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Abstract: Absorption, distribution, metabolism, and excretion (ADME) studies are critical for drug
discovery. Conventionally, these tasks, together with other chemical property predictions, rely on
domain-specific feature descriptors, or fingerprints. Following the recent success of neural networks,
we developed Chemi-Net, a completely data-driven, domain knowledge-free, deep learning method
for ADME property prediction. To compare the relative performance of Chemi-Net with Cubist, one
of the popular machine learning programs used by Amgen, a large-scale ADME property prediction
study was performed on-site at Amgen. For all 13 data sets, Chemi-Net resulted in higher R2 values
compared with the Cubist benchmark. The median R2 increase rate over Cubist was 26.7%. We expect
that the significantly increased accuracy of ADME prediction seen with Chemi-Net over Cubist will
greatly accelerate drug discovery.
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1. Introduction

The four essential processes of drug absorption, distribution, metabolism, and excretion (ADME)
all influence the performance and pharmacological activity of potential drugs. Over the years, the
experimental ADME properties of many compounds have been collected by the pharmaceutical
industry, which have been used to predict the ADME properties of new compounds. As such, ADME
property prediction can be particularly useful in the drug discovery process to remove compounds
which are more likely to have ADME liabilities during downstream development.

Inspired by the huge success of deep neural networks (DNNs) in computer vision, natural
language processing, and voice recognition, and based on their remarkable capability of learning
concrete and sometimes implicit features [1], we hypothesized that DNNs could be used in drug
ADME property prediction. In this paper, we extend the use of traditional statistical learning methods
and construct a multi-layer DNN architecture, named “Chemi-Net,” to predict the ADME properties
of molecule compounds.

Applying DNNs to the prediction of ADME properties was previously reported by Ma et al. [2],
Kearns et al. [3], and Korotcov et al. [4], who all demonstrated accuracy improvements with DNNs
over other traditional machine learning methods. However, the core challenge of ADME prediction
using DNNs is that unlike images, which can usually be represented as a fixed-size data grid,
molecular conformations are generally represented by a graph structure. This structured format
is heterogeneous among molecules, which is a major problem for many learning algorithms that
expect homogeneous input features. Several methods have been developed to alleviate this problem.
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Previous research mainly focused on transforming the graph structure of molecules to a fixed size
of feature descriptors. These descriptors can then be easily used by existing machine learning
algorithms. Another method, which is popular, is the use of molecular fingerprints, such as those used
in the Extended-Connectivity Fingerprints (ECFP) method [5]. This method encodes the neighboring
environment of heavy atoms in a compound to a hashed integer identifier, with each unique identifier
corresponding to a unique compound substructure. Using this method, a compound is described
as a fixed-length bit string, with each bit indicating whether a certain substructure is present in the
compound. Such fingerprint-based representation makes learning graph-structured molecules possible.
Neural network-based methods with fingerprint inputs have also been developed following recent
advances in deep learning techniques, which have been shown to significantly improve on current
Random Forest-based models [2]. However, the fingerprint-based method suffers from a fundamental
issue in that the space required for fingerprints can be very large. Hence, the resulting fingerprints are
very sparse. Also, the information that fingerprints encode is noisy. Consequently, these factors limit
the performance of fingerprint-based representations.

Recently, there has been a growing interest in using neural networks to directly obtain a representation
of a compound ligand before applying other layers of neural network to build the predictive models.
These methods transform a molecule to a small and dense feature vector (embedding), which is easier for
downstream learners to use. These methods use string-based representation of molecules [6], a graph
convolution architecture to model circular fingerprints [1], and also the Weave module in which atom
and pair features are combined and transformed through convolution-like filters [7].

Studies to date, which have applied DNNs to ADME predications, have shown that multi-task
deep neural networks (MT-DNNs) have advantages over traditional single-task methods [2,3]. For
example, MT-DNNs take advantage of neural networks’ ability to allow use of a combinational model,
which has predictive power for multiple activities, being simultaneously trained with data from
different activity sets. The enhanced predictive power of MT-DNNs had not been clearly explained
until Xu et al. [8] found that a MT-DNN borrows “signal” from molecules with similar structures
in the training sets of the other tasks. They also found that MT-DNN outperforms the single-task
method if the different data sets share certain connections, and the activities across different sets have
non-random patterns.

