox homeostasis. Dysregulation of ROS or elevation of ROS
due to increased ROS/reactive nitrogen species (RNS) generation and/or decreased local antioxidant
defenses results in oxidative stress. Thus, when oxidative stress exceeds the capacity of the cell to
scavenge ROS, oxidative damage of cellular components, including lipids, proteins, nucleic acids, and
carbohydrates, occurs [4,9].

One of the most important biological responses in the cell that is regulated by ROS and oxidative
stress is autophagy. Autophagy is an evolutionarily conserved, dynamic process of degradation of
intracellular organelles and macromolecules by lysosomal hydrolases. The degraded components,
including free fatty acids and amino acids, are recycled to synthesize new proteins, organelles, and
energy required by the cell. Therefore, autophagy is involved in the clearance and recycling of damaged
organelles, as well as misfolded and aggregated proteins, to preserve cellular homeostasis [10,11].
A wide variety of internal and external cellular stresses, including oxidative stress, activate autophagy
as an adaptive response to combat stress and prevent stress conditions. Stress-induced autophagy
generally provides a protective role by eliminating and recycling damaged macromolecules, protein
aggregates, and dysfunctional organelles [12–14]. Organelle-specific autophagy, known as selective
autophagy, eliminates and recycles damaged and dysfunctional organelles, including mitochondria,
peroxisomes, lysosomes, endoplasmic reticulum (ER), and even the nucleus [15]. Although oxidative
stress-induced autophagy is considered to be primarily protective, the ultimate protective effect may
depend on the relative activation and completion of the autophagy process. Ideally, optimal autophagic
flux should ensure the autophagy-mediated supply of bioenergetic molecules (e.g., ATP) and break
down products (e.g., amino acids and fatty acids) to maintain cellular biosynthesis. However, impaired
autophagic flux or prolonged activation of autophagy may result in cell death due to disruption of
cellular homeostasis [16,17]. The pro-survival function may also depend on the autophagic suppression
of the stress-mediated cell death pathways, including apoptosis and regulated necrosis [16–18].
In addition, the ROS produced upon degradation of ferritin by autophagy promote the cell death
process known as ferroptosis [19].

The pathogenesis of kidney diseases is associated with oxidative stress as well as autophagy
induction. The role of autophagy in acute kidney injury and progressive renal diseases has been
reviewed recently [20–22]. This article summarizes the current understanding of the molecular
mechanisms by which ROS regulate autophagy in kidney disease.

2. Generation of Reactive Oxygen Species (ROS)

In the cell, superoxide anion (O2•−) is the first free radical generated by mitochondria, plasma
membrane, peroxisomes, and cytosol [9,23] (Figure 1).

The mitochondria are one of the primary sources of O2•− in living cells. In the mitochondrial
respiratory electron transport chain, complex I and complex III were initially identified as sites involved
in O2•− generation due to “electron leakage” to molecular oxygen [1,23]. Recently, additional distinct
sites have been identified that may generate O2•− in mammalian mitochondria [24]. In the plasma
membrane and neutrophils, O2•− is formed by the transfer of electrons to molecular oxygen through
an enzymatic reaction catalyzed by the membrane-bound NOX family of NADPH oxidases [25–27].
The cytosolic enzyme xanthine oxidase [28] is a well-studied ROS-producing enzyme that catalyzes
xanthine and hypoxanthine oxidation to uric acid and transfers monovalent electron to molecular
oxygen to produce O2•− [28,29]. Once O2•− is generated, it becomes a precursor for the formation of
other ROS in the cell (Figure 1). SOD converts O2•− to H2O2, which can generate highly reactive OH•
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by interacting with transition metal ions (such as Fe and Cu), and extremely reactive hypochlorous
acid, catalyzed by myeloperoxidase [30]. In addition to ROS, cells also generate RNS. The major RNS
include nitric oxide radicals (•NO), peroxynitrite (ONOO−), and nitrogen dioxide (•NO2). The •NO
radical is produced by three isoforms of nitric oxide synthase (NOS), all of which are expressed in the
kidney [31]. It serves a role as a potent vasodilator and is involved in the regulation of hypertension.
Increasing •NO levels can further react with O2•− to produce ONOO−, which can cause protein
nitration [32].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 24 

 

 
Figure 1. Generation of reactive oxygen species (ROS) in the cell. ROS are generated by enzymatic 
and non-enzymatic redox reactions during cellular metabolism under normal and pathological 
conditions. Mitochondria, plasma membrane, peroxisomes, and cytosol first generate the superoxide 
anion (O2•−), which becomes the precursor free radical for the generation of other ROS molecules. 
Cytosolic CuZN superoxide dismutase (SOD) and mitochondrial MnSOD, which are expressed in the 
kidney, dismutate O2•− to H2O2, which yields highly reactive hydroxyl radicals (OH•) by interaction 
with reduced transition metal ions (such as Fe and Cu) in a Fenton reaction. In addition to ROS, cells 
also generate reactive nitrogen species (RNS). The major RNS include nitric oxide (•NO), 
peroxynitrite (ONOO−), and nitrogen dioxide (•NO2). Nitric oxide (•NO) is produced by three 
isoforms of nitric oxide synthase (NOS), all of which are expressed in the kidney. ROS produced cause 
oxidative damage, including DNA damage, lipid and protein oxidation, protein nitration, and 
mitochondrial dysfunction. 
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3. Role of ROS in the Pathogenesis of Kidney Disease 

Many studies have documented the important roles of ROS in the pathogenesis of AKI and 
chronic kidney disease (CKD), in animal models as well as in patients. The kidney is rich in 
mitochondria, with a high respiration rate to meet metabolic demand, and, therefore, it is highly 
vulnerable to generation of ROS and oxidative damage [33,34]. The increased production of ROS 
causes inflammation and tissue damage in ischemia-reperfusion (IR) [35–38] and toxic AKI [39–42], 

