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Abstract: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)
are important regulators of metabolism, making their receptors (GLP-1R and GIPR) attractive targets
in the treatment of type 2 diabetes mellitus (T2DM). GLP-1R agonists are used clinically to treat
T2DM but the use of GIPR agonists remains controversial. Recent studies suggest that simultaneous
activation of GLP-1R and GIPR with a single peptide provides superior glycemic control with fewer
adverse effects than activation of GLP-1R alone. We investigated the signaling properties of a recently
reported dual-incretin receptor agonist (P18). GLP-1R, GIPR, and the closely related glucagon receptor
(GCGR) were expressed in HEK-293 cells. Activation of adenylate cyclase via Gαs was monitored
using a luciferase-linked reporter gene (CRE-Luc) assay. Arrestin recruitment was monitored using
a bioluminescence resonance energy transfer (BRET) assay. GLP-1, GIP, and glucagon displayed
exquisite selectivity for their receptors in the CRE-Luc assay. P18 activated GLP-1R with similar
potency to GLP-1 and GIPR with higher potency than GIP. Interestingly, P18 was less effective than
GLP-1 at recruiting arrestin to GLP-1R and was inactive at GCGR. These data suggest that P18 can act
as both a dual-incretin receptor agonist, and as a G protein-biased agonist at GLP-1R.
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1. Introduction

The incretins, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1
(GLP-1) are peptide hormones secreted from the gut in response to feeding and act to lower postprandial
glycaemia by potentiating glucose-induced insulin secretion [1,2]. Their receptors (GIPR and GLP-1R,
respectively) are expressed on pancreatic β-cells as well as other cell types, conferring various
extra-pancreatic actions to these hormones [3]. For example, GLP-1 reduces appetite and may have
cardio- and neuroprotective effects, whereas GIP regulates adipose tissue and bone metabolism [4,5]. An
impairment of action of the incretin hormones has been identified as an early and specific characteristic
of type-2 diabetes mellitus (T2DM) and is likely to be due to a loss of response to the incretin hormones
at the pancreatic β-cell [6]. Pharmacological levels of GLP-1 can overcome this resistance and as a result
of various GLP-1R agonists have been approved for the treatment of T2DM and obesity [7]. While
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the same is not true for GIP, co-administration of GIP to diabetic patients resulted in enhancement
of the efficacy of GLP-1. This observation has led to the development of a single molecule that can
act equally on GIPR and GLP-1R. This dual incretin receptor agonist was more effective at correcting
hyperglycemia than selective agonists for each receptor, and in lowering bodyweight in animal models
of T2DM and obesity and represents a new strategy for the treatment of these disorders [8].

The receptors for GIP and GLP-1 are members of the Class B (or secretin) family of G
protein-coupled receptors (GPCRs). They share approximately 40% sequence homology and both
couple positively to adenylate cyclase through Gαs G proteins, resulting in an increase in intracellular
cyclic adenosine monophosphate (cAMP) [9–11]. Originally thought of as proteins that regulate the
homologous desensitization and internalization of GPCRs, arrestins are now appreciated as adaptor
molecules that also allow GPCRs to signal through G protein-independent pathways such as ubiquitin
ligases, mitogen-activated protein (MAP) kinases, and Src tyrosine kinases [12,13]. Although several
groups have demonstrated that GLP-1R can recruit arrestin2 and arrestin3 [14,15], both desensitization
and internalization appear to be arrestin-independent processes for GLP-1R [16]. Furthermore,
knockdown of arrestin2 in cultured pancreatic β-cells resulted in impairment of GLP-1 to stimulate
cAMP and insulin production [17]. This suggests that arrestin-recruitment is an integral component of
GLP-1 signaling. In contrast, a recently reported G protein biased GLP-1R agonist, with a reduced
ability to recruit arrestin compared to other FDA-approved GLP-1R agonists, displayed potent long
term glycemic benefits in a mouse model of type 2 diabetes without the commonly associated nausea
that limits the dose of this class of treatment [18]. This enhanced insulin release was associated with an
ability to hold GLP-1R at the plasma membrane and faster agonist dissociation rates. Unlike GLP-1R, it
remains unclear if GIPR can recruit arrestin. Some groups showed no interaction with arrestin [15,19]
while others did [20].