The potential application of MT-DNNs in pharmaceutical drug discovery was reviewed by
Ramsundar et al. [9]. In their review, the authors confirmed the robustness of MT-DNNs and also
suggested that MT-DNNs should be combined with advanced descriptors, for example, descriptors
developed by graph convolutional methods to enhance the performance of a MT-DNN.

Our current application features a molecular graph convolutional network combined with the
MT-DNN method to further boost prediction accuracy. To the best of our knowledge, there are no
published studies that have used these combined methods. In addition, Chemi-Net implements a novel
dynamic batching algorithm (described in the Supplementary Figure S1) and a fine-tuning process to
further improve the stability and performance of trained models. In this study, a large-scale ADME
prediction test was carried out in collaboration with Amgen. The test involved five different ADME
tasks with over 250,000 data points in total. The test was conducted in a restricted environment so
that the evaluation was only carried out once on the testing dataset. Our findings showed significant
performance advantages with Chemi-Net over existing Cubist-based methods.

2. Results

2.1. MT-DNN Method of Chemi-Net Improves Predictive Accuracy Comparing to Cubist

A large-scale test was performed on Amgen’s internal data sets using five ADME endpoints, with
a total of 13 data sets selected for testing. See Section 4.8 for a detailed description of the data set.
Table 1 and Figure 1 show the overall test set prediction accuracy comparison between Chemi-Net
and Cubist. Performance of models developed by different algorithms is highly dependent on size
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of data set, type of endpoint, type of model, and molecular descriptors used. For all 13 data sets,
Chemi-Net resulted in higher R2 values compared with the Cubist benchmark. With the single-task
method, larger and less noisy data sets yielded higher improvements than the smaller and noisier data
sets. Additional accuracy improvement was further achieved with MT-DNN.

Table 1. Test set results.

Dataset Subset Train Size Test Size Cubist Chemi-Net
ST-DNN

Chemi-Net
MT-DNN

HLM 1 69,176 17,294 0.39 0.445

CYP450
1 3019 755 0.597 0.692

2 71,695 17,924 0.315 0.414

Solubility
1 (HCl) 10,650 2659 0.493 0.548 0.585

2 (PBS) 10,650 2664 0.393 0.471 0.498

3 (SIF) 10,650 2645 0.445 0.552 0.562

PXR

1 @ 2 uM 19,902 4981 0.276 0.257 0.422

2 @ 10 uM 17,414 4256 0.343 0.333 0.445

3 @ 2 uM 8883 2223 0.094 0.11 0.199

4 @ 10 uM 8205 2054 0.246 0.2 0.327

5 @ 10 uM 10,047 2511 0.349 0.38 0.418

6 @ 2 uM 10,047 2536 0.283 0.311 0.352

Bioavailability 1 183 46 0.115 0.123

CYP450, cytochrome P450; DNN, deep neural network; HCl, hydrochloric acid HLM, human microsomal clearance;
MT-DNN, multi-task deep neural network; PBS, phosphate-buffered saline; PXR, pregnane X receptor; SIF, simulated
intestinal fluid; ST-DNN, single-task DNN.
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Multi-task prediction was carried out on the solubility and PXR inhibition rate data sets, as they
had multiple subsets with large and balanced training data. Figures 2 and 3 show the absolute and
percentage R2 increase between ST-DNN, MT-DNN and the Cubist benchmark for solubility, and PXR
inhibition, respectively. For the lower quality PXR data set, ST-DNN had lower R2 values compared to
Cubist for some subsets. In contrast, MT-DNN demonstrated significant improvement in R2 values
and had higher accuracy versus Cubist for all data sets analyzed.
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2.2. Prediction Performance and Compound Similarity

