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Abstract: Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common
neurodegenerative disorders related to aging. Though several risk factors are shared between
these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed
how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic
viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major
genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one
gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few
other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent
one. While we listed all the miRNAs that have been previously reported for AD and PD separately,
we found only 15 different miRNAs that were reported in both diseases. In order to get better insights,
we predicted the gene co-expression network for both AD and PD using network analysis algorithms
applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and
four clusters of genes related to PD; however, there was very low functional similarity between these
clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological
processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD
and PD.
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1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disorder, clinically characterized
by a gradual decline in memory and impairment of other cognitive functions like communication,
movement, higher visual processing, and language inability [1]. About 5.7 million people were
living with AD in the U.S. in 2018 [2]. The manifestation of AD is primarily attributed to the
extracellular beta-amyloid (Aβ42/40) aggregates and intracellular hyperphosphorylated Tau protein
that accumulate in the brain of AD patients, causing neuroinflammation and brain cell death. AD is
classified into two distinct categories: early onset AD (EOAD), which accounts for less than 5% of the
AD population, whereas late-onset AD (LOAD) accounts for about 95% of AD patients [3]. EOAD is a
Mendelian pattern disease, whereas LOAD is genetically complex and associated with several genes.
The heritability contribution in LOAD is estimated to be around 58–79% [4], and the gene, APOE,
has been named as the most important genetic risk factor in LOAD.
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On the other hand, Parkinson’s disease (PD) is the second most common age-related
neurodegenerative disease. PD is caused by the death of dopamine-generating cells of substantia nigra
in the mid-brain region, which affects the function of the central nervous system. Clinically, PD is
characterized by syndromes like resting tremor, rigidity, bradykinesia, gait impairment, and postural
instability [5,6]. Aggregation of the α-synuclein protein has been considered to be the principal cause
for PD.

The relationship between AD and PD is not yet clear. AD and PD share common pathological
overlaps despite occurring at different brain locations and having different clinical features. Xie et al.
summarized the common pathological overlap between AD and PD, which relates to genes, nicotinic
receptors, locus coeruleus, iron, mitochondrial dysfunction, oxidative stress, and neuroinflammation,
tau protein, and α-Synuclein protein [7]. Patients with AD have been shown to possess a higher chance
of developing PD. One study shows that out of 29 patients with PD, as many as 16 (55%) have mild
or severe dementia, which is related to AD [8]. The survival time of PD patients with AD is also
lower than that without AD [8]. Both diseases have common risk factors like oxidative stress and
aging. Insufficiency of vitamin D has been also reported for both AD and PD patients when compared
to the healthy controls [9]. However, so far, no common genetic risk factors have been reported for
AD and PD.

In this paper, we examined the genomic, epigenomic, and transcriptomic level similarity between
AD and PD. Genome-wide association studies (GWAS) identified more than 50 risk loci associated with
LOAD and PD. Furthermore, several studies confirmed the effect of miRNAs in neurodegenerative
diseases like AD and PD and reported the associated differentially-expressed microRNAs (miRNAs).
miRNAs are non-coding single-stranded RNAs that are very small (20–22 nt) in size and function
as negative gene regulators. miRNAs have been also used as a biomarker in early detection and
staging information of diseases. Though we know the associated miRNAs and genes in AD and PD,
the similarity or possible relationships between them is still unknown. Here, based on a literature
search, we identify the different genes and miRNAs that have been associated with AD and PD.
Next, we discuss how they may be related in these diseases considering their high likelihood of
co-occurrence and predicted common epigenetic modules shared by AD and PD. Lastly, we report the
transcriptomic level similarity between AD and PD using regulatory co-expression network prediction
and network-based analysis.

2. Results

2.1. Genetic Associations of AD According to GWAS

EOAD is a Mendelian pattern disease. Three genes, APP, PSEN1, and PSEN2, are considered to
be genomic biomarkers in EOAD [10]. These three genes are involved in APP breakdown and Aβ

generation. For example, PSEN1 encodes the subunit of γ-secretase, and mutations in PSEN1 is a
common cause of EOAD. PSEN1 mutant fibroblasts increase the ratio of Aβ42 to Aβ40 [11]. Mutation in
these three genes has been attributed to a wide range (between 12–77%) of EOAD patient [12].

The genetic contribution of EOAD is estimated to be 60–80% [13]. In contrast to EOAD, LOAD
is a non-Mendelian disease and demonstrates a complicated relationship with genomics. The first
degree relative of an LOAD patient has about a two-times higher probability of developing LOAD in
their lifetime than the individual not having first degree LOAD relatives [3]. Genome-wide association
studies identified more than 50 risk loci associated with LOAD. A summary of all major GWAS for
LOAD is shown in Tables 1 and 2 and Figure 1. These genes were found to be related to the Aβ

pathway, as well as to the immune system, lipid metabolism, and synaptic function. LOAD-related
functional effects of these genes are summarized as in [14]:

• Lipid metabolic pathway: APOE, CLU, ABCA7
• Immune system: CLU, CR1, CD33, ABCA7, MS4A, EPHA1
• Complement system: CR1, CLU, ABCA7, CD2AP
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• Endocytosis pathway: BIN1, PICLAM, CD2AP

Though genes like PLD3 have higher risk (Figure 1), they are less common in the LOAD
population. Therefore, in the following, we briefly review only those genes that are more common.

a)

b)

Figure 1. (a) Rare and common variants of AD genes and their risk. Red color signifies Mendelian
genes, and green signifies non-Mendelian genes (adapted from [15]). (b) Rare and common variants of
PD genes and their risk (adapted from [16]).
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Table 1. Genome-wide association studies (GWAS) in AD.