Figure 1. Generation of reactive oxygen species (ROS) in the cell. ROS are generated by enzymatic and
non-enzymatic redox reactions during cellular metabolism under normal and pathological conditions.
Mitochondria, plasma membrane, peroxisomes, and cytosol first generate the superoxide anion (O2•−),
which becomes the precursor free radical for the generation of other ROS molecules. Cytosolic CuZN
superoxide dismutase (SOD) and mitochondrial MnSOD, which are expressed in the kidney, dismutate
O2•− to H2O2, which yields highly reactive hydroxyl radicals (OH•) by interaction with reduced
transition metal ions (such as Fe and Cu) in a Fenton reaction. In addition to ROS, cells also generate
reactive nitrogen species (RNS). The major RNS include nitric oxide (•NO), peroxynitrite (ONOO−),
and nitrogen dioxide (•NO2). Nitric oxide (•NO) is produced by three isoforms of nitric oxide synthase
(NOS), all of which are expressed in the kidney. ROS produced cause oxidative damage, including
DNA damage, lipid and protein oxidation, protein nitration, and mitochondrial dysfunction.

3. Role of ROS in the Pathogenesis of Kidney Disease

Many studies have documented the important roles of ROS in the pathogenesis of AKI and chronic
kidney disease (CKD), in animal models as well as in patients. The kidney is rich in mitochondria, with
a high respiration rate to meet metabolic demand, and, therefore, it is highly vulnerable to generation
of ROS and oxidative damage [33,34]. The increased production of ROS causes inflammation and
tissue damage in ischemia-reperfusion (IR) [35–38] and toxic AKI [39–42], including mitochondrial
ROS generation in renal IR [38,43] and cisplatin nephrotoxicity [44,45]. In renal IR, H2O2 production
is increased four-fold [46]. ROS also contribute to the progression of kidney fibrosis [47,48] and
the progression of CKD [49]. In diabetic nephropathy (i.e., hyperglycemic conditions in a diabetic
milieu), ROS originate primarily from mitochondria and NADPH oxidase [50], but other sources,
including glucose autooxidation, advanced glycation end products, activation of the polyol (sorbitol)
pathway, and activation of the protein kinase C signaling pathway, also contribute to the production of
ROS [50,51]. In cultured human podocytes, nicotine increased ROS generation and caused podocyte
apoptosis, as well as associated downstream MAPK signaling [52]. In patients, increased oxidative
stress has been reported in the early stages of CKD [53,54], and there is a positive correlation between
oxidative stress and kidney disease progression [55,56]. Moreover, ROS generated by NOX and xanthine
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oxidase contribute to oxidative stress in CKD patients. For example, higher activities of NOX [57,58]
and xanthine oxidase [59,60] have been reported in CKD and dialysis patients. Furthermore, in patients
with advanced stages of CKD, oxidative stress is linked with complications including hypertension,
inflammation, and atherosclerosis [49]. Thus, in pathogenesis of renal diseases, ROS may play vital
roles in modulating signal transduction pathways involved in numerous biological cellular responses,
including autophagy.

4. ROS-Mediated Regulation of Autophagy and Its Impact in Kidney Disease

4.1. Impact of Oxidants and Antioxidants on Autophagy in Kidney Disease

Many compounds that act as antioxidants have an impact on autophagy in kidney disease
(Table 1). Rutin, an antioxidant flavonol glycoside, attenuated gentamicin-induced nephrotoxicity
by reducing oxidative stress, autophagy, and inflammation in rats [61]. Rutin also protected against
IR injury in rats [62]; however, whether the protection was mediated by autophagy is not known.
N-acetylcysteine ameliorated gentamicin-induced nephrotoxicity by reducing ROS and enhancing
autophagy [63]. Ferulic acid, a naturally occurring phenolic compound that possesses antioxidant
activity, provided a beneficial effect in streptozotocin-induced diabetic nephropathy in rats by inhibiting
ROS generation, nuclear factor (NF)-κB activation, stress signaling pathway (p38, c-Jun N-terminal
kinase (JNK), and extracellular signal-regulated kinase 1/2) activation, and by promoting autophagy [64].
Cadmium-induced oxidative stress and subsequent cytotoxicity in the proximal tubule was prevented
by trehalose by restoring autophagic flux [65]. Berberine, a quaternary ammonium salt from the
protoberberine group of isoquinoline alkaloids that possesses potent antibiotic, anti-inflammatory,
and antioxidant activity, ameliorated cisplatin-induced renal function and histopathological changes
and suppressed oxidative stress, inflammation, autophagy, and apoptosis [66]. Celastrol, a bioactive
triterpenoid that has antioxidant, anti-inflammatory, and anti-apoptotic properties [67,68], induced
heme oxygenase (HO-1)-mediated autophagy and blocked high glucose-induced injury, inflammation,
and insulin resistance in podocytes [69]. In podocytes, HO-1-induced autophagy has been shown
previously to provide a protective mechanism against high glucose-induced apoptosis [70]. HO-1, an
endogenous antioxidant, reduced defective autophagy in cisplatin-induced AKI and protected against
cisplatin-induced apoptosis in proximal tubules [71]. Another study showed that HO-1 reduced
H2O2-induced excessive autophagy and protects glomerular mesangial cells [72].