We hypothesized that, as with traditional machine-learning methods, deep learning performance
is affected by similarities between the training set and test set. To investigate this further, the similarity
of compounds within the training set and the similarity between training and test sets were calculated.
Similarity was calculated using molecular fingerprints and the Tanimoto method [10]. The prediction
models were challenged by the test sets, which contained newer compounds and novel chemotypes.
For all 13 data sets, the average similarity within training sets was 0.878, and the average similarity
between training and test sets was only 0.679.
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Figure 4 shows the prediction performance in comparison to the similarity between training and
test sets. In the same type of assay (e.g., solubility or PXR), prediction performance correlated with the
overall compound similarity between training and test sets for both Cubist and Chemi-Net. To further
illustrate the similarity influence of prediction accuracy, one data set was chosen, solubility (HCl), and
the compounds in the test set were binned based on their similarity to the training set. The binned
compounds were then correlated with their prediction accuracy (Figure 5). Unsurprisingly, the R2

increased as the similarity between the training and the test sets increased with both the Chemi-Net
and Cubist models. This result strongly suggests our hypothesis is correct.
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2.3. Comparison between Chemi-Net’s Descriptors and Amgen’s Traditional Property and Molecular
Keys Descriptors

Chemi-Net applies molecular graph convolutional networks to generate descriptors on a
three-dimensional (3D) level based on simplified molecular-input line-entry system (SMILES) strings.
Over the past 10 years, Amgen has used a set of 800 more “traditional” one-dimensional (1D) and
two-dimensional (2D) descriptors based on physical properties, molecular keys, etc. In our current
study, we compared the two sets of descriptors by using the same ST-DNN methods in Chemi-Net
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(Figure 6). Interestingly, the Amgen “traditional” descriptor set and the Chemi-Net descriptor sets
performed similarly in some data sets (i.e., solubility (HCL and SIF), PXR (Subset 2, 5, and 6)). For large
and relatively high-quality data sets (e.g., HLM, CYP3A4), Chemi-Net descriptor sets performed better
than the Amgen descriptor set. In contrast, for small and noisy data sets (e.g., PXR and bioavailability),
the Amgen descriptor set performed better.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 17 

 

2.3. Comparison between Chemi-Net’s Descriptors and Amgen’s Traditional Property and Molecular Keys 138 
Descriptors 139 

Chemi-Net applies molecular graph convolutional networks to generate descriptors on a three-140 
dimensional (3D) level based on simplified molecular-input line-entry system (SMILES) strings. Over 141 
the past 10 years, Amgen has used a set of 800 more “traditional” one-dimensional (1D) and two-142 
dimensional (2D) descriptors based on physical properties, molecular keys, etc. In our current study, 143 
we compared the two sets of descriptors by using the same ST-DNN methods in Chemi-Net (Figure 144 
6). Interestingly, the Amgen “traditional” descriptor set and the Chemi-Net descriptor sets performed 145 
similarly in some data sets (i.e., solubility (HCL and SIF), PXR (Subset 2, 5, and 6)). For large and 146 
relatively high-quality data sets (e.g., HLM, CYP3A4), Chemi-Net descriptor sets performed better 147 
than the Amgen descriptor set. In contrast, for small and noisy data sets (e.g., PXR and 148 
bioavailability), the Amgen descriptor set performed better. 149 

 
Figure 6. Comparison between Chem-Net molecular graph convolutional network derived 150 
descriptors and traditional descriptors. CYP3A4, cytochrome P450 3A4; human microsomal clearance 151 
(HLM); HCl, hydrochloric acid; PBS, phosphate-buffered saline; PXR, pregnane X receptor. 152 

2.4. Chemi-Net’s Performance on Public Data Sets 153 

In this section, we report the performance of Chemi-Net on public data sets to allow comparison 154 
with other methods. These data sets reported by Wenzel et al. [13] for metabolic clearance and passive 155 
permeability in Caco-2 cells were extracted from ChEMBL [11,12] v23. Table 2 summarizes the 156 
performance of Chemi-net and Wenzel et al.’s method on these data sets. 157 