Study Ethnic Group Sample Size Locus SNPs

[17]
African-American/

Afro-Caribbean AD cases: 1009; Control: 6205

CLU
PICALM

CR1
BIN1

CD2AP
EPHA1
MS4A

ABCA7

rs2279590
rs3851179
rs6656401
rs744373
rs9349407

rs11767557
rs4938933
rs3865444

[18]

European ancestry,
African-American,

Japanese,
Israeli-Arabic

Stage 1:
European ancestry:

AD cases: 13,100; control: 13,220
African-American:

AD cases: 1472; control: 3511
Japanese:

AD cases: 951; control: 894
Israeli Arab:

AD cases: 51; control: 64
Stage 2:

European ancestry:
AD cases: 5813; control: 20,474

PFDN1/HBEGF
USP6NL/ECHDC3

BZRAP1-AS1
NFIC

rs1116803
rs7920721
rs2632516
rs9749589

[19] European

Stage 1:
AD cases: 3957; control 9682

Stage 2:
AD cases: 2023; control: 2340

TOMM40
PVRL2
APOE
CLU

PICALM

rs2075650
rs157580

rs6859
rs8106922
rs405509

rs11136000
rs3851179

[20]
European

African unspecified
NR

European: 16,063
African: 2329

other: 673

TOMM40
APOE
PVRL2
APOC1

rs2075650
rs405509
rs8106922

rs6859
rs20769449
rs12721046
rs157582

rs71352238
rs157580
rs439401

rs115881343
rs76366238
rs283815

[21] Caribbean Hispanic AD cases: 2451; control: 2063
TOMM40–APOE region

FBXL7
CACNA2D

rs394819
rs7500204
Rs743199

[22] European AD Cases: 71,880; control 383,378

ADAMTS4
HESX1
CLNK

CNTNAP2
ADAM10
APH1B
KAT8

ALPK2
AC074212.3

rs4575098
rs184384746
rs114360492

rs442495
rs117618017
rs59735493
rs76726049
rs76320948

[23] African-Americans AD cases: 1825; control: 3784
COBL

SLC10A2
rs112404845
rs16961023

[24] African-Americans AD cases: 1968; control: 3928
ABCA7

HMHA1
GRIN3B

rs115550680
rs115553053
rs115882880
rs145848414
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Table 2. Genome-wide association studies (GWAS) in AD continued.

Study Ethnic Group Sample Size Locus SNPs

[25] European AD cases: 35,274; control: 59,163

CR1
BIN1

INPP5D
HLA-DRB1

TREM2
CD2AP
NYAP1g
EPHA1
PTK2B
CLU
SPI1h

MS4A2
PICALM
SORL1

FERMT2
SLC24A4
ABCA7
APOE
CASS4

ECHDC3
ACE

MEF2C
NME8

rs4844610
rs6733839
rs10933431
rs9271058
rs75932628
rs9473117
rs12539172
rs10808026
rs73223431
rs9331896
rs3740688
rs7933202
rs3851179
rs11218343
rs17125924
rs12881735
rs3752246
rs429358

rs6024870
rs7920721

rs138190086
rs190982

rs4723711

[26] European

Stage 1:
AD cases: 17,008; control: 37,154

Stage 2:
AD cases: 8572; Control: 11,312

CR1
BIN1

CD2AP
EPHA1

CLU
MS4A6A
PICALM
ABCA7
CD33

HLA-DRB5– HLA-DRB1
PTK2B
SORL1

SLC24A4- RIN3
DSG2

INPP5D
MEF2C
NME8

ZCWPW1
CELF1

FERMT2

rs6656401
rs6733839
rs10948363
rs11771145
rs9331896
rs983392

rs10792832
rs4147929
rs3865444
rs9271192
rs28834970
rs11218343
rs10498633
rs8093731
rs35349669

rs190982
rs2718058
rs1476679
rs10838725
rs17125944
rs7274581

APOE located on chromosome 19 is the most potent risk factor and the only confirmed
susceptibility locus of LOAD. The most common genotype of APOE is APOE3 and has an odds
ratio (OR) estimated around 3.2, whereas APOE4, which is present in about 20% of LOAD population,
has OR estimated to be around 14.2 [27]. Here, OR is the quantification of the odds that an outcome
will occur given a specific exposure [28] compared to the odds of the outcome occurring in the absence
of the exposure, with a higher value (>1) reflecting that the exposure is associated with higher odds of
outcome and can be designated as a risk factor. However, the APOE2 allele shows some protective
effects in AD. APOE has several implications in the AD pathway [29]; it controls lipoprotein metabolism
and also affects Aβ clearance by binding with Aβ protein. There is a strong connection of APOE with
inflammation, cholesterol transport, and the central nervous system [30]. Neuroimaging studies
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showed that an APOE4-positive individual has higher deposits of Aβ plaques in the brain compared
to an APOE4-negative individual [31]. Few APOE receptors, notably Lrp1, Apoer2, and Vldlr, were
identified in the postsynaptic density, which interacts with the synaptic system. Reelin signaling by
these receptors activates some pathways that protect Aβ polymerization [32].

Association of the gene CLU (also known as APOJ) and AD has been confirmed in several
GWAS experiments. CLU encodes the major brain apolipoprotein, and CLU expression was reported
to increase in LOAD brain and also was associated with the reduction of white matter and lower
fractional anisotropy in a young, healthy human [33]. This gene is also related to both Aβ clearance
and Aβ aggregation. CLU has an essential relationship with inflammation and the immune system [10].
Studies found an increase in CLU concentration in the brain, plasma, and CSF of the patient
with AD [34]. Moreover, CLU variants can alter the coupling between the prefrontal cortex and
hippocampus [35].

