
 International Journal of 

Molecular Sciences

Review

Photosensitive Melanopsin-Containing Retinal
Ganglion Cells in Health and Disease: Implications
for Circadian Rhythms

Pedro Lax 1 , Isabel Ortuño-Lizarán 1, Victoria Maneu 2, Manuel Vidal-Sanz 3 and
Nicolás Cuenca 1,4,*

1 Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
2 Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
3 Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
4 Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante,

03690 Alicante, Spain
* Correspondence: cuenca@ua.es; Tel.: +34-965909916

Received: 16 May 2019; Accepted: 26 June 2019; Published: 28 June 2019
����������
�������

Abstract: Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal
photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment,
among other things. The functional integrity of the circadian system and melanopsin cells is an
essential component of well-being and health, being both impaired in aging and disease. Here we
review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases
and their correlation with the development of circadian rhythm disorders. In healthy humans,
the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent
atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve
progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in
circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson’s
disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology.
The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the
importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential
functions in the maintenance of an adequate quality of life.

Keywords: ipRGCs; circadian rhythms; aging; retinitis pigmentosa; P23H; Parkinson disease

1. Introduction

Intrinsically photosensitive retinal ganglion cells constitute a third class of photoreceptors
within the retina, characterized by the expression of the photopigment melanopsin [1,2]. Globally,
melanopsin-containing retinal ganglion cells (mRGCs) represent only between 0.3% and 0.8%
of the total ganglion cells of the retina, but their roles are diverse and crucial and range from
participating in image-forming vision [3–6] to other non-image forming functions such as regulation of
circadian rhythms or activation of the pupillary light reflex. In the regulation of circadian rhythms,
the light-induced activation of mRGCs travels through retinohypothalamic projections to the master
circadian pacemaker, located in the suprachiasmatic nucleolus of the hypothalamus [2,7]. On a smaller
scale, mRGCs project to the olivary pretectal nucleus regulating the pupillary light reflex [8–11]. In this
sense, the existence of a close relationship between the circadian system robustness and the pupillary
reflex response has been demonstrated [12]. Otherwise, a population of mRGCs project to brain
regions involved in regulating mood and cognitive functions such as learning or memory [13–15].
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Interestingly, not all melanopsin-containing cells project outside the retina, and some studies have
proven the existence of melanopsin interneurons in the mammalian retina [16].

The functional integrity of the circadian system, partially dependent on melanopsin cells
integrity, is an essential component of well-being and health, and its abnormal function may involve
sleep disorders, cardiovascular problems, emotional disorders, or other pathological states [17–21].
Alterations in circadian rhythms have been reported in both aging [22–25] and disease, including ocular
pathologies and blindness [26–30]. Aging has been associated with desynchronization and decreased
circadian rhythm amplitude, which produces a gradual reduction of the nocturnal secretion of melatonin
and variations in the sleep/wake phases [31,32]. These alterations have been primarily linked to a
variety of pathologies associated with aging [33] rather than with aging itself. Nevertheless, circadian
rhythm impairment described in aging and disease could be caused, at least in part, by morphological
or functional changes of retinal ganglion cells and, more specifically, of melanopsin-containing ganglion
cells [34–37].

Circadian clock disruption, generally accompanied by sleep-wake cycle abnormalities, may
not only affect the life quality of patients but also trigger or accelerate the pathology progression
in neurodegenerative diseases. In Alzheimer’s, Parkinson’s, and Huntington’s diseases, circadian
rhythm alterations have traditionally been considered as natural consequences of neurodegenerative
disorders [38–42], but they might actually contribute and worsen the neurodegenerative process [43,44].

The aim of this study is to review the evidence of melanopsin cell alterations associated
with aging and neurodegenerative diseases and to correlate them with circadian rhythm disorders.
The studies analyzed suggest that aging, ocular pathology, and neurodegenerative diseases induce
retinal remodeling and loss of melanopsin-containing ganglion cells that correlates with the appearance
of circadian disorders. This retinal degenerative process continues after the loss of cones and rods.
Therefore, it is crucial to take care of the retina throughout life, even after having completely lost sight,
to assure the preservation of melanopsin cells.