Table 2. Performance of Chemi-net and Wenzel et al.’s method on publicly available data sets from 158 
the Wenzel study. 159 

Task 
Total 

compounds 
Training 
set size 

Ext. validation 
set size 

Chemi-Net 
MT [R2] 

Wenzel et 
al.’s MT [R2] 

Human microsomal 
clearance 5348 4821 527 0.620 0.574 

Figure 6. Comparison between Chem-Net molecular graph convolutional network derived descriptors
and traditional descriptors. CYP3A4, cytochrome P450 3A4; human microsomal clearance (HLM); HCl,
hydrochloric acid; PBS, phosphate-buffered saline; PXR, pregnane X receptor.

2.4. Chemi-Net’s Performance on Public Data Sets

In this section, we report the performance of Chemi-Net on public data sets to allow comparison
with other methods. These data sets reported by Wenzel et al. [11] for metabolic clearance and
passive permeability in Caco-2 cells were extracted from ChEMBL [12,13] v23. Table 2 summarizes the
performance of Chemi-net and Wenzel et al.’s method on these data sets.

Table 2. Performance of Chemi-net and Wenzel et al.’s method on publicly available data sets from the
Wenzel study.

Task Total
Compounds

Training Set
Size

Ext. Validation
Set Size

Chemi-Net
MT [R2]

Wenzel et al.’s
MT [R2]

Human microsomal
clearance 5348 4821 527 0.620 0.574

Rat microsomal clearance 2166 1967 199 0.786 0.783

Mouse microsomal
clearance 790 734 56 0.325 0.486

Caco-2_Papp permeability 2582 2336 246 0.560 0.542

The results agree with trends discovered in testing Amgen’s internal data set. For the larger
three data sets, Chemi-Net’s graph convolution structure shows superior performance than using
traditional descriptors. Chemi-Net’s performance is low in the mouse microsomal clearance dataset,
which we hypothesize is due to the small size of the training and testing sets, causing the neural
network to overfit.
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2.5. Industrial Implementation of Chemi-Net for ADME Prediction

After obtaining solid accuracy performance, as well as robust operation of Chemi-Net, we decided
to apply this application to Amgen’s small molecule drug discovery pipeline. We have confidence in
Chemi-Net’s deep learning performance for ADME properties, which have large data sets and can be
multi-task learned (e.g., solubility, liver microsome clearance etc.). These ADME properties are the first
data sets that we wanted to implement. We have an existing Pipeline Pilot platform, which has been
used for providing ADME prediction service for more than 20 properties. Our goal was to apply the
deep learning based ADME prediction to our three in silico drug design platforms (Figure 7) and make
it work seamlessly with our existing ADME prediction service (non-deep learning). We developed a
training module and a prediction module in Pipeline Pilot. The training module takes advantage of
the incremental training feature of Chemi-Net. It runs on a weekly basis to refresh models with newly
measured data from experiments. The prediction module can be run “on-the-fly” based on the ADME
prediction demand. The challenges of implementation work are the following: Heavy computing with
on-demand prediction request; large data set assembly and processing; incorporating the module into
Amgen’s existing ADME prediction service with traditional machine learning methods.
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2.5.1. Heavy Computing with on Demand Prediction Request

To be able to meet the heavy computing demand required, we utilized the cloud computing
resource, Amazon Web Services (AWS). Two servers on AWS were set up. The training server is a GPU
instance (either p2.8xlarge or p3.8xlarge, depending on availability) for model building/refreshing.
This training server is called by the training module in Pipeline Pilot. The inference server is a CPU
instance (m5.4xlarge) for prediction. The inference server is called by both training and prediction
modules. Pipeline Pilot SSH and SCP components are used to communicate to the remote server
for driving the computation, as well as data transfer (Figure 8). An Elastic File System (EFS) storage
system was setup and mounted on both AWS servers to host the trained models. The models were
also backed up at our local data center. To maintain the robustness of network connection, Elastic IPs
were setup and applied on both servers so that they can be accessed with a constant IP.
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2.5.2. Large Data Set Assembly and Processing