ROS-induced autophagy provided a protective role in aldosterone-induced podocyte injury [73],
and targeting autophagy in podocytes may be a therapeutic strategy for podocyte injury. In addition,
activation of ER stress by aldosterone-mediated ROS generation increased autophagy, which protected
podocytes from apoptosis [74]. Chronic oxidative stress due to knockdown of manganese SOD induced
autophagy and mitochondrial biogenesis following renal IR, thus protecting the kidneys against acute
oxidative stress [75]. Additionally, ischemic postconditioning (POC), which reduces overproduction of
ROS generation in renal tubular cells, provided a renoprotective effect against AKI and renal fibrosis
through the activation of autophagy [76].

Induction of autophagy can also modulate ROS production in renal injury. For example, cisplatin
treatment in autophagy-deficient renal proximal tubular cells increased ROS production, oxidative stress,
and DNA damage [77], suggesting that autophagy provides protection by reducing ROS production
and eliminating toxic oxidized protein aggregates and other macromolecules. Hyperoxaluria-induced
renal tubular oxidative and calcium-oxalate-crystal-induced renal tubular epithelial cell injury was
attenuated by inhibition of autophagy [78,79]. Another study provided evidence that ER stress-triggered
autophagy protects against oxidative injury and ameliorates renal IR injury [80]. Correlative evidence
on the role of ROS in autophagy in renal diseases has been previously reported [81], but, in these
studies, molecular mechanisms of interaction between ROS and autophagy were not investigated.
As described below, many studies have been now performed which provide evidence that ROS impact
on autophagy is mediated by specific signaling pathways in renal diseases.
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Table 1. Effect of antioxidant/drug on autophagy in kidney disease.

Compound/Therapeutic
Agent Effect on Kidney Disease Mode of Action Reference

Rutin (Antioxidant
flavonol glycoside)

Attenuated gentamicin-induced
nephrotoxicity in rats

Reduced oxidative stress, autophagy,
and inflammation [61,62]

N-acetylcysteine
(Antioxidant)

Ameliorated gentamicin-induced
nephrotoxicity in miniature pigs Reduced ROS and enhanced autophagy [63]

Ferulic acid (antioxidant
phenol)

Protected against experimental diabetic
nephropathy in rats

Inhibited ROS, NF-κB, and stress
signaling pathway (p38, JNK, ERK 1/2)
activation, and promoted autophagy

[64]

Trehalose
Prevented cadmium-induced oxidative

stress and subsequent cytotoxicity in
the primary rat proximal tubule cells

Inhibited apoptosis and restored
autophagic flux [65]

Berberine (isoquinoline
alkaloid)

Ameliorated cisplatin-induced renal
dysfunction and histopathological

changes in mice

Inhibited oxidative/nitrosative stress,
inflammation, autophagy, and apoptosis [66]

Aldosterone
Had a protective role in

aldosterone-induced podocyte injury in
mouse podocytes

Induced podocyte injury and
simultaneously activated podocyte

autophagy to protect against oxidative
damage

[73]

Celastrol (antioxidant)
Protected against high glucose-induced

injury, inflammation, and insulin
resistance in podocytes in rats

Reduced inflammation and apoptosis
and induced heme oxygenase
(HO-1)-mediated autophagy

[67–70]

4.2. ROS-Mediated Oxidation of Autophagy-Related Proteins

Although the specific interactions between autophagy and oxidative stress have not been
elucidated fully, it is known that autophagy can be modulated by oxidative stress, generally enhancing
its induction [82,83], and that antioxidants may prevent ROS-induced autophagy induction [84].
ROS-induced autophagy may lead to a different outcome of cell fate that may result in cell survival
or cell death, depending on the severity of ROS exposure. Redox signaling, ROS-mediated oxidized
macromolecules and organelles, and mild oxidative stress activate the autophagy pathway to eliminate
damaged macromolecules, and protein aggregates to provide cytoprotection and maintain cellular
homeostasis. Under starvation conditions, ROS originating from mitochondria and NADPH oxidases
activate autophagy to provide protection from nutrient starvation by autophagic elimination of
damaged mitochondria and other organelles [83,85]. In addition, increased generation of ROS can
oxidize key cysteine residues in autophagy proteins and modify their function. A direct target of ROS
in the autophagy pathway is cysteine protease Atg4, which is involved in the processing of ATG8.
Oxidation of Atg4 by H2O2 at the critical Cys 81 residue inactivates the protease, thus facilitating
autophagosome formation by Atg8 [86] (Figure 2). Furthermore, SQSTM1/p62 is an autophagic
multidomain receptor containing redox-sensitive cysteine residues (Cys 105 and Cys 113), which
promotes oligomerization of p62, which then assembles aggregates of ubiquitinated proteins and
is recruited to the autophagosome by LC3 binding through the LC3-interacting region of p62 [87].
Oxidation of redox-sensitive cysteine residues in p62, therefore, can affect p62 function, which is
required for selective autophagy.

4.3. ROS Impacts on the mTORC1-ULK1 and AMPK-mTORC1-ULK1 Signaling Pathways of Autophagy and
Their Role in Kidney Disease

4.3.1. ROS Impact on the mTORC1-ULK1 Pathway and Its Role in Kidney Disease

The interaction of the serine–threonine kinase mTORC1 with autophagy is mediated by the
mTOR-ULK 1