BIN1 is another critical risk locus of LOAD, and altered expression of BIN1 was found
in the AD brain. BIN1 mainly increases the risk of AD by modulating tau pathology [36].
Lower BIN1-amphiphysin 2 expression promotes the propagation of tau pathology [37]. BIN1 can
also interact with cytoplasmic linker protein CLIP-170; studies found an interaction between tau
protein and BIN1 in human neuroblastoma cell [38]. BIN1 is also related to clathrin-mediated
endocytosis, which can significantly affect APP processing and Aβ production. A relation between the
clathrin-mediated endocytosis gene and toxic effects of Aβ was shown in a study [39]. It also plays a
vital role in inflammation. BIN1 participates in phagocytosis and binds to α integrins, which is related
to immune response [40]. Studies also found a possible link between the reduction of intracellular
Ca++ release and BIN1 protein. Ca++ increase is linked with presenilin mutation, amyloid plaques,
and ApoE4 expression, and maintaining calcium homeostasis is essential for normal neuronal function
and synaptic transmission [27,41].

Complement receptor 1 (CR1) is the receptor of the C3b/C4b peptide. It encodes monomeric
single-pass type I transmembrane glycoprotein, which is involved in immune complement cascade.
Four CR1 SNPs (rs646817, rs1746659, rs11803956, and rs12034383) were found to increase Aβ42
concentration in AD patients, which is suggestive of CR1’s role in Aβ metabolism. This gene also
might increase Aβ oligomerization over Aβ fibrillogenesis, which causes more neurodegeneration [42].
Further studies suggested that CR1 (rs6656401) is associated with cerebral amyloid angiopathy and
vascular amyloid deposition [43]. CR1 mRNA level also correlates with neurofibrillary tangles and
phosphorylated tau [42]. CR1 can modulate the complement activation system, which leads to
inflammation. A detailed review of this process can be found in [44].

TREM2 is another high-risk gene linked to AD, although it is present in a lower percentage of
the population. Studies found the mutation in TREM2 is related to an autosomal recessive form of
dementia [45]. Rare missense mutations raise LOAD risk with a similar effect size of APOE [46].
TREM2 R47H raises AD risk by 1.7–3.4-fold [29,47]. TREM2 also correlated with an increase in tau
levels in cerebrospinal fluid [48].

2.2. Genetic Associations of PD According to GWAS

Genome-wide association studies confirmed that PD has a significant genetic contribution.
Previous studies reported about 20 loci and 15 genes related to PD. A summary of all major GWAS
for PD is shown in Tables 3 and 4. From a genetics viewpoint, common variation of loci α-synuclein
(SNCA), leucine-rich repeat kinase 2 (LRRK2), and microtubule-associated protein tau (MAPT) showed
significant relationships with PD. Moreover, mutation in nine genes, namely SNCA, LRRK2, VPS35,
EIF4G1, CHCHD2, PRKN, DJ1, PINK1, and ATP13A2, is associated with the monogenic form of
PD [49].
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Table 3. Genome-wide association studies (GWAS) in PD.

Study Ethnic Group Sample Size Locus SNPs

[50] European PD cases: 5353; control: 5551

GBA-SYT11
RAB7L1-NUCKS1

SIPA1L2
ACMSD-TMEM163

STK39
DLG2

TMEM175-GAK-DGKQ
BST1

FAM47E-SCARB2
SNCA

HLA-DQB1
GPNMB
INPP5F
DLG2

MIR4697
LRRK2

CCDC62
GCH1

TMEM229B
BCKDK-STX1B

MAPT
RIT2

DDRGK1
FGF20

MMP16
ITGA8

rs35749011
rs823118

rs10797576
rs6430538
rs1474055
rs12637471
rs34311866
rs11724635
rs6812193
rs356182

rs9275326
rs199347

rs117896735
rs329648

rs76904798
rs11060180
rs11158026
rs2414739

rs14235
rs17649553
rs12456492
rs8118008
rs591323

rs11868035

[51] Asian PD cases: 5125; control: 17,604

MCCC1
LRRK2
SNCA
DLG2

rs8180209
rs2270968
rs1384236
Rs7479949

[52] Asian PD cases: 2011; control: 18,381

PARK16
BST1

SNCA
LRRK2

rs16856139
rs823128
rs823122
rs947211
rs823156
rs708730

rs11240572
rs11931532
rs12645693
rs4698412
rs4538475
rs11931074
rs3857059
rs894278

rs6532194
rs1994090
rs7304279
rs4768212
rs2708453
rs2046932
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Table 4. Genome-wide association studies (GWAS) in PD continued.

Study Ethnic Group Sample Size Locus SNPs

[53] European PD cases: 5333; control: 12,019

SYT11
ACMSD
STK39

MCCC1/LAMP3
GAK
BST1

SNCA
HLA-DRB5

LRRK2
CCDC62/HIP1R

MAPT

chr1:154105678
rs6710823
rs2102808
rs11711441
chr4:911311
rs11724635
rs356219

chr6:3258820
rs1491942
rs12817488
rs2942168

[54] European PD cases: 6476; control: 302,042

ITPKB
IL1R2

SCN3A
SATB1

NCKIPSD,CDC71
ALAS1,TLR9,

DNAH1,BAP1,
PHF7,NISCH,

STAB1ITIH3, ITIH4
ANK2, CAMK2D

ELOVL7
ELOVL7
ZNF184

CTSB
SORBS3, PDLIM2, C8orf58,BIN3

SH3GL2
FAM171A1

GALC
COQ7
TOX3

ATP6V0A1, PSMC3IP,TUBG2

rs4653767
rs34043159
rs353116

rs4073221
rs143918452
rs78738012
rs2694528
rs9468199
rs2740594
rs2280104
rs13294100
rs10906923
rs8005172
rs11343