In the present study, we investigated the selectivity and signaling properties of a dual GLP-1/GIP
receptor agonist (Peptide 18 (P18); Figure 1) using HEK-293 cells expressing either human GLP-1R,
GIPR or the closely related glucagon receptor (GCGR). cAMP production following receptor
activation was monitored using a highly sensitive cAMP-responsive luciferase assay. The ability
of P18 to antagonize glucagon at its receptor was also investigated. Arrestin recruitment was
measured using a bioluminescence resonance energy transfer (BRET)-based assay to investigate the G
protein-independent/arrestin-dependent component of signaling.
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The author wishes to make the following correction to this paper [1]. Due to mislabeling, replace: 

 

with  

 

There is an error in the peptide sequence of GIP in Figure 1. Two amino acid residues are 

missing. The correct sequence for GIP is: 

YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ. The authors would like to 

apologize for any inconvenience caused to the readers by these changes. 

Figure 1. Peptide ligands used in this study. Residues that are derived from those of glucagon are shown
in black, from glucose-dependent insulinotropic polypeptide (GIP) in blue and from glucagon-like
peptide-1 (GLP-1) and exendin-4 (Ex-4) in red. Residues shown in grey are shared by glucagon, GIP,
GLP-1, and Ex-4. Residues shown in purple are unique to P18, X = aminoisobutyric acid. GLP-1 and
Ex-4 are C-terminally amidated (Adapted from Finan et al., 2013 [8]).

2. Results

2.1. Activity at the GLP-1 Receptor

Using a cAMP-responsive luciferase assay, GLP-1, GIP, glucagon and P18 (peptide sequences
shown in Figure 1) were tested for their ability to activate the GLP-1 receptor. Dose–response curves
are shown in Figure 2 and the peptide’s pEC50 and Emax values are shown in Table 1. GLP-1 and P18
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exhibited similar potency and Emax values at the GLP-1 receptor. Glucagon activity was only detectable
at concentration of 1 µM and GIP activity was not detectable at the concentrations tested. As a result
of glucagon’s low potency at GLP-1R, the pEC50 value for this peptide shown in Table 1 is simply
an estimate.
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curves are shown in Figure 3 and the peptide’s pEC50 and Emax values are shown in Table 1. P18 was 
almost an order of magnitude more potent than GIP at the GIP receptor but both peptides showed 
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concentrations tested. 

Figure 2. Peptide ligand activity at the GLP-1 receptor expressed in HEK-293 cells. Data represent the
mean ± S.E.M. from at least three independent experiments, each performed in triplicates. The counts
were normalised to the maximum GLP-1 response.

Table 1. Activation of GLP-1, GIP and glucagon receptors by peptide ligands.

GLP-1 Receptor GIP Receptor Glucagon Receptor

pEC50 Emax (% GLP-1) pEC50 Emax (% GIP) pEC50 Emax (% Glucagon)
GLP-1 9.4 ± 0.14 100 ND ND ND ND

GIP ND ND 7.1 ± 0.11 100 ND ND
Glucagon 6.4 ± 0.1 a 62.8 ± 7.4 a ND ND 7.5 ± 0.28 100

P18 9.7 ± 0.2 106 ± 10.7 7.8 ± 0.03 b 94.4 ± 4.09 4.9 ± 0.50 c 22.6 ± 1.96 d

The mean ± S.E.M shown are from at least 3 independent experiments ND; no detectable activity at 1 µM. Emax values
indicate the maximum luciferase activity as a percentage of either GLP-1, GIP or glucagon activity. pEC50 refers to
−logEC50/M. a p < 0.01 significantly different from GLP-1 at the GLP-1 receptor, b p < 0.05 significantly different
from GIP at the GIP receptor, c p < 0.005, d p < 0.0001 significantly different from glucagon at the glucagon receptor.

2.2. Activity at the GIP Receptor

The same four peptides were tested for their ability to activate the GIP receptor. Dose–response
curves are shown in Figure 3 and the peptide’s pEC50 and Emax values are shown in Table 1. P18 was
almost an order of magnitude more potent than GIP at the GIP receptor but both peptides showed
similar Emax. Neither glucagon nor GLP-1 displayed any detectable activity at the GIP receptor at the
concentrations tested.
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Figure 3. Peptide ligand activity at the GIP receptor expressed in HEK-293 cells. Data represent the
mean ± S.E.M. from at least three independent experiments, each performed in triplicates. The counts
were normalised to the maximum GIP response.