2 signaling pathway [88–90] (Figure 2). mTORC1 senses and responds to various forms of
cellular stress, including oxidative stress, and is inactivated by most types of stress [91,92]. ROS influence
mTORC1 activity [93,94], and thus may affect mTORC1 signaling and autophagy. mTORC1 is considered
a negative regulator of autophagy because suppression of mTORC1 activates autophagy.
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available for the formation of PI3 kinase/Vps34 complex and subsequent autophagy activation. (Top 
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Figure 2. Regulation of autophagy by ROS. (Top left) Under conditions of oxidative stress, ROS
oxidize cysteines located in the α and β subunits of AMPK, by activating AMPK and its downstream
signaling. Members of the Bcl-2 family suppress autophagy by binding beclin-1 and preventing beclin-1
from forming the PI3 kinase/Vps34 complex of the autophagy pathway. ROS-mediated oxidation
of Ask1 results in dissociation of the Bcl-2–beclin-1 interaction, making free beclin-1 available for
the formation of PI3 kinase/Vps34 complex and subsequent autophagy activation. (Top right) H2O2

oxidizes the cysteine 81 residue of Atg4, which inactivates the protease to facilitate Atg8 in the formation
of autophagosome. (Bottom) Oxidative stress also oxidizes mTORC1 and PTEN, which inhibits their
activity and promotes autophagy. Suppression of mTORC1 and induction of AMPK promote ULK1
complex (ULK1, Atg13, FIP200, and Atg101) activation at the pre-autophagosomal assembly site
(a certain domain of the ER) and initiates the autophagy process.

Inactivation of mTORC1 (e.g., nutrient starvation) activates the ULK1 complex of the autophagy
pathway by dephosphorylation of ULK1 at Ser 757, which then permits ULK1 to phosphorylate its
associated components Atg13 and FIP 200, resulting in ULK1 activation. Active ULK1 then activates
downstream targets of the autophagy pathway, including members of VPS34 complex 1, promoting
the synthesis of phosphatidylinositol 3-phosphate (PI3P) [95,96], a key player in membrane dynamics
involved with the autophagosome preassembly machinery. In contrast, activation of mTORC1
in response to growth factors, amino acid load, nutrients, and increased energy levels promotes
anabolic processes (e.g., protein synthesis, lipogenesis, cell growth, metabolism, and proliferation)
and suppresses catabolic processes, including autophagy [91,97,98]. mTORC1 represses autophagy
upon inhibiting the kinase activity of ULK 1

2 by phosphorylation of ULK1 (Ser 638/758) and associated
partner Atg13 (Ser 258) [99]. Thus, mTORC1 levels play a pivotal role in the induction and regulation
of autophagy. Thioredoxin interacting protein (TXNIP), which induces ROS production, regulated
tubular autophagy and mitophagy in a rat model of diabetic nephropathy through the mTOR signaling
pathway [100]. In human glomerular mesangial cells, Ang II-induced oxidative stress promoted
autophagy via mTORC1 signaling, and caused premature senescence [101]. The senescence-promoting
effect of autophagy activation was attributed to the induction of excessive ROS production.

4.3.2. ROS Impact on the AMPK-mTORC1-ULK1 Pathway and Its Role in Kidney Disease

AMP-activated protein kinase (AMPK) is an energy- and nutrient-sensitive kinase that is
activated in response to a high AMP/ATP ratio [102], and stimulates autophagy by suppressing
mTORC1 [88] and by phosphorylating ULK1 at multiple sites (Figure 2). AMPK phosphorylates
tuberous sclerosis complex 2 (TSC2), thereby increasing TSC1/2 activity, which ultimately inhibits
mTORC1 [103,104]. Additionally, in response to energy deprivation, AMPK activates the ULK 1

2 complex
directly by phosphorylating ULK1 at Ser 317 and Ser 777, activating the autophagy pathway [105,106].
AMPK-mediated phosphorylation of other ULK1 sites is not energy- or nutrient-dependent, but
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regulates the localization of the Atg9A protein, which plays a key role in the organization of the
preautophagosomal/phagophore assembly site [107]. Beclin-1 in the phosphoinositide 3- kinase
catalytic subunit type 3 (PI3KC3) complex is also phosphorylated by AMPK, favoring autophagy
activation [106]. Phosphorylated ULK1/2 activates the class III PI3 kinase complex (PI3KC3–C1/VPS34
complex) by phosphorylating beclin-1 (Ser 15 and other sites) [96], the catalytic subunit VPS34 (Ser
249) [105], and the PI3KC3-C1-associated protein AMBRA1 (autophagy and beclin-1 regulator 1) [108]
thereby promoting autophagy. ULK1 also promotes phosphorylation of FUNDC1 (FUN14 domain
containing 1) protein, which is involved in the process of mitophagy [109]. Thus, AMPK-mediated
activation of ULK 1

2 initiating complex plays a crucial, multifaceted role in autophagy regulation.
AMPK regulates cellular metabolism and is a key component of the cellular adaptive responses

to renal ischemia. Recent studies have suggested that pretreatment with AMPK activators
(5-aminoimidazol-4-carboxamide-1-β-d-ribofuranoside (AICAR) and metformin) can protect against
renal IR injury [110]. Inhibition of AMPK with compound C before IR abolished AMPK activation,
worsened kidney injury, and diminished the expression of uncoupled protein 2 (UCP2) and sirtuin
(SIRT)-3, but not that of stanniocalcin-1. A high-fat diet (HFD) leads to lipid accumulation and decreases
the levels of AMPK in the kidney, resulting in lipotoxicity. Pharmacological activation of AMPK by
AICAR prevents HFD-induced tubular cell structure impairment and the associated inflammation and
fibrosis [111]. Additionally, fenofibrate-mediated upregulation of AMPK has been shown to provide
protection from kidney injury both due to HFD-induced lipotoxicity [112] and in db/db mice [113].
Although HFD-induced renal tubular injury has been associated with impaired autophagy [114,115],
it is not known whether activation of AMPK alleviates HFD-induced dysregulation of autophagy.
ROS can activate AMPK and influence autophagy via multiple mechanisms (Figure 2). H2O2 can
directly activate AMP kinase by oxidizing cysteine residues [116] of the α and β subunits, as well as
indirectly, by increasing AMP levels (decreasing the ATP/AMP ratio) [117,118] or through oxidation of
ataxia–telangiectasia mutated (ATM) protein kinase [119]. ROS- and RNS-mediated activation of ATM
transduces further downstream signaling via ATM-AMPK-TSC2-mediated suppression of mTORC1,
thus impacting autophagy [120,121]. As a result, in an ATM-, LKB1-, and TSC-dependent fashion,
mTORC1 is repressed. Additionally, starvation-induced autophagy involves ROS-mediated activation
of AMP kinase [122]. Moreover, preactivation of AMPK has been shown to provide protection from
renal injury in models of IR- [110,123] and cisplatin-induced [124] AKI, and diabetic nephropathy [125].