rs4784227
rs601999

Missense and multiplication mutations in the SNCA gene are believed to be the primary cause
of the monogenic form of PD. However, these mutations only account for 10% of PD cases [55].
Mutation in SNCA was first identified in PD in 1997, and until now, five different point mutations
have been confirmed as the cause of PD [56]. The non-coding intron in the SNCA gene increases PD
susceptibility. Mutated alleles of SNCA change the expression and property of α-synuclein protein,
which leads to abnormal aggregation of α-synuclein. The first identified mutation of SNCA was
p.A53T, which causes PD. These patients have early age onset (38–49 years) within the Mediterranean
origin and rapid disease progression. However, this mutation only accounts for 0.5% of familial
and sporadic cases of PD. The second SNCA mutation is p.A30P, with a variable age onset (54–76
years). Cognitive impairment is frequent and early in the patients having this mutation. The third
mutation was identified as the heterozygous p.E46K mutation with age ranging from 49–67 years.
The fourth mutation p.H50Q was identified in 2013 in a PD patient of age 60 and also in the PD
brain-driven DNA. The fifth missense mutation of SNCA is p.G51D; it has an early age onset in the
30s. This mutation leads to PD with unusual clinical and biochemical features. Multiplication of the
SNCA gene is more common than these single-point mutations. SNCA duplication and triplication
has been reported worldwide. A two-fold expression level of α-synuclein protein has been identified
in those patients. SNCA duplication is more common than triplication and has late age onset and slow
disease progression compared to the triplication. A common variant of SNCA was also identified as a
risk factor of sporadic PD [57].

In 2004, mutation of the LRRK2 gene was identified as a genetic cause of PD. The frequency of
LRRK2 mutation in hereditary PD has been estimated to be 4% with an average age onset of 60 years,
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and sporadic PD is estimated to be around 1% [58]. The most frequent mutation of LRRK2 is G2019S,
whereas some of the other common mutations are R1441G, R1441C, Y1699C, and R1441H.

Another monogenic cause of PD is D620N mutation in the VPS35 gene, which was first identified
in 2011 in an Austrian family [59]. This mutation accounts for about 1% of familial PD cases.
This mutation has a mean age of onset around 53 years with slow disease progression. Other monogenic
causes of PD such as the mutation of PARK, PINK1, ATP13A2, and DJ-1, typically have a lower age of
onset (<45 years) [49].

Another important gene related to PD is MAPT, which encodes the tau protein. Tau aggregates
frequently can be seen in the brain of AD patients. The toxic interaction between tau and α-synuclein
may lead to the deposition of both proteins in the brain [60]. α-synuclein also binds with tau, which can
reduce the rate of axonal transport. MAPT haplotypes, especially H1 haplotypes, have been identified
as a risk factor of PD [61]. MAPT exhibits a mutual regulation with the lysosome function. Interestingly,
the autophagy-lysosome pathway is also related to PD [62].

2.3. Common Regulator Genes in AD/PD

In order to identify the common regulator genes for AD and PD, we first performed an inner
merge of the GWAS reported gene loci for AD and PD. We have found only a single common gene
HLA-DRB5 reported for both diseases. HLA-DRB5 has a strong involvement with the immune system.
The biological processes related to HLA-DRB5 are adaptive immune response, the T cell receptor
signaling pathway, the interferon-gamma-mediated signaling pathway, and antigen processing [63].
Its association with AD and PD has been reported in several other reports [64–66].

Outside of GWAS studies, various other studies reported common risk loci for AD and PD,
one such gene being SIRT1. It defends against microglia-dependent amyloid β though the NF-kB
signaling pathway [67]. Pharmacological and overexpression studies revealed the role of SIRT1
in impacting Aβ plaques [68,69]. A study found that overexpression of SIRT1 suppresses the α

synuclein aggregate formation in PD [70], while inactivation of SIRT1 also elevates mitochondrial
apoptosis and immune system alterations [71]. Mitochondria are implicated in regulation of cellular
redox potency, which is important for normal physiological processes, the deregulation of which
is associated with the pathogenesis of aging, neurodegenerative diseases, such as Parkinson’s and
Alzheimer’s disease (PD, AD), cardiovascular diseases, inflammation, and metabolic disorders [72].
Additionally, miRNA-34a, miRNA 122, and miRNA 132 inhibit Sirt1; regulation of miRNA-34a and
miR132 was reported for AD, while miRNA132 was reported for PD in the literature [73–75], which
potentially corroborates the involvement of SIRT1 in both AD and PD. A few other genes have also
demonstrated shared genetic mechanisms in both AD and PD such as PON1, GSTO, and NEDD9 [7].
PON1 is associated with pesticide metabolism, oxidative stress, and inflammation. A study found
that GSTO increases the risk and gene expression level in the brain of both AD and PD patients [76],
whereas Li et al. reported NEDD9 as a common risk factor of AD and PD [77]. However, more studies
are needed on these genes to determine whether they can be considered as shared risk factors for both
diseases.

2.4. miRNAs Associated with AD and PD

Large-scale genome annotation reveals that miRNAs play an important role in AD [78].
miRNAs target message transcripts through base pairing, which results in negative gene regulation.
Therefore, these miRNAs can alter the expression of critical genes in the AD/PD pathway [79]. The
literature reports several miRNAs that have been associated with AD and PD. To identify the role
of miRNAs in AD/PD, we performed a systematic review of related miRNAs in AD/PD from the
literature, which is shown in Tables 5 and 6.
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Table 5. Micro-RNA studies in AD.