Int. J. Mol. Sci. 2019, 20, 3532 4 of 11

2.3. Activity at the Glucagon Receptor

Glucagon was the only peptide tested that acted as a full agonist at the glucagon receptor.
Dose–response curves are shown in Figure 4 and the peptide’s pEC50 and Emax values are shown in
Table 1. GLP-1 and GIP activity at the glucagon receptor could not be detected at concentrations up
to 1 µM and P18 activity could only be detected at concentrations of 1 µM. As a result of P18′s low
potency at GCGR, the pEC50 value for this peptide shown in Table 1 is simply an estimate. Increasing
concentrations of P18 were unable to antagonize the activity of 1 nM glucagon at the glucagon receptor
(Figure 5). Interestingly, a small but significant (p < 0.05) increase in activity was observed when the
concentration of P18 reached 1 µM.
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1 or P18 to stimulate Gαs recruitment to the GLP-1 receptor (Figure 7). Their respective mean pEC50 
values of 7.4 ± 0.1 S.E.M. and 7.4 ± 0.1 S.E.M for 4 independent experiments were identical. Arrestin 
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Figure 5. Increasing concentrations of P18 did not inhibit the response to 1 nM glucagon at the
glucagon receptor expressed in HEK-293 cells. P18 exerted no effect on stimulation with glucagon,
except at concentrations of 1 µM, for which a small but significant (p < 0.05) increase in activity
compared to 1 nM glucagon alone was observed. Data represent the mean ± S.E.M. from at least three
independent experiments, each performed in triplicates. The counts were normalised to the maximum
glucagon response.

2.4. Bioluminescence Resonance Energy Transfer (BRET) Assays

BRET assays were used to monitor both arrestin3 and Gαs recruitment to the GLP-1 receptor.
Treatment with GLP-1 dose-dependently increased arrestin recruitment to the GLP-1 with a mean
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pEC50 of 6.4 ± 0.2 S.E.M for 3 independent experiments, whereas P18 stimulation of arrestin recruitment
to the GLP-1 receptor was only detectable at concentrations of 1 µM. Dose-response curves are shown
in Figure 6. In contrast, there was no significant difference in the potency of GLP-1 or P18 to stimulate
Gαs recruitment to the GLP-1 receptor (Figure 7). Their respective mean pEC50 values of 7.4 ± 0.1
S.E.M. and 7.4 ± 0.1 S.E.M for 4 independent experiments were identical. Arrestin recruitment to the
GIP receptor was not detectable using the BRET assay (data not shown). Glucagon stimulated arrestin
recruitment to the glucagon receptor with a similar potency (pEC50 of 6.8 ± 0.3 S.E.M for 3 independent
experiments) as GLP-1 stimulated arrestin recruitment to its receptor. P18 did not stimulate arrestin
recruitment to the glucagon receptor (Figure 8).
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Figure 6. Arrestin recruitment (represented by the BRET ratio) by GLP-1 or P18 to GLP-1R-SYFP2
expressed in Flip-In HEK-293 cells stably expressing Arr3-Nluc. Data represent the mean ± S.E.M. from
at least three independent experiments, each performed in triplicates. The counts were normalised to
the maximum GLP-1 response.
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control, reduce body weight and improve cardiovascular risk factors, the use of higher doses is 
often limited by adverse effects such as nausea and vomiting [22,23]. There is therefore the potential 
to improve upon the current class of GLP-1R agonists. Targeting GIPR to treat T2DM and obesity 
has a somewhat contradictory history. Unlike GLP-1, pharmacological doses of exogenous GIP 
were not found to be insulinotropic in patients with type 2 diabetes [24]. Interest in GIPR 
antagonists developed after studies where GIPR knockout mice were shown to be resistant to 
diet-induced obesity [25]. This led to the development of a derivative of GIP with a glutamic acid to 
proline substitution at position three. Pro3GIP, initially reported to be a GIPR antagonist, was 
shown to be protective against diabetes and obesity in rodent models [26,27]. However, subsequent 
studies have since demonstrated that Pro3GIP is, in fact, a low potency GIPR agonist [28,29]. 
Furthermore, GIP overexpressing mice exhibit reduced diet-induced obesity and improved glucose 

Figure 7. GαS recruitment (represented by the BRET ratio) by GLP-1 or P18 to GLP-1R-Nluc expressed
in Flip-In HEK-293 cells. Data represent the mean ± S.E.M. from at least three independent experiments,
each performed in triplicates. The counts were normalised to the maximum GLP-1 response.
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3. Discussion