Many agents that upregulate AMPK by redox signaling provide protection from renal injury
via the AMPK/mTOR-regulated autophagy pathway (Table 2). In renal IR, quercetin, a flavonoid
antioxidant and a potent scavenger of ROS [126], has been reported to increase AMPK-phosphorylation,
inhibit mTOR activation, activate autophagy, and provide protection from renal injury [127]. Another
compound, pioglitazone, enhanced antioxidant capacity [128] and protected against renal IR through
the AMPK-regulated autophagy pathway [129]. Additionally,ω3-polyunsaturated fatty acid involved
in the regulation of mitochondrial anion carrier protein uncoupling protein 2 (UCP2), and p22phox
expression have been shown to cause enhanced antioxidant effects and provide protection from renal IR
injury through AMPK-mediated autophagy in Fat-1 mice [130]. Oxidative stress plays an important role
in induction of autophagy via the AMPK/mTOR signaling pathway during the pathogenesis of cisplatin
nephrotoxicity. Cisplatin-induced AKI involves oxidative stress [44,45], and, in one model, treatment
with ginsenoside Rb3 increased glutathione (GSH) content and superoxide dismutase (SOD) activity,
reduced oxidative stress, and decreased autophagy via the AMPK/mTOR signaling pathway [131].
Deletion of a cytoprotective antioxidant, NAD(P)H: quinone oxidoreductase 1 (NQO1), displays
cisplatin-induced enhanced autophagy via the AMPK/mTOR signaling pathway [132]. Other studies
have shown that neferine [133] and metformin [134] ameliorated cisplatin-induced nephrotoxicity by
enhancing autophagy via the AMPK/mTOR signaling pathway. Taken together, these studies suggest
that increased oxidative stress enhances autophagy through the AMPK/mTOR signaling pathway in
cisplatin-induced AKI. Many nephrotoxic agents that generate ROS inhibit PI3k-Akt-mTORC1 signaling
and activate autophagy. For example, nephrotoxicity by ROS-producing bismuth nanoparticles (BiNPs)
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activates autophagy through the AMPK/mTOR pathway [135], and blockage of BiNP-induced ROS
suppresses autophagy, suggesting that ROS produced by BiNPs are involved in the induction of
autophagy. Additionally, BiNP-induced AKI is exacerbated when autophagy is inhibited, suggesting a
protective role of autophagy [135]. In a sepsis model of cecal ligation and puncture, SIRT3 protected
against AKI via AMPK/mTOR-regulated autophagy [136].

In a diabetic nephropathy model, metformin an inducer of AMPK protected against
cisplatin-induced tubular cell apoptosis and AKI via AMPK-regulated autophagy induction [134].
Berberine, an isoquinoline alkaloid (an antioxidant and anti-inflammatory compound), enhanced AMPK
activation and autophagy and reduced high glucose-induced apoptosis of mouse podocytes [137].
Ginsenoside Rg1 promoted protection of mouse podocytes from aldosterone-induced injury by
inhibiting ROS generation and reduced aldosterone-induced autophagy via the AMPK/mTOR
pathway in NRK-52E cells [138]. Mangiferin, a polyphenol glucoside antioxidant [139], prevented
diabetic nephropathy progression and protected podocyte function via autophagy through the
AMPK-mTOR-ULK1 pathway in diabetic rat glomeruli [140]. Another antioxidant, the saponin
astragaloside IV, provided protection from podocyte injury via AMPK-regulated autophagy induction
and SERCA2-dependent ER stress reduction in streptozotocin-induced diabetic nephropathy [141].
Cinacalcet, a type II agonist of the calcium-sensing receptor (CaSR) that increases the expression of
SOD1 and SOD2 antioxidant enzymes and decreases the levels of urinary 8-hydroxy-deoxyguanosin
and isoprostane, has been shown to attenuate diabetic nephropathy in db/db mice by modulation of
autophagy through the CaMKKβ-LKB1-AMPK pathway [142]. Meanwhile, in Fat-1 mice, accumulation
ofω-3 polyunsaturated fatty acids prevented renal IR injury through AMPK-mediated autophagy [130].

Angiotensin II (ANG II) activates autophagy in podocytes through the generation of ROS, as
the ROS-mediated proautophagic effect of ANG II was inhibited by treatment with antioxidants
and ginsenoside Rg1 inhibited ANG II-induced podocyte autophagy via the AMPK/mTOR/PI3K
pathway [143]. In a murine model of experimental chronic obstructive pulmonary disease (COPD),
chronic cigarette smoke (CS) exposure caused marked kidney injury, fibrosis, oxidative stress,
mitochondrial dysfunction, and increased autophagic flux. Kidney injury and fibrosis were ameliorated
in mice heterozygous for beclin-1 exposed to CS [144], suggesting that autophagy is a therapeutic
target in renal injury due to CS.
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Table 2. Impact of antioxidants/drugs on AMPK-mTORC1-ULK1 pathway of autophagy in kidney disease.