A key part of our training module is designed to deal with data set challenges (Figure 9). Large
data sets were used to train prediction models with MT learning. For example, the solubility model is
trained with three data sets, each containing more than 10,000 data points. These data were retrieved
from our Assay Data Warehouse (ADW) and compound registration database via SQL queries. A
quality check mechanism was implemented to allow us to validate and clean the data, which is suitable
for training calculation without errors. Non-numerical data were removed. Quantifiers (<, >, ') in
front of numerical data were also removed. Mean values were taken for duplicated data with the same
compound. We also applied log10 or logit transformation as the pre-processing step before training. In
the incremental training case, which is the most commonly used to refresh our ADME models, we set
up a data comparison system that can identify the new training data from the old training data, which
were used to train the model. Finally, the data from different sets were assembled together to produce
a simple comma delimited file.
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2.5.3. Incorporation to Amgen’s Existing ADME Prediction Service

We used the same Pipeline Pilot platform used previously to incorporate deep learning based
ADME prediction seamlessly with Amgen’s current ADME prediction service. For the prediction
module, we developed additional Pipeline Pilot components with the same data input and output
format as the existing ADME application. The new components were inserted into the existing
ADME application. A logic switch was built into the application to decide whether to use the deep
learning-based model or existing model, based on specified ADME properties. Our existing graphic
user interface for ADME prediction does not need to be modified. As the final result, the users of
ADME service do not see any difference in terms of their input options as well as the output they obtain.
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2.5.4. Additional Features

The accuracy performance of the deep learning method is important to us. We set up a mechanism
in the training module to allow us to live-check the performance during model update and archive the
accuracy in R2, standard error, as well as the percentage of compounds being accurately predicted
within two or three folds of experimental results. During the model update run, we retrieved new
molecules with newly measured data since the previous training. We then used the model from the
last training process to predict the assay activity and compared it to the experimental value to calculate
R2, as well as other performance metrics (Figure 9). In this case, we made sure the new molecules are
not present in the last training model used for this evaluation. The predicted and experimental values
were also archived for future cumulative performance analysis.

In the prediction module, we also implemented a prediction confidence score (Figure 10). This
score is based on the Tanimoto similarity between the input molecule and the molecules in the training
set. We used an assumption that in machine learning methods, the prediction accuracy, or confidence
positively correlates to the molecule similarity to the training data. In addition, we also output the
most similar molecules in the training set to provide chemists insights for chemists.
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3. Discussion

In this proof-of-concept study, we report the application of a molecular graph convolutional
network combined with the MT-DNN method (Chemi-Net) to predict drug properties in a series of
industrial grade data sets for the first time. The major improvements of this method are two-fold.
First, instead of relying on preset descriptors (features) as reported in previously reported studies [2],
it used a graph convolution method to extract features from the SMILE file of each compound. We
compared the results with Amgen’s “traditional” descriptor set and found that while the gain from
graph convolution is generally positive, for some datasets (e.g., PXR and bioavailability), the Amgen
descriptor set performed better. We also hypothesize this is due to the fact that these data sets are small
and noisy, which causes the DNN to be unable to learn a good representation of the data points and
overfit the training data. To overcome this issue, we propose the second improvement, the MT-DNN
method, which uses multitask learning to use information in large datasets to compensate for small
data sets. Experiments show that this greatly improves the predictive power of the DNN model in
both large (solubility) and small (PXR) datasets.