2. Melanopsin-Containing Ganglion Cells in Rodents and Humans

Melanopsin-containing ganglion cells are distributed throughout the inner nuclear and ganglion
cell layers of the retina [45–47]. They can be classified into different cell subtypes depending on the
location of their dendritic arborization within the inner plexiform layer (IPL), their retinal connections,
and light responses [48–50]. According to morphological and physiological features, six types of
melanopsin ganglion cells (M1 to M6) have been identified [6,50–58]. Three of these cell classes
(M1, M2, and M3) have been described using traditional immunohistochemistry methods [37,42,59–63],
while M4, M5, and M6 types express levels of melanopsin that are too low to be reliably detected by
conventional immunostaining. These last types have been mainly detected by using signal-amplification
immunolabeling methods or mouse reporter lines expressing fluorescent proteins under specific
promoters. M1 cell dendrites stratify exclusively in the outer margin of the IPL (stratum S1), M2
cells project their dendrites to the inner margin of the IPL (stratum S5), and the less abundant M3
cells stratify in both the outer and inner margins of the IPL (S1 and S5, respectively). Nonetheless,
the inclusion of M3 cells as a distinct melanopsin cell type remains controversial due to their lower
density and their morphological and functional similarities with M2-type cells, so that the bistratified
population of melanopsin cells has been suggested not to be an independent cell type [51,64,65]. Most
subtypes of melanopsin-positive cells have the cell body in the ganglion cell layer (GCL) of the retina,
but a population of M1 cells has the soma located in the inner nuclear layer (INL) [66]. These cells are
called displaced M1 cells (M1d). The typical morphology of an M1d cell and a schematic representation
of mRGC types revealed by conventional immunostaining are shown in Figure 1.

Using signal-amplification methods in immunohistochemistry protocols, researchers have been
able to identify M4 cells in the retina of rodents and humans [6,52,56], which morphologically resemble
the previously identified population of ON alpha RGCs [51–53,67]. The structure of M4 cells is
similar to that of M2 cells, having dendrites exclusively in the inner margin of the IPL, but they are
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distinguished by the size and complexity of their dendritic fields and their large soma [6]. Besides,
M2 dendrites stratify closer to the GCL than M4 dendrites [55]. Using the same techniques, new
cells with morphological features similar to M1- and dM1-type cells but with an extremely large
soma have been identified in human retinas and named gigantic M1 and gigantic displaced M1 cells,
respectively [56]. This last cell type is abundant in the retinal periphery and may correspond to the
rodents melanopsin interneurons that project intraretinally [16,56]. Additionally, M5 and M6 cells
have been identified [50,57,58]. These cells are marginally immunoreactive for melanopsin, have
relatively weak melanopsin-dependent light responses, and have not yet been identified in humans.
M5 dendrites monostratify at the inner margin of the IPL [57], whereas the M6 cells’ dendritic arbor is
bistratified [58].
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Lizaran et al., 2018) [42]. 

Figure 1. Melanopsin-containing ganglion cells (mRGCs) detected by conventional immunostaining:
(A) Immunostaining of a displaced M1 cell (M1d) mRGC found in wholemount human retinas.
(B) Diagram showing the structure of the mRGC types depending on their soma location and
dendrite stratification in the inner plexiform layer (IPL) S1 or S5. Scale bar: 50 µm. (Modified from
Ortuño-Lizaran et al., 2018) [42].
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Melanopsin-expressing cells appear distributed throughout the entire rodent retina, even though
a slightly higher density of melanopsin-expressing cells has been observed in the upper-temporal part
of the rat retina [61–63]. In these animals, the number of M1 cells is higher than that of M2 and M3 cells,
and dM1 cells represent a small group of mRGCs. Conversely, dM1 cells have been demonstrated to be
the predominant cell subtype in human retinas [3,37,42,65,68]. Melanopsin cells are widely distributed
throughout the entire human retina, even though a higher density has been observed in the perifoveal
area, and a decreased number of these cells has been found in the vicinity of the optic nerve and in
the peripheral retina [37,56,64,65] (Figure 2). Their morphology also varies with their location: close
to the fovea, where the densities are higher, the dendritic arborization size is the smallest and in the
periphery, where the density is lower, the dendritic size is greater [56,64,65].
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changes in retinal neurons [71–75]. In this context, electrophysiological and psychophysical methods 
for retinal function testing show a loss of visual function throughout age in healthy rats, with 

