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Abstract: The number of entries in the Protein Data Bank (PDB) has doubled in the last decade, and it
has increased tenfold in the last twenty years. The availability of an ever-growing number of structures
is having a huge impact on the Structure-Based Drug Discovery (SBDD), allowing investigation of
new targets and giving the possibility to have multiple structures of the same macromolecule in a
complex with different ligands. Such a large resource often implies the choice of the most suitable
complex for molecular docking calculation, and this task is complicated by the plethora of possible
posing and scoring function algorithms available, which may influence the quality of the outcomes.
Here, we report a large benchmark performed on the PDBbind database containing more than four
thousand entries and seventeen popular docking protocols. We found that, even in protein families
wherein docking protocols generally showed acceptable results, certain ligand-protein complexes
are poorly reproduced in the self-docking procedure. Such a trend in certain protein families is
more pronounced, and this underlines the importance in identification of a suitable protein-ligand
conformation coupled to a well-performing docking protocol.

Keywords: molecular docking; docking benchmark; DockBench; virtual screening

1. Introduction

Since its introduction in the early 1980s [1], molecular docking has served to aid medicinal
computational chemists in optimizing the drug discovery process. Ten years later, due to
methodological and technological advances, together with the increasing number of experimentally
solved macromolecular structures, it became possible to process more and more molecules within
a docking procedure, opening the era of Structure-Based Virtual Screening (SBVS) as a strategy in
selecting appropriate compounds from large virtual libraries on the basis of good protein-ligand
interaction patterns [2]. Thanks to molecular docking, Structure-Based Drug Discovery (SBDD) field
has become very popular today. A docking protocol can be described as the combination of a search
algorithm that samples the conformational space of a ligand, generating conformations for the ligand
itself (defined as poses) within a binding site, and a mathematical equation, called scoring function,
which quantitatively evaluates the quality of such poses. The scoring function has always been the
Achilles tendon of molecular docking due to the inaccuracy in quantified strength of the complex
network of molecular interactions. Today;, it is widely accepted that molecular docking has been
outperformed by other structure-based in silico methodologies in investigating the stability and
strength of the protein-ligand interaction [3], even though they are usually demanding techniques.
However, molecular docking still represents a valid technique in sampling the conformations of the
ligand in a binding site in a very efficient manner—at a fraction of the computational cost of more
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accurate methods based for example on Molecular Dynamics [4]. To prove the extensive adoption of
molecular docking in research, there are more than 50 docking software options listed up to date in the
on-line Click2Drug repository [5]. It should also be considered that each docking software usually
provides more than one scoring function in which performance ought to be evaluated in the protocol
tuning step. This means that computational chemists have at their disposal a plethora of different
protocols when they face a docking calculation and, more importantly, the success, for example, of a
Virtual Screening (VS) campaign, strongly relies on the accuracy of the protocol employed to place
and rank the conformation of candidates into a target binding site [6]. To further complicate matters,
additional considerations need to be taken into account. In fact, more and more experimental structures
are thankfully available, hence the range of possible combinations in protein conformation-docking
protocol is growing in an unstoppable trend. It is, therefore, clear that a crucial step in SBVS is the
selection of a proper docking protocol and an appropriate protein conformation [7,8]. To address this
issue, we recently proposed a platform, DockBench, with the aim of simplifying the non-trivial task of
automatically comparing the performance of different docking protocols in a self-docking exercise.
The criteria of selection of the most appropriate protocol are based on geometrical and statistical
basis evaluating few observables: the lowest and the average Root Main Square Deviation (RMSD)
obtained for a pose of the ligand compared to its crystallographic pose and the protocol score [9].
In 2011, Plewczynski et al. reported a comparison among seven docking protocols on the PDBbind
(http://www.pdbbind.org.cn) that, at that time, counted on 1300 structures [8]. Here, we report a large
benchmark of 17 different docking protocols compared on the basis of the self-docking procedure on a
dataset of 4169 protein-ligand complexes. The notable number of structures has offered the opportunity
to evaluate the performance of molecular docking from different points of view, underlining how the
efficiency of docking protocols may vary depending on the nature of the protein family.