Several GLP-1R agonists (e.g., exenatide, liraglutide, and semaglutide) are currently used clinically
to treat both T2DM and obesity [21]. While they reduce mortality, improve glycemic control, reduce
body weight and improve cardiovascular risk factors, the use of higher doses is often limited by
adverse effects such as nausea and vomiting [22,23]. There is therefore the potential to improve upon
the current class of GLP-1R agonists. Targeting GIPR to treat T2DM and obesity has a somewhat
contradictory history. Unlike GLP-1, pharmacological doses of exogenous GIP were not found to
be insulinotropic in patients with type 2 diabetes [24]. Interest in GIPR antagonists developed after
studies where GIPR knockout mice were shown to be resistant to diet-induced obesity [25]. This led
to the development of a derivative of GIP with a glutamic acid to proline substitution at position
three. Pro3GIP, initially reported to be a GIPR antagonist, was shown to be protective against diabetes
and obesity in rodent models [26,27]. However, subsequent studies have since demonstrated that
Pro3GIP is, in fact, a low potency GIPR agonist [28,29]. Furthermore, GIP overexpressing mice exhibit
reduced diet-induced obesity and improved glucose homeostasis [30]. There is also the possibility that
resistance to GIP observed in patients with type 2 diabetes can be overcome by lowering circulating
levels of glucose [31]. Taken together, this suggests that GIP may have some utility in the treatment of
type 2 diabetes when combined with GLP-1. Indeed, dual GLP-1/GIP receptor agonists have been
developed that have greater efficacy in terms of weight loss and glycemic control than either peptide
alone. [8,32].

In the present study, we investigated the activity of a previously reported dual GLP-1/GIP
receptor agonist at GLP-1R, GIPR and the closely related GCGR expressed in HEK-293 cells using
a luciferase-coupled cAMP response element reporter gene assay [8]. In agreement with previous
studies, GLP-1, GIP, and glucagon were highly selective for their respective receptors [28,33]. Neither
GLP-1 nor GIP displayed any activity at receptors other than their own at the concentrations used
in this study. Glucagon only displayed detectable activity at GLP-1R at concentrations of 1 µM. The
dual GLP-1/GIP receptor agonist, P18, activated GLP-1R with similar potency to that of the native
peptide and achieved a similar Emax. In contrast, Finan et al., 2013 [8] have reported that P18 was
177% more potent than GLP-1 at GLP-1R. This discrepancy is most likely because these authors used
EC50 (nM) values to calculate relative activity whereas we used pEC50 values. Finan et al. report an
EC50 of 0.028 nM for GLP-1 and 0.016 nM for P18, which equates to pEC50 values of 10.55 and 10.79
respectively. This small difference in potency is of a similar scale to our observation. However, P18
was significantly (p < 0.05) more potent than GIP at GIPR and only had detectable activity at GCGR at
concentrations of 1 µM, demonstrating that in terms of cAMP production P18 is a dual incretin receptor
agonist, which is in agreement with Finan et al., 2013 [8]. Although our observed values for potency
are lower than those reported by Finan et al., 2013 [8] the rank orders of potency are the same. This is
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not surprising as different assays are likely to produce different values for potency due to different
levels of receptor expression for example.

We also conducted experiments to determine whether P18 could act as an antagonist at the GCGR
as blocking the action of glucagon has been proposed as a novel strategy in the treatment of various
forms of diabetes [34]. Increasing concentrations of P18 had no inhibitory effect on the response to
1 nM glucagon at GCGR. However, a small but significant (p < 0.05) increase in activity was observed
when concentrations of P18 reached 1 µM which is perhaps not surprising as this peptide was capable
of activating GCGR to a small degree at this concentration. Due to their similarity in sequence it is
possible that P18 has affinity, albeit low, for GCGR. These data suggest that the beneficial effects of P18
are mediated by activation of both GLP-1R and GIPR and not by either GCGR agonism or antagonism.