Figure 2. Melanopsin-containing ganglion cells on the human retina: (A–D) Representative drawings
of a 56-year-old wholemount human retina showing the location of immunostained individual
melanopsin-positive cells of different types. Each dot represents one mRGC and the color code indicates
different mRGC types. Scale bar: 5 mm. (Modified from Esquiva et al., 2017) [37].

3. Melanopsin-Containing Ganglion Cells in Aging

Vision decrease with age [69,70], and aging has been associated with qualitative and quantitative
changes in retinal neurons [71–75]. In this context, electrophysiological and psychophysical methods for
retinal function testing show a loss of visual function throughout age in healthy rats, with progressive
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decay in electroretinographic responsiveness and visual acuity [76,77]. Aging has also been associated
with alterations in circadian rhythms [22–24,78,79] that can be attributed, at least in part, to the
mentioned visual loss. Related to this fact, it has been demonstrated that melanopsin-positive cell
density is maintained in normal rats at 12 and 18 months of age [36,61,63] but shows a decline in number
at 24 months, being up to a 50% lower than that observed in 12- and 18-month-old control animals [63]
(Figure 3). In agreement with this finding, it has been reported that body temperature and locomotor
activity circadian rhythms are more robust in the young adult, as compared to elderly rats [63].
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Figure 3. Age-related changes of melanopsin ganglion cells in control Sprague–Dawley rat retinas:
(A–C) Representative drawings of wholemount retinas from Sprague–Dawley (SD) rats at 12 (A),
18 (B), and 24 (C) months-of-age. (D–F) Representative drawings of the soma and complete dendritic
field of mRGCs from a region of the central retina (between the superior and nasal quadrants) of
Sprague–Dawley rats at 12 (D), 18 (E), and 24 (F) months-of-age. Drawings were made using a camera
lucida and reveal immunostained mRGCs. Scale bar: A–C, 500 µm; D–F, 50 µm. (Modified from
Lax et al., 2016) [63].

In humans and non-human primates, older adults present reduced rhythm amplitudes and
age-related rhythm fragmentation, indicating that circadian rhythms are altered with age [80]. However,
some experiments show no age-related changes in pupil responses mediated by mRGCs [81], and that
the retinohypothalamic pathway seems to be relatively unaffected by aging [82]. These results are
in accordance with the relatively stable density of mRGCs over time, that is normally maintained in
healthy subjects until the age of 70 [37]. From 50 years onwards, a tendency of decrease (about 13%)
has been observed, but a deep fall in mRGC number (approximately a loss of a 44%) occurs after
70 years-of-age [37] (Figure 4). The characterization of morphological and dendritic parameters also
indicates atrophy of mRGC dendritic arborization at late ages. From 50 years old onwards, mRGC
plexuses decrease their complexity, and after 70 years-of-age dendritic trees show little overlapping
and few contacts between the scarce number of remaining melanopsin-positive cells [37].
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total mRGCs (A) and different types of mRGCs (B) in human retinas between 10 and 81 years-of-age.
Different letters above the histograms indicate statistically significant differences between ages (p < 0.05).
(Modified from Esquiva et al., 2017) [37].