In addition to these improvements, we used a model ensemble procedure (Section 4.5) to fine-tune
the performance of the neural network model. The combination of these techniques shows greater
gains over prior research in which only a single technique was applied [2,11,13–16]. An interesting
line of future work is to combine the automatically learned graph convolution descriptors with the
handcrafted descriptors. This should help the DNN to learn a better data representation when the size
of the dataset is small. Given the clear performance improvement across all assay types, we expect the
wider application of our novel approach in drug discovery tasks.
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4. Materials and Methods

4.1. Deep Neural Network-Based Model

Conventional fingerprint and pharmacophore methods usually require that explicit features are
extracted and trained, hence the forms of the fingerprints are often limited by human prior knowledge.
Encouraged by recently reported studies in which DNNs have been shown to surpass human capability
in multiple types of tasks from pattern recognition to playing the game Go [17], we decided to use
a DNN architecture to develop an ADME property prediction system. The overall neural network
architecture is shown in Figure 11. This network accepts a molecule input with given 3D coordinates of
each atom. It then processes the input with several neural network operations and outputs the ADME
properties predicted for the input molecule.
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Figure 11. Overall network architecture. The input is quantized as molecule-shaped graph structure.
Then, a series of graph-based convolution operators are applied. In this figure, red highlights the
central atom, and cyan highlights concerned neighbor atoms. In the second convolution layer, purple
also highlights the information flow area from the previous convolution step.

In the model presented in this paper, the input molecule is represented by a set of distributed
representations assigned to its atoms and atom pairs. Both the atom and atom pair are assigned a
dense feature map, with Aa defined as the feature map of atom a, and Pa,b defined as the feature map
of atom pair a and b. Typical atom features include atom type, atom radius, and whether the atom is in
an aromatic ring. Typical atom pair features include the inter-atomic distance and the bond orders
between two atoms. The input molecule is then represented by a set of atom features {A1, A2, . . . , An}

and atom pair features
{
Pa,b

∣∣∣b ∈ neighbor{a}
}
, where a is a central atom.

After the input atom level and atom pair level features are assembled, they are combined to form
a molecule-shaped graph structure. A series of convolution operators are then applied to the graph,
which transforms the atom feature maps. To enable position invariant handling of atom neighbor
information, the convolution filters for all atoms share a single set of weights. The output of the
convolution layers is a set of representations for each atom. The pooling step reduces the potentially
variable number of atom feature vectors into a single fixed-sized molecule embedding. The molecule
embedding is then fed through several fully connected layers to obtain a final predicted ADME
property value.
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4.2. Convolution Operator

The convolution operator is inspired by the Inception [18] and Weave modules [7]. The overall
convolution operator structure is depicted in Figure 12. The inputs of this operator are the feature
maps of the atoms and atom pairs. In this operator, the feature map of each atom is updated by
first transforming the features of its neighbor atoms and atom pairs, then by reducing the potentially
variable-sized feature maps to a single feature map using a commutative reducing operator. Importantly,
atom pair features are never changed throughout the process.
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The method used to update the feature map of each atom is the same for all atoms. They are
formulated with shared weights to achieve position-invariant behavior. Hence, this process can be
viewed as the same convolutional operation seen in convolutional neural networks (CNNs), except
that the convolution filter connections are dynamic instead of fixed. This operator is designed so that
an arbitrary number of these operators can be stacked. As in DNNs, the increased number of stacking
operators enables more complex structures of the molecule to be learned. A typical computation
flow of a convolution filter is shown in Figure 12. The most important aspects of the filter are the
transformation and reduction operators.

In the transformation step, feature maps of neighbors of an atom are transformed by a feed-forward
sub-network. For a neighbor atom b of central atom a, the input feature map is the concatenation of
atom feature Ab and the atom pair feature Pa,b. The bias term is denoted as B. The input is transformed
through one fully connected layer and a non-linearity function f :

Tk
a,b = f

(
Wk

(
Concat

{
Ak

b, Pa,b
})
+ Bk

)
After each neighbor atom of a is transformed, these feature maps are then aggregated and

reduced to a single feature map. In this process, a commutative reduction function is used to keep
the order-invariant nature of the input feature maps. A typical example of such a function is the
element-wise sum function Sum{·}, which for input vectors X1, X2, . . . , Xn, the output vector Y is
defined as Y j =