2. Results

The benchmark was performed on 4169 structures obtained from PDBbind, a free database
of binding affinity data for biomolecular complexes including protein-ligand, nucleic acid-ligand,
protein-nucleic acid, and protein—protein complexes [10]. The PDBbind “Refined set” is a subset of
high-quality protein-ligand complex structures helpful for the validation of Docking protocols. All the
structure needs to be processed prior to the docking calculation to keep only the protein and the ligand
alone. This was necessary to simplify the execution on such a large set of complexes and protocols.

The preparation of the data was accomplished by an automatic procedure based on the Molecular
Operating Environment (MOE) suite for proteins and OpenEye toolkit for ligands (vide infra, see method
section for details) [11,12]. The benchmark execution was performed on all 17 protocols implemented
in DockBench 1.0.6 based on seven different docking software options, each of which was coupled
to different scoring functions whenever possible. The complete list of the protocols is reported in
Table 1. The benchmark consisted of the execution of 70,873 single docking runs (4169 complexes;
17 protocols) distributed on a single server. The wall time necessary to perform all docking runs was
approximately 72 h.

The automated analysis was based on the calculation of three scores: (i) RMSD minimum
(RMSDy,in), (ii) the RMSD average (RMSD,ye), (ii) the number of structure with RMSD lower than the
(N(rsMD < R)), and a fourth score named Protocol Score Pscore that summarized the overall performance
for a geometric point of view. The Pgcore instead is defined as follows: One point is assigned to the
protocols that have an RMSD,ye lower than the value of the crystallographic resolution, another point
is assigned to the protocols producing at least 10 poses (50% of generated conformation) with an RMSD
(compared to the crystallographic geometry) lower than the crystallographic resolution, and two points
are assigned to protocols which fulfill both the previous conditions. The complete matrix of the results
is available in supporting information. The observed RMSD,,;, values were in the range of 0.05 and
38.49 A. High RMSDy;, values are symptomatic for ligands placed far away from the native binding
site. A possible explanation could be ascribed in having defined the pocket using a sphere with radius
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15 A. The radius was deliberately set large to give the possibility to be sufficiently broad for all the
ligands in the dataset and may be problematic for docking of small ligands or in the case of multiple
pockets closely located.

Table 1. List of docking protocols used in the benchmark.

Search Algorithm/ . . .
Program Placing Method Scoring Function Protocol Abbreviation
Local Search AutoDock SF AUTODOCK-Is
Autodock 4.2 Lamarckian GA AutoDock SF AUTODOCK-Iga
Genetic Algorithm AutoDock SF AUTODOCK-ga
Vina1.1.2 Monte Carlo + BFGS Standard Vina SF VINA-std
local search
Glide 6.5 Glide Algorithm Standard Precision GLIDE-sp
Genetic Algorithm Goldscore GOLD-goldscore
Genetic Algorithm Chemscore GOLD-chemscore
GOLD 5.4.1 Genetic Algorithm ASP GOLD-asp
Genetic Algorithm PLP GOLD-plp
Triangle Matcher London-dG MOE-londondg
MOE 2019.01 Triangle Matcher Affinity-dG MOE-affinitydg
Triangle Matcher GBIVIWSA MOE-gbiviwsa
ACO Algorithm PLP PLANTS-plp
PLANTS 1.2 ACO Algorithm PLP95 PLANTS-plp95
ACO Algorithm ChemPLP PLANTS-chemplp
Genetic Algorithm +
. Standard rDock
rDock 2013.1 Monte C ;.11"1(.) N $1mplex master SF RDOCK-std
minimization
Genetic Algorithm + Standard rDock master
Monte Carlo + Simplex SF + desolvation RDOCK-solv

minimization
GA (Genetic Algorithm) BFGS (Broyden-Fletcher-Goldfarb-Shanno), ASP (Astex Statistical Potential), PLP (pair wise
linear potential), ACO (Ant Colony Optimization).

potential

An interesting question we were considered was about the performance of docking protocols in
different target families since, in PDBbind, many protein families are represented by several entries.
The results were grouped on the basis of the protein in families (PF) using the Pfam (Protein Family)
database families as definition [13]. For each complex, the PF Pfam code was retrieved for the
protein chain and hence grouped. For many multi-domain proteins, a different Pfam code can be
assigned depending on the domain solved in the structure; for instance, the proteins belonging to
the family PFO0069 (Protein Kinase) often contain domains labeled as PF02827 (Cyclic adenosine
monophospate-dependent protein kinase inhibitor), PF00134 (Cyclin, N-terminal domain), PF02984
(Cyclin, C-terminal domain), and a few others. Some proteins cannot be classified in a single group,
and therefore we merged those groups for analysis (for example, PF00183 and PF02518, Heat Shock
Protein 90, HSP90 and GHKL domain). To address this issue, we compared the docking performance
by the Protocol Score (Pscore) for the major cluster to investigate whether the docking performances of
the different protocols vary among the different protein families.