4. Melanopsin-Containing Ganglion Cells in Retinal Diseases

Ocular pathologies and blindness have been classically associated with circadian rhythm
disturbances that depend on the degree to which the perception of light is affected [83–86]. Many
studies correlate circadian disorders with inner retinal diseases, such as glaucoma [84,87,88], diabetic
retinopathy [85,89], or retinal ischemia [86], diseases in which circadian rhythm alterations in these
diseases have been experimentally related to the loss of mRGCs in the retina. Melanopsin-containing
ganglion cells have shown a marked resistance to injury, showing more resistance to neurodegeneration
than the rest of the ganglion cells of the retina [90–95]. As an example, the mRGC/RGC ratio in
controls and patients with mild glaucoma represent about 0.3%, while in severe glaucoma the mRGC
number represents 14% of the total ganglion cells of the retina [91]. Nevertheless, in spite of their
resistance, many other studies have shown a loss and impairment of melanopsin cells associated
with retinal disease. A loss of approximately 50% of mRGCs has been described in rodents with
experimental glaucoma [96], and a decrease in mRGCs has been described in severe staged glaucoma
patients [97]. In animal models of diabetic retinopathy, retinal degeneration also results in a loss of
mRGCs (about 75% less) [98].

Apart from inner retina diseases, circadian dysfunctions have also been reported in advanced stages
of diseases affecting the outer retina, such as retinitis pigmentosa [18,27,28,99]. It has been demonstrated
that retinal degeneration positively correlates with the occurrence of circadian dysfunctions in P23H
line 3 rats [100], an animal model of retinitis pigmentosa (RP), and that advanced stages of the
degenerative disease correlate with reduced rhythm amplitudes, weaker coupling strength of the
rhythm to environmental zeitgebers, and higher rhythm fragmentation in P23H line 1 rats [63] (Figure 5).
A more recent study demonstrated that administration of exogenous cannabinoids protects from
circadian rhythmicity impairment and vision loss in P23H line 3 dystrophic rats [101].
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Figure 5. Circadian rhythms of locomotor activity in P23H line 1 rats: (A,B) Example of actograms
(left panels), periodograms (middle panels), and mean waveforms (right panels) at the ages of 6 (A)
and 24 (B) months for a P23H-1 rat exposed to a 12:12 LD cycle. All data were obtained from the same
animal. Light and dark schedules are represented by white and dark bars, respectively. (Modified from
Lax et al., 2016) [63].

Retinitis pigmentosa is characterized by a progressive loss of photoreceptors [102–104],
accompanied by degenerative changes in the inner retina [105–110] and the subsequent degeneration
of retinal ganglion cells [35,111]. Among others, retinitis pigmentosa is associated with a progressive
degeneration of melanopsin-containing ganglion cells, whose density, integrity, and dendritic
arborization are decreased in advanced stages of the disease [36,61] (Figure 6). Experimental
evidence indicates that the progressive deterioration of melanopsin cells in advanced stages of
retinitis pigmentosa positively correlates with progressive alterations in circadian rhythms [63].

The degenerative effects of retinitis pigmentosa on the number and morphology of melanopsin cells
occurs relatively late compared to the degeneration observed in other retinal neurons. This relatively
high resistance of melanopsin cells to cellular injuries has been attributed to both morphological
and physiological properties, such as having a large soma, long and sparsely branching dendritic
fields, and intrinsic light sensitivity [112–115]. This suggests that, even in severe cases of outer retinal
diseases in humans, a functional population of melanopsin cells can still persist, and its care is crucial
to maintain a better quality of life even if vision is lost. Accordingly, neuroprotective strategies to
reduce melanopsin cell degeneration might play a decisive role in preventing sleep and circadian
rhythm disorders associated with retinal degeneration.
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5. Melanopsin-Containing Ganglion Cells in Neurodegenerative Diseases

In addition to aging and retinal diseases, circadian rhythms are also impaired in neurodegenerative
diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease [21,43].
In Parkinson’s disease, numerous studies have shown that, apart from the disease-specific
clinical motor features [116–119], patients also exhibit several non-motor symptoms including
visual impairment [120–123], deterioration of the pupillary light reflex [124–126], and sleep
disorders [116,117,127–130]. Similar circadian disturbances have been observed in various experimental
PD models [131–133]. In the rotenone rat model of Parkinson’s disease, the circadian rhythm of
both locomotor activity and body temperature showed decreased amplitudes and higher rhythm
fragmentation when compared to control rats [134]. The magnitude of these circadian alterations
positively correlates with the degree of motor impairment (Figure 7).