As it is now appreciated that GPCRs can signal through both G protein-dependent and G
protein-independent pathways we investigated the ability of P18 to recruit arrestin to GLP-1R, GIPR,
and GCGR using a BRET-based assay. GLP-1 stimulated arrestin recruitment to GLP-1R in a dose
dependent manner; in agreement with several previous studies [14,15]. In contrast however, P18 was
unable to stimulate any observable arrestin recruitment to GLP-1R except at a concentration of 1 µM.
Furthermore, the BRET ratio (a readout for arrestin recruitment) resulting from stimulation with this
concentration of P18 was significantly less (p < 0.0001) than that stimulated by the same concentration
of GLP-1. These data would suggest that P18 is a G protein-biased agonist. However, the Cre-Luc assay
we employed to measure G protein activation is a highly amplified system, several steps downstream
of the receptor, whereas the BRET-based arrestin recruitment assay directly measures the interaction
between the receptor and the arrestin molecule. To confirm that P18 is in fact a G protein-biased
agonist at GLP-1R we utilized a similar BRET-based assay to measure Gαs recruitment to GLP-1R. In
this assay, GLP-1 and P18 stimulated Gαs to GLP-1R with almost equal potency and exhibited similar
Emax. This confirms that P18 is a G protein-biased agonist at GLP-1R relative to GLP-1, although it
should be noted that in the arrestin recruitment assay the receptor was transiently expressed whereas
in the Gαs recruitment assay the receptor was stably expressed. However, the two BRET assays are
more comparable than the reporter gene assays as they report events closer to receptor activation and
were incubated with agonist for the same length of time. Unlike P18, glucagon also stimulated arrestin
recruitment to GCGR. We were unable to observe any GIP or P18 stimulated arrestin recruitment to
GIPR. This observation is in agreement with previous studies showing that GIPR does not recruit
arrestin effectively [15,19] but contrary to some others [20].

The concept of biased agonism (also referred to as ligand-directed signaling or functional
selectivity) at GPCRs has received much attention recently as it may lead to the development of novel
treatments with greater efficacy or fewer adverse effects than current therapies [35,36]. For example,
the clinically desirable effects may be mediated by a G protein-dependent pathway and the adverse
effects mediated by an arrestin independent pathway or vice versa. A balanced or unbiased agonist
would activate both pathways whereas a biased agonist would favour one pathway over the other. G
protein-biased ligands for GLP-1R have been shown to enhance insulin secretion in mouse models of
type 2 diabetes without producing nausea, a common adverse effect of GLP-1R agonists, thus allowing
higher doses to be used. [18]. These findings are initially surprising, as arrestin recruitment to GLP-1R
has also been shown to be a key component to the GLP-1-mediated enhancement of insulin secretion
in pancreatic β-cells [16,17]. It has been suggested that this apparent contradiction could be explained
by differences in acute and chronic treatments, where less receptor desensitization is observed when
using a G protein biased ligand over the long term when compared to a more balanced agonist. Jones
et al., 2018 have reported that substitution of the first amino acid residue of the GLP-1R agonist EX-4
from histidine to phenylalanine results in a G protein biased agonist [18]. Interestingly, P18 shares
the same first amino acid residue as GIP, which some have reported does not recruit arrestin to its
receptor [15,19].

The present study may be extended by ligand binding studies. It would be interesting to correlate
the affinities of the various peptides tested for GLP-1R, GIPR, and GCGR with their ability to activate
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different pathways. In addition, other signaling pathways could be measured, such as Gαq mediated
signaling and further downstream molecules such as ERK. Such data could provide useful mechanistic
insight and aid in the design of improved novel therapies.

4. Materials and Methods

4.1. Materials

All peptide ligands (see Figure 1 for sequences) were purchased from Bachem (Bubendorf,
Switzerland), with the exception of P18, which was custom synthesised by Pepceuticals Ltd. (Enderby,
UK). Cell culture reagents were purchased from Gibco-Invitrogen (Paisley, UK) and Sigma-Aldrich
(Poole, UK). General chemicals were purchased from Sigma-Aldrich.

4.2. Construction of cDNA

cDNA encoding wild-type human GLP-1R and GIPR constructs have been previously
described [28]. cDNA encoding the human glucagon receptor was a gift from Rasmus Jorgensen (Novo
Nordisk, Denmark). GLP-1R, GIPR and the glucagon receptor were labelled at the C-terminus with
super yellow fluorescent protein 2 (SYFP2) [37] and generated by amplifying the open reading frame
of human GLP-1R, GIPR and GCGR with primers which added a HindIII restriction site ahead of the
start codon and replaced the stop codon with an XbaI site. The start codon of SYFP2 was replaced by
PCR with an XbaI site, and a NotI site was inserted behind the stop codon of SYFP2. The resulting
fusion of receptor-SYFP2 was cloned in pcDNA3.