Unexpectedly, the performance among different families showed a remarkable fluctuation (Table 2),
with certain families having many protocols with Pscore > 1 on most of the complexes. It is interesting to
note that, between the best performing group (PF00104) and the worst (PF00026) one, the percentage of
protocols with Pseore > 1 showed a difference of an order of magnitude, 41.66%, and 4.37%, respectively.
Among the best-performing ones, the families with good Pscore were: PF00104 (Hormone receptors),
PF00497 (Bacterial extracellular solute-binding proteins, family 3), PF10613 (Ligated ion channel
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L-glutamate and glycine binding site), and PF01048 (Phosphorylase superfamily). All these families
showed a Pgcore > 1 in more than 29% of the docking runs.

Table 2. Summary of benchmark results by Pfam families. Protocol scores are reported as percentage

with respect to the total docking runs (Pscore %).

Protocol Score Pgcore %

Pfam Family Protein Description Size
1 2 3 >1
PF00104 Ligand-binding domain of o 593y 1004 9657 484 4166
nuclear hormone receptor
Bacterial extracellular
PF00497 solute-binding proteins, 38 59.29 944 2570 557 40.71
family 3
Ligated ion channel
PF10613 L-glutamate- and 83 6797 680 2055 468  32.03
glycine-binding site
PF01048 Phosphorylase 47 7009 801 1677 513 2991
superfamily
PF00102 Protein-tyrosine 52 7930 520 1199 351  20.70
phosphatase
PF00069 Protein kinase domain 207 80.68 543 1046 343  19.32
Lipocalin/cytosolic
PF00061 fatty-acid binding 49 8211 408 1080 3.00 17.88
protein family
PF02518 Hsp90 protein and
PROO1S3 G domaim 89 8274 535 826 364 1725
PF07714 Protein tyrosine kinase 133 8390 579 677 354 16.10
PF00089
PF14670 Trypsin 330 8554 465 684 296 1445
PF09396
e’ : :
PF00233 3'5"-cyclic nucleotide 37 8792 382 541 286 12,08
phosphodiesterase
PF00439 Bromodomain 112 90.02 2.89 467 242 998
PF00026 Eukaryotic aspartyl 73 9049 314 411 226 951
protease
PF00413 Matrixin 49 9088 324 420 168 912
PF00077 Retroviral aspartyl 301 9541 227 164 068 459
protease
Eukaryotic-type
PF00194 273 9563 228 117 091 437

carbonic anhydrase

Pfam (Protein Family), Hsp90 (Heat shock protein 90).

On the other hand, we found that certain families had very poor results, with Pscore > 1 found below
10%; this is the case for PF00194 (Eukaryotic-type carbonic anhydrase), PF00077 (Retroviral aspartyl
proteases), PF00413 (Matrixin), and PF00026 (Eukaryotic aspartyl protease). The trend observed for

Pscore is also evident in

RMSD,ve.

The results for the most populated families are reported in Figure 1. The Pgscores were reported
as a heatmap to easily summarize the comparison of such a big matrix (higher scores highlight
better protocol-complex couple). Numerical results are reported in the supplementary information.

The results for the same families in terms of RMSD,ye are reported in Figure 2.
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Figure 1. DockBench Results divided by Pfam protein families. The heatmaps are color-coded according to the Pscore. The ten families in panel (a) are: PF00439,
Bromodomain; PF10613, Ligated ion channel L-glutamate and glycine-binding site; PF00102, Protein tyrosine phosphatases; PF000061 Lipocalin; PF00497, Bacterial
extracellular solute-binding proteins family 3; PF00104, Hormone receptors; PF00026, Eukaryotic aspartyl protease Peptidase M_10; PF01048, Phosphorylase
superfamily; PF00233, 3’5’-cyclic nucleotide phosphodiesterases. The six families in panel (b) are: PF00089 Trypsin, PF14670 Coagulation Factor Xa inhibitory site,
PF09396 Thrombin light chain, PF00077 Retroviral aspartyl proteases, PF00194 carbonic anhydrases, PF00069 protein kinase, PF07714 tyrosine kinase, PF02518 GHKL