Studies Sample No.
of Patients

No.
of Controls

Differential Expression
miRNAs

[80] Plasma 31 37
let-7d-5p, -7g-5p

miR-15b-5p, -142-3p,
-191-5p,-301a-3p,-545-3p

[81] Whole Blood 105 150
miR-9, -29a, -29b,
-101, -125b, -181c

[82] Primary hippocampal neuron NA NA
miR-9, -181c, -30c,

-148b, -20b
let-7i

[83] Brain tissues of the frontal cortex 7 14 miR-29a, -29b,-338-3p

[73] Human postmortem brain specimens NA NA

let-7b, -7c, -7d,-7i,
miR-103, -124a, -125a,

-125b, -132, -134, -181a,
-26a, -26b, -27a, -27b,-29a
-29c, -204, -30a-5p, -7, -9

[84] Serum 208 205

novel miR-36
miR-98-5p, -885-5p,

-485-5p,-483-3p,-342-3p,
-3158-3p,-30e-5p, -27a-3p,

-26b-3p, -191-5p, -151b,
let-7g-5p,-7d-5p

[85] Serum and plasma 32 26
miR-26b-3p, -125b -223,

-23a

[74] Brain tissue postmortem 6 4

miR-338-3p, -219-2-3p,
-20a,-17, -106a, -19a, -584,

-338-5p, -219-5p, -32, -34c-5p,
-16, -151-5p, -181a, -181b,

-485-3p, -129-5p, -143, -34a,
-124, -149,-136, -138, -145,
-129-3p, -381,-128, -432,

-378, -29b
[86] Brain tissue 18 6 miR-9, -125b, -132, -146a, -18

[87] Serum
19
121

9
86

hmiR-26a-5p, -181c-3p,
126-5p, -22-3p, 148b-5p,

-106b-3p, -6119-5p, -1246,
-660-5p

[88] Whole blood 172 109
miR-9-5p, -106a-5p,

-106b-5p, -107

After the literature search, we found a total of 108 miRNAs reported for AD and 91
miRNAs reported for PD. However, only 15 of these miRNAs are common between AD and
PD. These miRNAs are hsa-miR-128, hsa-miR-134, hsa-miR-146a, hsa-miR-148b, hsa-miR-151-5p,
hsa-miR-16, hsa-miR-181a, hsa-miR-19a, hsa-miR-223, hsa-miR-26a, hsa-miR-29a, hsa-miR-29b,
hsa-miR-29c, hsa-miR-30c, and hsa-miR-485-5p. Next, we performed an enrichment analysis of
these common miRNA set to identify their function and their target genes. We found a total of 16
KEGG pathways related to these miRNAs (with p < 0.05), shown in Figure 2. Some of these pathways
(with adjusted p < 0.001) are the TGF-beta signaling pathway, MAPK signaling pathway, neurotrophin
signaling pathway, glycosphingolipid biosynthesis lacto and neolacto series, Ras signaling pathway,
arrhythmogenic right ventricular cardiomyopathy (ARVC), and hepatitis B. Although several of these
pathways are not related to the CNS, we have still included them here for completeness.
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Figure 2. Functional enrichment of reported common miRNAs in AD and PD. Here, color represents
the p-value of the pathway, size represents common gene targets of the pathway and miRNAs,
and the x-axis represents the number of related miRNAs in that pathway.

Table 6. Micro-RNA studies in PD.

Studies Sample No.
of Patients

No.
of Controls

Differential expression
miRNAs

[89] Brain 11 6 miR-34b, miR-34c

[90] Whole blood 19 13

miR-335.-374a, -199a-3p, -199b-3p,
-126, -151-3p, -199a-5p, -151-5p,
-29b, -147, -28-5p, -30b, -374b,

-19b, -30c, -29c, -301a, -26a

[75]
Cerebrospinal fluid

Serum 67 78

miR-132-5p, 19a-3p, -485-5p,
-127-3p, -128, -409-3p, -433

-370, -431-3p, -873-3p, -121-3p,
-10a, -1224-5p, -4448.

miR-388-3p, -16-2-3p, -1294
-30e-3p, -30a-3p

[91] Frontal cortex 29 33 miR-10b-5p

[92] Serum 138 112 miR-29c,-146a, -214, and -22

[93] Whole blood 50 25 miR-24, -30c, -148b, -223, -324-3p
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Table 6. Cont.

Studies Sample No.
of Patients

No.
of Controls

Differential expression
miRNAs

[94] Serum
10
65

10
65

miR-29c, -19b, -92a, -16, -100
-21, 29a, -451, -19a, -181a, -484

-134, -532-5p, -223

[95] Cerebrospinal fluid 47 27

miR-1,-103a, -22, -29, -30b,
-19-2,-26a, -331-5p, -153, -374

-132-5p, -119a, -485-5p, -127-3p,
-151, -28, -301a, -873-3p, -136-3p
-19b-3p, 10a-5p, -29c, let-7g-3p