Kidney Disease Antioxidant/Drug Effect on Kidney Disease Mode of Action Reference

Renal ischemia-
reperfusion Quercetin (flavonol antioxidant) Protected against renal IR injury in mice Increased AMPK-activation, inhibited mTOR

activation, and activated autophagy [126,127]

Pioglitazone (Thiazolidinedione
antioxidant) Protected against renal IR in mice Increased AMPK-regulated autophagy [128,129]

Omega 3-PUFA
(Polyunsaturated Fatty Acids) Protected against renal IR injury in mice Increased AMPK-mediated autophagy [130]

Cisplatin-induced
nephrotoxicity Ginsenoside Rb3 Protected against cisplatin-induced nephrotoxicity in mice Reduced oxidative stress and autophagy via

the AMPK/mTOR [131]

NAD(P)H: quinone
oxidoreductase 1 (flavoprotein)

Protected against cisplatin-induced nephrotoxicity in vitro
in NRK42-E cells

Enhanced autophagy via AMPK/mTOR
signaling pathway [132]

Neferine (bisbenzylisoquinoline
alkaloid) Protected against cisplatin-induced nephrotoxicity in mice Enhanced autophagy via the AMPK/mTOR

signaling pathway [133]

Metformin (biguanide
antihyperglycemic) Ameliorated cisplatin-induced nephrotoxicity in mice Enhanced autophagy via AMPK/mTOR

signaling pathway [134]

Podocyte damage Ginsenoside Rb3 Protected mouse podocytes from aldosterone-induced
injury by inhibiting ROS generation

Reduced aldosterone-induced autophagy via
the AMPK/mTOR pathway in NRK-52E cells [136]

Bismuth nanoparticles (BiNP) Increased ROS production in human embryonic kidney
cells 293

Enhanced autophagy via the AMPK/mTOR
signaling pathway [135]

Astragaloside IV (antioxidant) Protection from podocyte injury in mice AMPK-regulated autophagy induction [141]

Cecal ligation and
puncture-induced sepsis SIRT3 Protected against AKI in a sepsis model of cecal ligation

and puncture in mice
Enhanced autophagy via the AMPK/mTOR

signaling pathway [136]

Diabetic nephropathy Berberine (isoquinoline
alkaloid)

Reduced high glucose-induced apoptosis of mouse
podocytes Enhanced AMPK activation and autophagy [137]

Metformin Protected against cisplatin-induced apoptosis in diabetic
nephropathy in mice Induced AMPK- regulated autophagy [134]

Mangiferin (polyphenol
glucoside antioxidant) Prevented diabetic nephropathy progression in mice Protected podocyte function through

autophagy via AMPK-mTOR-ULK1 pathway [139]

Cinacalcet (Type II agonist of
calcium-sensing receptor)

Reduced oxidative stress and attenuated diabetic
nephropathy in db/db mice

Modulated autophagy through the
CaMKKβ-LKB1-AMPK pathway [142]
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4.4. ROS Impact on Keap1/Nrf2 System-Mediated Autophagy and Role in Kidney Disease

Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression
of several genes encoding antioxidant and detoxifying enzymes to maintain cellular redox homeostasis
and to provide cellular defense against oxidative stress [145,146] (Figure 3).
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basal conditions, Keap1 regulates Nrf2 and keeps its level low by ubiquitination and proteosomal
degradation. (B) P62 has a binding site for Keap 1 and promotes autophagic degradation of Keap1,
liberating Nrf2 and enabling Nrf2 to translocate to the nucleus to transactivate target genes to protect
against oxidative stress and upregulate autophagy. (C) Under oxidative stress conditions, Keap1
is oxidized by ROS-mediated oxidation of cysteine thiols in the cysteine-rich Keap1-Cullin3-based
ubiquitin ligase complex, which dissociates Nrf2 from Keap1 and enables Nrf2 to translocate to the
nucleus to transactivate target genes, including antioxidant and autophagy genes.

Nrf2 function in controlling the transcription of antioxidant genes is mediated through interaction
with antioxidant-response element (ARE) [147]. Under normal conditions, Nrf2 levels in the cell are kept
low due to proteasomal degradation upon binding of Nrf2 to Keap1 (Kelch-like erythroid cell-derived
protein with CNC homology (ECH)-associated protein 1) bound with the adaptor Cullin3-based
ubiquitin ligase, which ubiquitinates Nrf2 [146]. In response to oxidative stress, cysteine thiols
in the cysteine-rich Keap1-Cullin3-based ubiquitin ligase complex are modified, which dissociates
Nrf2 from Keap1, and free Nrf2 translocates to the nucleus to transactivate target genes [146,148].
Nrf2 itself possesses a redox-sensitive nuclear exporting signal in the transactivation domain that
promotes translocation of Nrf2 to the nucleus in response to oxidative stress [149]. These studies
suggest that in response to oxidative stress, Nrf2 can translocate to the nucleus independent of
binding to Keap1. The selective autophagy substrate p62 interacts with the Nrf2-binding site on
Keap1, and the phosphorylation of p62 markedly increases the binding affinity of p62 for Keap1.
In this process, p62 is first assembled on the aggregates of ubiquitinated proteins and organelles, and
subsequently phosphorylated in an mTORC1-dependent manner before binding to Keap1 with high
affinity, allowing release of Nrf2, translocation to the nucleus, binding with ARE, and subsequent
transcriptional activation of Nrf2 target genes [150]. The Keap1-p62 complex formed in this process is
recruited to the autophagosome by LC3 via binding to LC3-interacting region of p62, and subsequently
degraded by autophagy [151–153] (Figure 3). Several studies have provided evidence that the
Keap1-Nrf2 pathway is intimately linked to autophagy through the autophagy adaptor and LC3-binding
protein p62 [151,154–157]. Nrf2 is also able to upregulate many autophagy genes (Atg3, Atg5, Atg7,
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SQSTM1, and LAMP2A) by binding to the ARE sequence in the promoter region in response to
oxidative stress [158,159]. Therefore, Nrf2 has been reported to activate both macroautophagy and
chaperone-mediated autophagy. A recent study demonstrated that upon prolonged exposure of
oxidative stress by tert-butyl hydroperoxide (TBHP) in HEK293T cells and Caenorhabditis elegans, Nrf2
negatively regulates autophagy through delayed down-regulation of AMPK [160]. Silencing of NRF2
gene during prolonged exposure to TBHP results in the continuous up-regulation of AMPK. These
studies suggest that Nrf2 has a direct impact on autophagy through AMPK, and that Nrf2 negatively
regulates autophagy upon down-regulation of AMPK.