domain, and PF00183 HSP90.
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A further aspect that was considered was the ability of the docking protocol in placing in the first
position, according to their scoring function, the pose with the lowest RMSD. This aspect is particularly
relevant because it indicates how the protocol is able to distinguish between different binding modes
and, hopefully, prioritizing a binding mode close to the experimentally observed. In Figures S1 and S2,
the heatmap plots reporting for the docking runs in which the best-scored pose is also the conformation
with lowest RMSD. Unfortunately, in several cases, this simultaneous occurrence did not always
guarantee the identification od near-native pose. Indeed, we observed for several cases where the
lowest RMSD conformation was far from the experimentally solved one with RMSD values reaching
values bigger than 10 A. The RMSD value of the best conformations is reported on the heatmaps in
Figures S3 and S4. Therefore, we performed further analysis focusing on investigation of when the best
pose also had a low RMSD value but not necessarily the lowest values. We decided to set a threshold of
1.5 A to define a near-native pose. In this way, we could highlight a protocol able to place a “good” pose
as the first solution, even if potentially better conformation could be present among the 20 obtained.
In Figures S5 and S6, the runs that fulfill such concurrence are reported. Again, the performance
of docking protocols showed a very different performance depending on the protein family and,
interestingly, in agreement with the Pscore trends. The Ligand-binding domain of nuclear hormone
receptor (PF00194) showed in 50% of the runs RMSD < 1.5 A for the first pose. The percentage of success
is also remarkable for the Ligated ion channel 1-glutamate- and glycine-binding site (PF10613), 49.3%;
the Bacterial extracellular solute-binding proteins (PF00497), 47.6%; and Phosphorylase superfamily
(PF01048), 41.7%. On the contrary, certain families performed poorly in this analysis, in particular,
Eukaryotic-type carbonic anhydrase, which showed only a 10.8% (Table S1, on Supporting Material).

The factors that are so dramatically affecting the quality of the docking outputs among different
families could be related to many variables. First, we address the possible different chemical natures of
the ligands belonging to each protein family. To evaluate the ligand chemical space, several molecular
descriptors were calculated, including weight, rotatable bonds, hydrogen bond acceptors, hydrogen
bond donors, clogP, total polar surface area, and van der Waals volume. To reduce the number of the
dimensions, and therefore make the distribution representable in a three-dimensional plot, a Principal
Component Analysis (PCA) was performed. As can be seen in Figure 3, ligands of the different clusters
do not seem to occupy a different portion of the chemical space. Hence, we then moved attention to
possible players removed during the complex preparation, considering that the poor performances of
docking in the cluster PF00077 (Retroviral aspartyl proteases) and PF00439 (Bromodomain) could be
eventually ascribed to the removal of the crystallographic waters. It was already reported that the
binding mode for several ligands is mediated by a series of water molecules for bromodomains [14].

Similarly, in the performances observed for cluster PF00194 (Carbonic Anhydrases), a crucial
aspect could be represented by the removal of the zinc ion from the binding sites.

For this reason, we performed a further benchmark focused on this family, including the Zinc ion,
employing the most promising protocols in the first benchmark, Plants- and Gold-based protocols. The
comparison of the heatmaps of the Pscore reported in Figure 4 demonstrates that, despite the introduction
of the Zinc ion, the trend of the Pscore improves only moderately. Surprisingly, the distribution of the
high Pgcore is different in the two benchmarks, suggesting that the Zinc ion introduction only improves
for certain complex structures while getting worse for others.
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Figure 4. Comparison between DockBench Results in terms of Protocol Score for cluster PF00194
(carbonic anhydrases) with (b) and without (a) the Zinc ion.