∑n
i Xi j. Similarly, we define operator Max{·} for element-wise max and Avg{·} for

element-wise averaging.
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Following these principles, a reduction operator is constructed to improve model quality, in which
multiple kinds of reduction operations are performed simultaneously and their outputs are combined
as shown in Figure 13:

Rk
a = Concat

{
Max

{
Xk

a

}
, Sum

{
Xk

a

}
, Avg

{
Xk

a

}}
where

Xk
a =

{
Tk

a,b

∣∣∣∣b ∈ neighbor{a}
}
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The reduced feature map is then combined with the input feature map of atom a (Figure 12) to
produce the final output. This enables the model to obtain feature maps from different convolution levels,
which are more straightforward and easier to optimize than only using the reduced feature map [19]:

Ak+1
a = Concat

{
Ak

a, Rk
a

}
In our experiments, the non-linearity f is the Leaky ReLU function with negative slope α = 0.01:

f (x) =
{

x, i f x > 0
αx, otherwise

For each convolutional layer, a batch normalization operation [20] is applied on all atom
embeddings of the entire batch to accelerate the training process.

4.3. Input Quantization

The initial input of the atom level features Ai and pair level features Pi j contains the entries listed
in Tables 3 and 4.

4.4. Multi-Task Learning

In ADME profiling in drug discovery, data sets of the same domain problem but different
conditions, such as experimental settings, are usually found. For example, the aqueous equilibrium
solubility of ligands in certain media (e.g., HCl) is correlated with those under different media (e.g.,
PBS), albeit they are not completely equivalent. A model targeting multiple related tasks will be much
more powerful than independent models for each task.

As shown in Figure 14 our MT-DNN model extends the single-task model in a joint learning setup.
The embedding for each ligand is trained and then used to predict multiple-task scores simultaneously.
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When training, the loss functions of each task are summed to get the final loss function. Furthermore,
the weight of individual tasks can be non-uniform. This is useful for scenarios which favor one task
over other tasks.

Table 3. Atom features.

Atom Feature Description Size

Atom type One hot vector specifying the type of this atom 23

Radius vdW radius and covalent radius of the atom 2

In rings For each size of ring (3-8), the number of rings that
include this atom 6

In aromatic ring Whether this atom is part of an aromatic ring 1

Charge Electrostatic charge of this atom 1

Table 4. Pair features.

Pair Feature Description Size

Bond type One hot vector of {Single, Double, None} 3

Distance Euclidean distance between this atom pair 1

Same ring Whether the atoms are in the same ring 1
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4.5. Fine-Tuning

Due to the noisy nature of stochastic optimization algorithms, the validation and testing accuracy
of neural network models varies greatly for each epoch. Hence, to obtain a stable model with consistent
predictive power, some form of post-processing and model selection will be needed. In this paper, we
provide a fine-tuning process, which combines model selection and ensemble to further improve the
stability and performance of single-shot models.

The fine-tuning process works as shown in Figure 15. First, input data is trained by multiple
network configurations consisting of different layer structures. Then, several of the best-performing
models out of trained epochs of these models are selected based on their validation accuracy. Finally,
the embeddings and prediction results of these models are used by the fine-tuning algorithm to train a
fine-tuning model, which ensembles these embeddings and produces a model with improved accuracy.
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Figure 15. Fine-tuning algorithm.

The outputted embeddings and prediction scores for each selected model give the input of the
fine-tuning model. The ensemble model consists of several multi-layer perceptrons. Order-independent
reduction layers are also used to compress information from arbitrary number of models to a fixed size.
After these embeddings and scores are transformed by the neural network, a final ligand embedding is
produced. This embedding may be combined with an optional explicit feature vector to include any
existing engineered ligand descriptors. The combined embedding is then transformed by a multi-layer
perceptron to obtain the final predicted score.