In AKI models, increased levels of Nrf2 protein and expression of several antioxidant genes
are observed during IR and toxic AKI. Nrf2 provided a protective role in models of AKI and
CKD, including diabetic nephropathy [145,161–166]. Lycopene, known to play an antioxidant role,
ameliorated atrazine-induced nephrotoxicity by upregulating Nrf2, AMPK, and autophagic flux,
as well as by decreasing oxidative stress and p62 levels [167]. Schisandrin B, isolated from the
fruit of Schisandra chinensis, provided a protective role in cyclosporine (CsA)-induced nephrotocxicity,
attenuated CsA-induced nephrotoxicity by activating Nrf2, preventing ROS accumulation and oxidative
stress, and allowed recovery of CsA-induced blockade of autophagic flux [168]. Cyclic helix B peptide,
a tissue-protective peptide mimicking the 3D structure of erythropoietin, which has been reported to
ameliorate IR [169], protected HK-2 cells from H2O2-induced injury through activation of the Nrf2
signaling pathway and autophagy [170]. However, in this study, the link between Nrf2 and autophagy
was not determined.

4.5. ROS Impact on Forkhead Box O (FOXO)-Mediated Autophagy and Its Role in Kidney Disease

Forkhead Box O (FOXO) transcription factors are also a target of oxidative stress. Oxidative
stress indirectly activates FOXO by ROS-mediated activation of JNK kinase, which phosphorylates
both FOXO and 14-3-3 protein, promoting the release of FOXO factors, leading to subsequent nuclear
translocation and transcriptional activity [171]. In kidneys from a unilateral ureteral obstruction model
(UUO) at day 7, FOXO3 activation increased both the mRNA and protein levels of key autophagy
proteins including Ulk1, beclin-1, Atg9A, Atg4B, and Bnip3 [172], suggesting that FOXO3 is an
important regulator of autophagy in renal tubular epithelial cells. In renal IR injury, hypoxia-mediated
inhibition of prolyl hydroxylation prevents FOXO3 degradation resulting in FOXO3 accumulation and
activation in tubular cells. Hypoxia-activated HIF-1α contributes to FOXO3 activation and functions
to protect the kidneys, since tubular deletion of HIF-1α decreased FOXO3 activation and caused more
severe tubular injury and interstitial fibrosis, suggesting that FOXO3 activation protects kidneys from
IR injury [173].

4.6. ROS Impact on Selective Autophagy and Its Role in Kidney Disease

4.6.1. ROS Impact on Mitophagy and Role in Kidney Disease

Selective degradation and elimination of damaged mitochondria occurs through the process of
mitophagy to maintain quality control of mitochondria and cellular homeostasis [174]. Pink1/Parkin
and Bnip3/Nix/Fundc1 are two known pathways for the selective elimination of damaged mitochondria.
The Pink1/Parkin pathway is relatively well characterized, and is activated in response to depolarized
and dysfunctional mitochondria. Pink1 is a serine/threonine kinase that is constitutively degraded
by the stromal processing peptidase in the normal mitochondria, but it accumulates on the surface
of damaged and depolarized mitochondria. Accumulated Pink1 then recruits E3 ubiquitin ligase
Parkin and activates it by phosphorylation [175–177]. Pink1 can also phosphorylate ubiquitin, which
promotes further activation of Parkin [175,178]. Active Parkin then ubiquitinates mitochondrial surface
proteins, and the ubuiquitinated mitochondria are delivered to the autophagosome via p62 containing
ubiquitin-binding and LIR structural domains, facilitating autophagic clearance of the damaged
mitochondria [179,180].
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Mitochondrial dysfunction and increased oxidative stress are associated in the pathogenesis of
both chronic and acute kidney diseases [181]. Mitochondria are not only the primary source of ROS,
but they also are targeted by ROS, which results in mitochondrial dysfunction and in turn produces
more ROS and oxidative stress. Damaged and dysfunctional mitochondria may induce mitophagy,
which, in turn, may decrease mitochondrial ROS generation. Recent studies have implicated ROS in
promoting the translocation of Parkin to mitochondria for the induction of Parkin/PINK1-dependent
mitophagy [182].