[96] Cerebrospinal fluid 40 40
miR-27a3p, -125a-5p,-151a-3p, -423-5p

let-7f-5p

2.5. Putative Epigenetic Regulation Common to AD and PD

We analyzed the common 15 miRNAs using the TAM tool (http://www.lirmed.com/tam2/) [97]
with the upregulation option, and we observed six miRNAs (hsa-miR-181a, hsa-miR-29a, hsa-miR-29b,
hsa-miR-29c, hsa-miR-146a, hsa-miR-148b) associated with Alzheimer’s disease and five miRNAs
(hsa-miR-181a, hsa-miR-16, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c) associated with Parkinson’s
disease. Therefore, four miRNAs (hsa-miR-181a, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c) are common
to both diseases. We used the 15 common miRNAs and the common gene HLA-DRB5 identified
from GWAS and analyzed using VisANT 4.0 (http://visant.bu.edu/) [98] for any possible interactions
and if there was an intermediate molecule. The analysis revealed that has-miR-29a and has-miR-16
regulate a common pathway associated with AD and PD. hsa-miR-16 interacts with PTGS2 (COX-2,
encoded by the gene prostaglandin-endoperoxide synthase 2 (PTGS2)) gene, which is associated
with both AD [99,100] and PD [101–104]. Similarly, the ELAV-like RNA binding protein 1 (ELAV1)
interacts with hsa-miR-29a. ELAV1 is associated with AD [105,106], and ELAV1 is found to interact
with SIRT1, which is also a marker and target in AD [107–109]. UBC is associated with AD [110]
and integrates with PTGS2 and HLA-DRB5, which are associated with both AD and PD (Figure 3).
Therefore, hsa-miR-29a, hsa-miR-16, ELAVL1, SIRT1, PTGS2, UBC, and HLA-DRB5 may form a
hub that could be implicated in providing a common network for AD and PD. DAVID 6.8-based
(https://david.ncifcrf.gov) [111] functional analysis revealed that HLA-DRB5, PTGS2, and UBC are
associated with Parkinson’s disease and that PTGS2 and SIRT1 are involved in Alzheimer’s disease.
Further, ToppGene (https://toppgene.cchmc.org) [112] analysis showed that SIRT1, UBC, HLA-DRB5,
MIR29A, and PTGS2 are associated with PD. Therefore, PTGS2 and SIRT1 and their regulatory
(immediate or distant) hsa-miR-29a and hsa-miR-16 are probably key molecules common for AD
and PD pathogenesis. From these initial results, we tried to explore if the proteins of this hub
(ELAVL1, SIRT1, PTGS2, UBC, HLA-DRB5) were also targeted by these two miRNAs (hsa-miR-29a
and hsa-miR-16). We used miRWalk (http://mirwalk.umm.uni-heidelberg.de/) [113] and miRDB
(http://mirdb.org/) [114], and we observed that SIRT1, ELAVL1, PTGS2, and HLA-DRB5 mRNAs are
directly targeted by hsa-miR-16 and hsa-miR-29a/b/c. However, UBC was not found to be targeted
by these two miRNAs. To further characterize the epigenetic functionalities of these two miRNAs,
we used miRPathDB (https://mpd.bioinf.uni-sb.de) [115]. The miRNA hsa-miR-16 was found to
be involved in histone modification, regulation of histone H3-K9 acetylation, positive regulation of
histone H3-K9 methylation, positive regulation of histone H3-K4 methylation, regulation of the RNA
metabolic process, and rRNA modification in the nucleus and cytosol. The hsa-miR-29 is also involved
in pathways associated with histone H3-K4 demethylation, negative regulation of histone H3-K9
methylation, histone ubiquitination, DNA methylation and demethylation, and regulation of the RNA
biosynthetic process. Therefore, these two miRNAs may modulate the common epigenetic mechanism
behind AD and PD by multiple mechanisms.

http://www.lirmed.com/tam2/
http://visant.bu.edu/
https://david.ncifcrf.gov
https://toppgene.cchmc.org
http://mirwalk.umm.uni-heidelberg.de/
http://mirdb.org/
https://mpd.bioinf.uni-sb.de
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Figure 3. Epigenetic modulation of common molecules in AD and PD. The red color nodes indicate the
probable common hub associated with AD and PD pathogenesis.

2.6. Differential Expression Analysis and Functional Enrichment on the GEO Dataset

To get better insights into the genomic level similarity between AD and PD, we next used the gene
expression data that were downloaded from the Gene Expression Omnibus (GEO) repository [116].
Next, we performed differential expression (DE) analysis on these datasets to identify the important
genes in AD/PD. We found that out of the reported gene list, 38 genes were expressed in this dataset
in AD, and 1444 genes were expressed in PD (p < 0.05), as shown in Table 7. None of these DE genes
were however reported in GWAS studies in AD patients. However, in PD, nine DE genes HIP1R,
FAM171A1, BIN3, MAPT, RIT2, ALAS1, SH3GL2, ITPKB, and SNCA were reported in PD based on
GWAS studies. Next, we performed a functional enrichment analysis on these DE genes. The enriched
biological processes are shown in Figure 4.

Table 7. Entrez ID of DE genes in AD and PD.

AD DE Gene PD DE Gene (Top 50 by p-Value)

55076, 66005, 114801, 6474, 51084
114041, 2694, 1184, 10859, 347735

53836, 3339, 254295, 51147, 147808
26050, 152573, 51412, 100289341, 27309

285194, 51678, 374920, 135228, 5788
5819, 1051, 4985, 50717, 1293, 100128927

4199, 6921, 2036, 1769, 148066, 57633
10369

4719, 7443, 22877, 5725, 5451
10644, 138151, 100272216, 60496, 7414

2872, 54839, 23313, 4345, 8140
404672, 55750, 10097, 81853, 5521

9201, 55209, 8905, 4190, 902
8382, 56675, 5955, 5567, 7260

5862, 11179, 30827, 400, 23242
37, 51382, 9554, 54541, 9804

801, 29887, 4839, 7994, 64175
23158, 1114, 1353, 65055, 23462

2.7. Gene Co-Expression Network Prediction and Network Analysis on the GEO Dataset

In order to analyze how each gene regulates the others in these diseases, we predicted the gene
co-expression network for AD and PD separately using the same GEO dataset. We used only a subset
of the genes that were differentially expressed or reported in the GWAS experiments to predict these
networks. Next, we took a consensus cutoff of 0.96 for PD and 0.90 for AD to select only the high
confidence edges from these networks and visualize the relationship between these genes in AD and
PD. AD and PD network data are given in the Supplementary material.
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a)

b)

Figure 4. Functional enrichment of differentially-expressed genes of (a) AD and (b) PD. Here, color
denotes the p-value of the association and size represents the number of disease-related genes (DE)
associated with the pathway. The x-axis represents the ratio of the number of disease-related genes
(DE) to all related genes to the pathway.