4.6. Benchmark Method: Cubist

Cubist is a very useful tool in analyzing large and diverse set of data, especially data with
non-linear structure-activity relationships (SARs) [21,22]. It is a statistical tool for generating rule-based
predictive models and resembles a piecewise linear regression model [23], except that the rules can
overlap. Cubist does this by building a model containing one or more rules, where each rule is a
conjunction of conditions associated with a linear regression. The predictive accuracy of a rule-based
model can be improved by combining it with an instance-based or nearest neighbor-based model. The
latter predicts the target value of a new case by finding a predefined number of most similar cases in the
training data and averaging their target values. Cubist then combines the rule-based prediction with
instance-based prediction to give a final predicted value. Cubist release 2.04 was used in this study.

4.7. Benchmark Descriptors

Two-dimensional molecular descriptors were used for in silico ADME modeling. These include
cLogP (BioByte Corp., Claremont, CA), Kier connectivity, shape, and E-state indices [24–26] of a
subset of MOE descriptors [15], and a set of ADME keys that are structural features used for ADME
modeling [27]. Some of the descriptors such as Kier shape indices contain implicit 3D information.
Explicit 3D molecular descriptors were not routinely used in this study to avoid bias of the analysis
due to predicted conformational effects and speed of calculation for fast prediction.

4.8. Data Sets

The test was performed on Amgen’s internal data sets using five ADME endpoints and a total
of 13 data sets selected for building predictive model. The five selected ADME endpoints were
human microsomal clearance (HLM), human CYP450 inhibition (CYP3A4), aqueous equilibrium
solubility, pregnane X receptor (PXR) induction, and bioavailability. For the CYP3A4 assay, two
subsets were studied, which differed slightly with conditions. For the aqueous equilibrium solubility
assay, three subsets were studied: Hydrochloric acid (HCl), phosphate-buffered saline (PBS), and
simulated intestinal fluid (SIF). For the PXR induction assay, six subsets were studied, which differed
slightly with conditions. Across all ADME endpoints, the data sets used varied in quality and quantity.
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Generally speaking, PXR and bioavailability data sets were noisier than the data sets for the three other
ADME endpoints.

The training set and test set were split in an approximate ratio of 80:20 (Table 5). To resemble
real-time prediction situations, compounds were ranked with their registration data in chronological
order. Newer compounds were selected in the test set.

Table 5. Data set details.

Dataset Subset Train Size Test Size

Human microsomal intrinsic clearance
log10 rate) (µL/min/mg protein) 1 69,176 17,294

Human CYP450 inhibition log10(IC50 µM)
1 3019 755

2 71,695 17,924

Solubility log10 (µM)

1 (HCl) 10,650 2659

2 (PBS) 10,650 2664

3 (SIF) 10,650 2645

PXR induction (POC)

1 @ 2 uM 19,902 4981

2 @ 10 uM 17,414 4256

3 @ 2 uM 8883 2223

4 @ 10 uM 8205 2054

5 @ 10 uM 10,047 2511

6 @ 2 uM 10,047 2536

Bioavailability 1 183 46

CYP450, cytochrome P450; HCl, hydrochloric acid; IC50: half maximal inhibitory concentration; phosphate-buffered
saline; pregnane X receptor; POC, percentage of control; SIF, simulated intestinal fluid.

4.9. Model Training and Test Procedure

The test set was used solely for testing purposes to avoid bias in the training procedure. The
Caret package in R was used for the Cubist method. A 10-fold cross-validation was applied to
tune parameters (committee member and number of nearest neighbors). A Caret-implemented grid
search was then used to select the best parameter set to produce final models, using the lowest root
mean-squared error (RMSE) for testing. For Chemi-Net, the input SMILES were first converted to
3D structures using an internal molecular conformation generator. The resultant molecular graphs
were then used for training and testing. An MSE-based loss function was used for training the neural
network. A standard neural network procedure using the Adam optimizer [28] was applied. Both the
single-task and multi-task models were evaluated. The fine-tuning process was performed on all tests.

The Cubist benchmark calculation was performed in parallel on an internal CPU cluster. The
Chemi-Net calculation was carried out on six Amazon Web Service (AWS) EC2 p2.8xlarge GPU instances.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
3389/s1.
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