In models of AKI and CKD, Pink1/Parkin-mediated mitophagy induction has been reported to
play a beneficial role and ROS have been shown to play an important role in regulating mitophagy
in renal injury. In renal IR injury, Pink1 and Park2 single- and double-knockout mice had enhanced
injury, mitochondrial damage, reactive oxygen species production, and inflammatory response
compared to wild-type mice [183]. Another study reported that sestrin-2 and BNIP3 are upregulated
in proximal tubular cells, and that the p53-sestrin-2 and HIF-1α-BNIP3 pathways are involved
in the induction of mitophagy during IR injury in vivo [184]. In cisplatin nephrotoxicity, Pink1
or Park2 deficiency caused more apoptosis, mitochondrial dysfunction, and tissue damage both
in vitro and in vivo [185,186]. However, a recent study showed that mitophagy induced by Panax
notoginseng saponins (PNS) ameliorated cisplatin-induced nephrotoxicity via a HIF-1α/BNIP3/beclin-1
signaling pathway [187]. In contrast-induced AKI, Pink1/Parkin-mediated mitophagy was also
induced in renal tubular epithelial cells in vitro [188] and in vivo [188–190] models. The protective
role of mitophagy was demonstrated using Pink1 or Park2 knock out mice, and it was revealed
that deficiency of Pink1/Parkin-mediated mitophagy elevated mitochondrial ROS production, DNA
oxidative damage, and NLRP3 inflammasome activation [188]. ROS were generated in response
to cadmium induced Pink1/Parkin-mediated mitophagy in mouse kidneys [191]. In renal tubular
cells of diabetic kidney disease, increased mitochondrial ROS and mitochondrial fragmentation
were associated with reduced Pink1/Parkin-mediated mitophagy and enhanced apoptosis. MitoQ,
a mitochondria-targeted antioxidant, partially restored mitophagy and protected against tubular
injury in db/db mice [192]. In diabetic nephropathy, Pink1 transcriptional activity is controlled
by the antioxidant FOXO 1, which promotes mitophagy and protects injured podocytes under
HG conditions [193]. High myo-inositol oxygenase (MIOX) expression in the renal tubules of
diabetic mice results in increased production of ROS, mitochondrial fragmentation, and impaired
mitophagy. Supplementation of MIOX inhibitor d-glucarate decreased MIOX expression, attenuated
tubular damage, reduced oxidative stress, restored mitophagy, and improved renal functions [194].
These studies suggest that inhibition of MIOX may play an important role in mitochondrial quality
control and mitophagy in the pathogenesis of diabetic kidney disease (DKD), and that d-glucarate may
serve as a potential therapeutic agent for the amelioration of DKD.

4.6.2. ROS Impact on Pexophagy and Its Role in Kidney Disease

Selective degradation and elimination of damaged or dysfunctional peroxisomes by autophagy
occurs through the process of pexophagy [195]. Peroxisome organelles in the cell have enzymatic
systems to generate various ROS, including O2•−, H2O2, •NO, •OH, and ONOO−, as byproducts of
their normal lipid metabolism, and to maintain redox balance by counter-balancing the production
of peroxisomal antioxidant enzymes [196]. The process of pexophagy requires ubiquitination of
peroxisomal biogenesis factor five (Pex5), an import receptor for peroxisomal matrix proteins [197],
for subsequent binding to p62 and targeting to autophagosome for degradation. In this process,
ROS-activated ATM phosphorylates Pex5, which promotes ubiquitination by Pex2 (E3 ligase) of Pex5
for the delivery of ubiquitinated peroxisomes to the autophagosome via p62 [197,198]. ATM also
inhibits mTORC1 and promotes autophagy [94]. Moreover, peroxisomal H2O2 formation has been
implicated in diseases such as diabetic nephropathy [199]. In LPS-induced AKI, impaired pexophagy
and endothelial peroxisomal dysfunction promote oxidative damage in the kidney [200].
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5. Concluding Remarks

Recent studies have begun to unfold the cross-talk between redox signaling and autophagy in
renal diseases. Evidence suggests that multiple interacting pathways are involved between ROS and
autophagy, and many cellular stresses increase ROS to regulate autophagy induction. The interplay
between ROS and autophagy is highly relevant in renal diseases, particularly AKI and progressive
kidney disease. The interaction between ROS and autophagy is regulated at both the transcriptional
and translational level. In a posttranslational modification, ROS can modify many autophagy-related
proteins by direct oxidation of cysteine residues, as redox regulation of Atg4 has been well documented.
However, further studies are needed to identify this regulation of cysteine residue oxidation in
renal diseases.

ROS and oxidative stress cause oxidative damage of cellular components and impair organelle
function. Autophagy, in turn, eliminates dysfunctional organelles and damaged macromolecules
and diminishes oxidative stress to maintain cellular homeostasis. However, under a disease state,
dysregulated or impaired autophagy flux results in increased ROS production. Therefore, restoration
of autophagic flux has remained a challenge when the level of oxidative stress increases during the
progression of kidney diseases. More pharmacological approaches that can promote autophagic flux
under disease conditions are required. Multiple studies have provided correlative evidence on the role
of ROS in autophagy in renal diseases, however, further research must be performed to determine
the underlying mechanisms and signaling pathways of the specific molecular interactions between
ROS and autophagy. Additionally, the exact mechanisms behind the complex reciprocal relationship
between oxidative stress and autophagy need to be elucidated in renal diseases. Autophagy plays
an important role in both sensing oxidative stress and removing oxidatively damaged proteins and
organelles, as well as the cellular machineries responsible for excessive ROS production. However, the
precise mechanism describing how autophagy controls excessive ROS generation remains unknown.

Many studies on the impact of ROS on autophagy have been carried out in mTORC1-dependent
induction of autophagy. The mTOR-independent autophagy-regulating pathways, including
JNK-beclin-1-PI3KC3 pathways, as well as the p38, NFkB, Akt, Ca2+-calpain, and cAMP-Epac-PLC-ε-IP3

pathways, are relevant to kidney diseases. Future studies on the impact of ROS on these pathways
will provide fruitful information. In addition, elucidation of the molecular mechanisms of interaction
between ROS and autophagy, as well as identification of specific targets of ROS in the autophagy
pathway, will provide a better understanding on the cross-talk between ROS and autophagy for the
discovery of novel targets for renal disease prevention.
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