Using graph modularity on these networks, we identified a few distinct clusters for AD and
PD, which are shown in Figure 5b,c. Each cluster in the network signifies a group of genes that
work together closely in the disease. In this dataset, we found six closely-related clusters in AD and
four clusters in PD. Next, we functionally enriched the genes in the cluster to relate them to specific
biological functions. The identified functions of these clusters are shown in Figures 6 and 7.
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a)

b) c)

d)

Figure 5. (a) Flowchart of gene co-expression network prediction from RNA-seq data; (b) gene
co-expression network for AD. The six identified clusters are marked with different colors. Node size
represents page-rank centrality (larger value means that the gene is more important in that cluster)
of each gene. (c) Gene co-expression network for PD. The four identified clusters are marked using
different colors. (d) Functional similarity between identified functionally-enriched clusters between
AD and PD. The similarity of clusters was calculated using the Jaccard similarity (see the Methods).
Here, Clusters 0–5 are identified as AD clusters, and 6–9 are identified as PD clusters. Darker green
color corresponds to higher similarity between clusters.

Figure 5d visualizes the functional similarity among the clusters of AD and PD. The functional
similarity is defined as the number of common functions of the clusters divided by the total number of
functions from any two clusters, each chosen from the ones listed in Figures 6 and 7. We found that
the functional similarity between the clusters was quite low for AD and PD. This suggests that these
clusters affect a different set of functions in each disease.
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Figure 6. Functional analysis of genes in the different clusters of PD.
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Figure 7. Functional analysis of genes in the different clusters of AD.

3. Materials and Methods

3.1. Literature Mining for GWAS/miRNA Studies

First, we explored the miRNAs/genes reported in different databases like Alzgene [117],
PDgene [50], and phenomiR [118] to identify the relevant genes and miRNAs associated with AD
and PD. We found that some of these databases are outdated and do not contain current information
from the literature. For example, the phenomiR database was last updated in 2011 [118]. Hence,
we next manually queried the published literature on or before 2018 through PubMed, ScienceDirect,
Scopus, and Google Scholar searches using search terms like “AD/Alzheimer’s + GWAS/gene”,
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“PD/Parkinson’s + GWAS/gene”, “AD/Alzheimer’s + miRNA/microRNA”, “PD/Parkinson’s +
miRNA/microRNA”, “AD/Alzheimer’s + risk loci”, “PD/Parkinson’s + risk loci”, and “LOAD +
gene/GWAS/microRNA/miRNAs” to update the information obtained in the previous step for both
PD and AD. For GWAS, we only considered the studies having a large number of samples. However,
for miRNAs, we listed out all the reported miRNAs in AD/PD as there are fewer reports associated
with miRNAs.

3.2. Analysis on GEO Data

The transcript expression data for AD/PD were downloaded from the GEO database [119].
For AD, we used GEO accession number GSE84422 as the data source of our studies [120].
GSE84422 contains RNA samples from the brain of 125 human subjects and profiled using Affymetrix
Genechip microarrays. For PD, we used GSE accession number GSE20295. It consists of 93 samples
taken from different brain regions of PD patients and controls [121].

3.3. Gene Coexpression Network Inference Algorithm

Predicting gene–gene interactions is a popular research area and has already been significantly
documented in the literature. Genes interact among themselves via transcription factors, through
mutual co-expression of a gene group. High-throughput data captured under different conditions
by next-generation sequencing (NGS) or RNA-seq make it feasible to computationally predict
the gene coexpression network. There are several network inference algorithms that have been
implemented over the last few years to infer networks from a snapshot of the transcriptome.
However, the performance of these algorithms widely varies over the different datasets and possesses
a different inherent bias. There is no single algorithm that performs best in different settings.
Hence, in order to predict a high confidence gene coexpression network, we used six popular
network inference algorithms. These include two mutual information-based algorithms: (i) context
likelihood of relatedness (CLR) [122,123] and (ii) maximum relevance minimum redundancy backward
(MRNETB) [124]. We also used basic correlation-based network inference methods: (iii) Pearson
and (iv) Spearman correlation, as well as (v) the distance correlation (DC)-based method and (vi)
one regression-based gene network inference algorithm called the ensemble of trees (GENIE3) [125].
We next integrated the individual network predictions from each of these six different methods to
get one high-confidence interaction network. To integrate the results, we used the wisdom of crowds
approach, which is a phenomenon where aggregation of information of a group outperforms the
results from an individual. Marbach et al. [126] showed this consensus-based approach outperformed
any individual network inference algorithm and predicted a more robust and high-confidence inferred
network. Therefore, the wisdom of crowds approach gave us a more accurate picture of gene regulation;
this network inference pipeline was previously validated in our prior work [127–129]. A flowchart of
the steps involved in the gene coexpression network prediction algorithm is shown in Figure 4a.