Numerous studies have shown that the retina is also affected in Parkinson’s disease [135].
Degeneration of photoreceptors and impairment of the dopaminergic system have been shown
in animal models of PD [136], and immunohistochemical studies have revealed the presence
of phosphorylated-α-synuclein immunoreactive neuronal elements in postmortem retinas of PD
patients [137], where its density significantly correlated with synucleinopathy density in the brain
of the same PD patients [123]. On the other hand, the pupil light-reflex deterioration in PD patients
may indicate that melanopsin-mediated retinal inputs are impaired [126]. In fact, morphological and
numerical analysis of mRGCs in PD patients has demonstrated that the retinal melanopsin system is
impaired in the disease [42]. This study shows a reduction in the number of mRGCs in PD patients,
accompanied by a drastic reduction in their plexus complexity and by morphological alterations like
decreased Sholl area, fewer ramifications and terminal points [42] (Figure 8). On the other hand,
previous studies have demonstrated that dopaminergic neurons of the retina make synapses with
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mRGCs [64,138,139], and functional modulation of mRGCs by dopamine has been reported [138–141].
These studies suggest that circadian dysfunction in PD pathology might be partially attributable to
altered dopaminergic modulation of melanopsin cells.
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Figure 7. Circadian rhythms of locomotor activity in rotenone-induced Parkinsonian rats:
(A–C) Representative locomotor activity actograms (left panels), periodograms (middle panels),
and mean waveforms (right panels) for a control animal (A), an animal moderately affected by
rotenone (B), and an animal severely affected by rotenone (C) exposed to a 12:12 LD cycle. Light
and dark schedules are represented by white and dark bars, respectively. (Modified from Lax et al.,
2012) [134].

Alzheimer’s disease patients also suffer from circadian rhythm dysfunction and reduction of sleep
efficiency. Immunohistochemical analysis of retinal sections of AD and controls revealed a loss of
mRGCs in the disease, compared to controls. In addition, cell morphology was affected and mRGCs
seemed to have smaller soma and thinner dendrites in AD [142]. Degeneration of melanopsin ganglion
cells in AD may explain, as in PD, the circadian rhythm impairment described in patients [142–144].
Although a relationship between circadian rhythm dysfunction and mRGC loss has been only described
until now in AD and PD, it has been proved that the retina is affected in many brain-predominant
neurodegenerative diseases and it may be a useful tissue to study the neurodegeneration subjacent to
circadian impairments in other pathologies.
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Figure 8. Melanopsin ganglion cells in Parkinson’s disease (PD): (A–B) Representative drawings of
control and PD retinal fields. (A) Melanopsin plexus in a control wholemount retina. (B) Melanopsin
plexus in a PD wholemount retina. Each color defines an individual mRGC. (C) Total mRGC
quantification (number of mRGCs per mm2) and comparison between control and PD subjects.
(D) Comparison of the mRGC density per cell type in control and PD subjects. Scale bar, 100 µm.
(Modified from Ortuño-Lizarán et al., 2018) [42].
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6. Conclusions

Overall, this review reports evidence that both the number and structure of melanopsin-positive
cells are affected by aging, retinal disease, and neurodegenerative disorders, and that these alterations
correlate with the appearance of circadian rhythm disorders. Melanopsin ganglion cells show more
resistance to cell injury than the rest of the ganglion cells of the retina, presumably due to both
morphological and physiological properties. However, these cells are equally affected in some
neurodegenerative conditions, especially in advanced stages of the degenerative process. The correct
functioning of the circadian system and the melanopsin cells constitutes an essential component of
well-being and health. Accordingly, taking care of the retina to preserve melanopsin ganglion cells and
their essential functions, even if vision is lost, is essential in the maintenance of an adequate quality of
life. On the other hand, this review shows evidence that mRGCs may be affected in brain-predominant
neurodegenerative diseases and that the study of the retina may be a key element to understand in
detail the neurodegeneration underlying the circadian alterations observed in different pathologies.
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