To construct Arr3-NanoLuciferase (NLuc), PCR was used to insert an XbaI restriction site in front
of the NLuc ORF (a kind gift of Nevin Lambert, Augusta University, GA, USA) and a NotI restriction
site behind it. These restriction sites were then used to replace the ORF for ECFP in Arr3-CFP [38]
with that of NLuc. GLP-1R, GIPR and GCGR labelled at the C-terminus with Nluc were generated by
replacing the ORF of Arr3 with that of the receptor using HindIII and XbaI restriction sites. Several
constructs were subsequently cloned into pcDNA5-FRT (Invitrogen) in order to generate a stable
isogenic cell line.

NES-Venus-Gαs [39] was a gift from Mohammed Ayoub (United Arab Emirates University, Al
Ain, United Arab Emirates).

All constructs were verified through Sanger sequencing.

4.3. Cell Culture and Transfection of Cells

HEK-293 and Flip-In HEK-293 cells (Invitrogen) were cultured in Dulbecco’s modified Eagle’s
media supplemented with 10% foetal calf serum, 100 U/mL penicillin and 100 µg/mL streptomycin.
Cells were maintained at 37 ◦C in a humidified environment containing 5% CO2. HEK-293 cells were
transiently transfected using Effectene (Qiagen, Hilden, Germany), following the manufacturer’s
protocol. In order to generate stable cell lines Flip-In HEK-293 cells were transfected with the
pcDNA5.FRT vector and pOG44 using Effectene. Stable isogenic clones were selected by the addition
of hygromycin (100 µg/mL).

4.4. Luciferase Assay

GLP-1, GIP, and glucagon receptor activation were assessed using a luciferase reporter gene
assay, as described previously [40]. Briefly, HEK-293 cells were transiently transfected with cDNA
encoding either the GLP-1, GIP or glucagon receptor and a reporter gene construct consisting of a
cAMP-response element fused to a reporter gene encoding firefly luciferase (Cre-luc) using Effectene
(Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Twenty-four hours after
transfection, the cells were seeded into white 96-well plates (Thermo Scientific, Roskilde, Denmark).
Twenty-four hours later, the cells were incubated for 3 h in medium containing peptide ligand and
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then lysed. Luciferase activity was quantified using LucLite reagent (PerkinElmer Life and Analytic
Sciences, Wellesley, MA, USA).

4.5. Bioluminescence Resonance Energy Transfer (BRET) Assays

For arrestin recruitment assays, FLIP-IN HEK-393 cells stably expressing Arr3-NLuc were
transiently transfected with SYFP2-labelled receptor as previously described. For Gαs recruitment
assays, FLIP-IN HEK-393 cells stably expressing either the GLP-1R-NLuc or GCGR-NLuc were
transiently transfected with NES-Venus-Gαs. 48 h post-transfection cells were detached and washed
with Hank’s Balance Salt Solution (HBSS). Cells were re-suspended in HBBS and plated on to white
96-well plates (PerkinElmer) in suspension at a density of 180,000 cells/well. Cells were incubated with
agonist for 15 min and BRET measurements were taken using a Victor X4 (PerkinElmer) plate reader
immediately after the addition of coelenterzine h (final conc. 5 µM). NLuc emission was measured
through a 460/40 nm filter and the resulting SYFP2 emission was read through a 535/25 nm filter.

4.6. Data Analysis

Dose-response curves represent the mean ± S.E.M from at least three independent experiments,
each performed in triplicates. The counts were normalised to either the maximum GLP-1, GIP or
glucagon response, depending on the receptor being investigated for each data set. The dose-response
data were fitted to a sigmoidal curve using nonlinear regression, and the EC50 values calculated with
the aid of GraphPad 8.0 (GraphPad Dan Diego, CA, USA). The values in Table 1 represent the mean
± S.E.M calculated from the pEC50 (−logEC50) values from at least three independent experiments.
Statistical analysis of significance was calculated with GraphPad 8.0 using a two-tailed, unpaired
Student’s t-test.

5. Conclusions

The data presented show that P18 is indeed a dual GLP-1/GIP receptor agonist, at least in terms
of G protein activation. P18 has no action at the glucagon receptor, indicating that the therapeutic
effects of this peptide are not mediated through this receptor. Interestingly, P18 was relatively poor at
stimulating arrestin recruitment to GLP-1R compared to GLP-1. This suggests, that as well as dual
activation of GLP-1R and GIPR, part of the therapeutic advantage of P18 may be due to its G protein
bias at GLP-1R.
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