Unfortunately, some of these network inference algorithms are quite computationally expensive
and not feasible to run for thousands of transcripts. Therefore, we re-implemented the parallelized
version of these algorithms in CUDA-GPU; the basic idea was to compute the correlation between
any gene pair on a different GPU thread. Our implementation achieved about 1000-times
speed-up, which enabled us to predict the coexpression network for a large number of transcripts.
Predicting high-confidence gene coexpression networks is an essential step towards understanding
the role of genes or miRNAs in diseases. It not only shows us how one gene affects another gene in a
specific disease, but also gives us the ability to identify how several genes work as a single group in a
specific disease.

3.4. Gene Set and Functional Similarity Analysis on the GEO Dataset

We used the statistical method LIMMAto find the differentially-expressed (DE) genes from
the GEO dataset [130]. Functional analysis on DE genes was performed using the CluterProfiler
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package in R [131]. We used the Python package networkX and the Gephi tool for analyzing the gene
co-expression networks and the subsequent cluster analysis. On the predicted gene coexpression
network, we performed modularity-based community detection to identify the clusters in AD/PD.
Next, we performed the functional analysis on each cluster to identify the functions of the genes in
each cluster. Functional similarity was calculated using the Jaccard index, which is calculated as the
common functions between any two clusters divided by the union of functions from the two clusters.

3.5. Common miRNA Identification and Pathway Analysis

After identifying causal and common miRNAs between AD and PD, we analyzed the potential
effect of these miRNAs in biological pathways. We used the DIANA-miRpath tool to find out
the association of critical biological pathways through functional analysis with these deregulated
miRNAs [132]. DIANA-miRpath is a bioinformatics tool that identifies experimentally-validated
or predicted target genes associated with miRNAs. On the list of genes, it performs merging
and meta-analysis algorithms to identify pathways associated with miRNAs. We used the
miRTarBasedatabase to predict associated pathways from this tool; miRTarBase predicts biological
pathways using only experimentally-confirmed miRNA target genes in a disease [133]. Next,
we explored the literature again to gather information about how these miRNAs associate with
the identified biological processes in the context of AD and PD.

4. Conclusions and Discussions

In this paper, we analyzed the similarity of the two most widely-occurring neurodegenerative
diseases: AD and PD. Major GWAS studies identified approximately 50 risk loci for PD and AD.
However, we found only one common risk loci (HLA-DRB5) that has been reported for AD and PD
in these GWAS studies. HLA-DRB5 has a strong connection with the central nervous system; it has
been reported several times before for AD and PD. Other studies from the literature also reported
some common risk loci for AD and PD where the gene SIRT1, among others, has been implicated,
which plays a dual role in impacting Aβ plaque formation and α-synuclein aggregation. Literature
mining also identified 15 common miRNAs that have been reported to be associated with both AD
and PD, among which hsa-miR-16 and hsa-miR-29a/b/c could be common epigenetic regulators in
these two diseases. The 15 common miRNAs are mainly involved in the TGF-beta signaling pathway,
MAPK signaling pathway, neurotrophin signaling pathway, glycosphingolipid biosynthesis, lacto and
neolacto series, Ras signaling pathway, and arrhythmogenic right ventricular cardiomyopathy (ARVC).

To get more insights into the reasons behind the co-occurrence of AD and PD, we separately
predicted the gene co-expression networks for AD and PD. Using cluster analysis, we found six
different clusters in AD and four different clusters in PD, which work together in each of these
diseases. We also calculated the functional similarity of these clusters in a combined AD and PD
setting, but found very low functional similarity between them; this suggests that very different
biological processes are activated in these two diseases, which corroborated our finding that there
were not many common genetic loci between AD and PD. Additionally, this may also suggest that the
15 common miRNAs reported for AD and PD may serve as mostly a defense mechanism against brain
toxicity and may not play a causal role in either AD or PD.

In a complex heterogeneous disease, different genes’ activation can lead to the same disease
outcome [134]. Possibly, AD and PD have different genetic roots, but converge to a similar phenotypic
outcome as PD and AD share a few similar symptoms. In this study, we did not considered
patient-specific variability of the gene expression while predicting the coexpression networks. One
future direction of this study is to consider patient-specific variability to find the genome level similarity
between AD and PD.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/15/
3730/s1.

http://www.mdpi.com/1422-0067/20/15/3730/s1
http://www.mdpi.com/1422-0067/20/15/3730/s1


Int. J. Mol. Sci. 2019, 20, 3730 20 of 27

Author Contributions: P.R. and P.G. conceived of the study. P.R., E.F.F., Y.R., and K.S. performed the analysis.
P.R. and E.F.F. wrote the manuscript. D.B. developed the epigenetic module common to AD and PD; D.B., V.A.,
R.T.J.R., and P.G. cross-checked the analysis and revised the manuscript.

Funding: This work was supported by NSF-1802588 to P.G.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
PD Parkinson’s disease
GWAS Genome-wide association
LOAD Late-onset Alzheimer’s disease
miRNAs microRNAs
EOAD Early-onset Alzheimer’s disease
SNP Single-nucleotide polymorphism
SNCA Loci α-synuclein
LRRK2 Leucine-rich repeat kinase 2
MAPT Microtubule-associated protein tau
ARVC Arrhythmogenic right ventricular cardiomyopathy
DE Differential expression
GEO Gene Expression Omnibus
CLR Context likelihood of relatedness
MRNETB Maximum relevance minimum redundancy backward
GENIE3 GEne Network Inference with Ensemble of trees
LIMMA Linear Models for Microarray Data
DC Distance correlation
GPU Graphics processing unit
GRN Gene regulatory network
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