3. Discussion

A computational chemist has to ask himself many of the right questions when facing molecular
docking studies, and the answers are not univocal. Of course, the choice of the best performing protocol
and, when multiple structures are available, of the target conformation is the most significant decision.
However, the employment of molecular docking may have a different purpose, and a proficient
protocol choice must consider such different use. If molecular docking is addressed in binding mode
studies, the protocol performances should have the priority. At the same time, the choice of the
protein target should depend on the similarity between the compounds to be studied and the ligand
co-crystalized. When molecular docking is used in a VS campaign, more variables affect the selection,
like the execution speed. The results obtained in this benchmark were obtained with parameter as close
as possible to the default values resulting in very variable execution times. For instance, as already
reported in previous Dockbench studies, certain protocols may require an order of magnitude of longer
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time in comparison to faster protocols. It is evident in the case of large libraries that this may represent
a critical issue, hence protocols with similar outcomes in self-docking procedure where the choice can
be influenced by the execution speed. In our benchmark, we observed, for example, in certain families
of proteins, several protocols showing good performance, hence protocol selection may depend on the
other factor. It is interesting to note that in the protein families in which molecular docking shows a
good trend in reproducing the experimental conformation, certain protein-ligand complexes are far
from being predicted correctly, suggesting the importance of excluding them for docking simulations.
Differently, other protein families are challenging targets in which the choice of the posing-scoring
algorithm seems to be crucial, as well as the identification of the most suitable complex structure.
The performance of such a challenging target should also point out the necessity to investigate the
issues that are affecting the docking calculation, for instance, in considering the role of stable water
molecules in the binding site or the role of a cofactor, flexible regions of the pocket, or other drawbacks
of the system. This study may help the user approach a new target by molecular docking in identifying
promising protocols and excluding problematic complex structures. In our opinion, the assessment
of the suitable procedure should become a good practice also in light of the increasing number of
entries available in the PDB and the advent of novel techniques like Cryo-EM and Solid-State NMR are
wading the landscape of an experimentally solved target.

4. Materials and Methods

4.1. Database Preparation

The Refined-set of the PDBbind database was obtained from PDBbind web service (http://www.
pdbbind.org.cn/) [10]. This dataset is composed of 4463 protein-ligand complexes, and 4169 of them
were used for this work. We excluded 294 structures containing peptide—protein complexes that are
not particularly suitable for DockBench protocol since it used docking settings which were as close as
possible to the default parameters provided by the developers of each software and mostly calibrated
on small organic molecules typical of drug discovery.

These 4169 complexes were prepared as described below.

The protein structures have been prepared using a Scientific Vector Language (SVL) script using
the functions contained in MOE suite [11] reproducing the protein preparation tool of MOE to fix
crystal structures issues, such as prediction of coordinates of missing atoms of partially solved residues.
Co-crystallized solvent molecules and impurities (such as co-solvents) were removed, and only protein
and ligand coordinates were retained. For all ligands, the most favorable ionic state was calculated with
OpenEye tools fixpKa [12]. The partial charges were assigned with molcharge, also part of OpenEye
toolkit [12]. Ligand geometries were minimized in the first step of DockBench with Openbabel routing
using the MMFF94 force field [15].

4.2. Benchmark: Software and Hardware

The benchmark was performed with DockBench 1.06 software [16,17], running on a single HP
ProLiant server DL585G7, equipped with four AMD Opteron Processor 6282 servers, for a total of
64 CPU cores. Docking protocol was executed according to the original implementation already
reported [16]. All the 17 protocols from seven different software options (AutoDock 4.2.5.1 [18],
Vina 1.1.2 [19], PLANTS 1.2 [20], rDOCK [21], Glide 6.5 [22], Gold 5.4.1 [23,24], and MOE 2019.01 [11])
were included in the benchmark and run on all 4169 protein-ligand complexes. Briefly, 20 poses were
generated every single run. The binding site was defined using a sphere having a radius of 15 A
centered on the center of mass of the co-crystalized ligand present in the complex. An RMSD threshold
set to a value of 1 A value to define unique poses.

The analysis was performed with DockBench analyzer coupled to external Python and Bash
script to manage the notable amount of data and to produce the plots [25,26]. The Pfam Protein
family was retrieved for each protein using the RCSD PDB REST API service [27], while the Pfam Clan
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was obtained from Pfam REST API service [13]. Molecular descriptors were calculated using MOE
suite [11].

Supplementary Materials: The complete table of results is provided as excel file (SI_DockBenck_resuld.xls).
Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/3558/s1.
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