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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the
selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis
(EBGP) prevented mutant copper–zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity.
This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in
EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of
SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA
attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant
features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on
autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects
of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained
in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of
autophagy and provides a potential therapeutic approach for ALS.

Keywords: p-coumaric acid; amyotrophic lateral sclerosis; oxidative stress; endoplasmic reticulum
stress; copper–zinc superoxide dismutase 1; autophagy

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a rapid, progressive neurodegenerative disease that is
characterized by muscle weakness, paralysis, and respiratory failure, leading to death within 3–5 years.
While about 90%–95% of ALS is sporadic (sALS), about 5%–10% is familial (fALS). fALS is identified
by mutations in several genes such as SOD1, C9ORF72, TARDBP, and FUS. In Europe, most fALS
mutations are in C9ORF72 (33.7%), SOD1 (14.8%), TARDBP (4.2%), and FUS (2.8%). In contrast,
Asian fALS mutations are in SOD1 (30%), FUS (6.4%), C9ORF72 (2.3%), and TARDBP (1.5%) [1,2].
The causes of ALS are unknown; however, misfolded proteins are abnormally accumulated in the
cytoplasm of motor neurons in ALS patients when examined from a clinical viewpoint. As a potential
reason for this, dysfunctional protein degradation may be related to the onset and progression of ALS [3].
The ubiquitin proteasome system (UPS) and autophagy pathway involved in mutant copper–zinc
superoxide dismutase 1 proteins (SOD1mut) form insoluble aggregations in motor neurons [4,5].
It remains unclear how SOD1mut aggregation causes motor neuron death. It has been reported that
the subcellular accumulation of excess SOD1mut impairs the degradation ability of the UPS [6,7].
In motor neurons of ALS patients, typical adverse effects such as mitochondrial dysfunction, oxidative
stress, and endoplasmic reticulum (ER) stress are evoked by the dysfunction of the UPS with excess
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aggregations [5,8]. SOD1mut aggregates accumulate in organelles such as the mitochondria and ER [8,9].
Accumulation of SOD1mut in these organelles induces oxidative stress and ER stress, and then oxidative
stress and ER stress cause a further increase in the formation of insoluble aggregates of SOD1mut [10,11].
Several studies have shown that this excessive oxidative stress leading to neuronal cell death is caused
by the accumulation of misfolded SOD1 [12,13]. In addition, it has been reported that the activation of
autophagy suppresses motor neuronal cell death through the clearance of SOD1mut aggregations in
cellular and mouse models of ALS [14,15]. Therefore, the activation of autophagy may represent a
potential therapeutic approach for ALS.

Propolis is a resinous substance, and it is made from the tree bud exudates and sap of various
botanic plants and the secretion of honeybees. There are many kinds of propolis, classified by smell
and color (green, yellow, red, black, and brown), which depend on the vegetable source, season,
and country of origin. Several studies have demonstrated numerous pharmacological properties
and biological activities of propolis, such as antibacterial, anti-inflammatory, and antioxidative
effects [16–20]. A reason for these properties is that many components such as flavonoids and cinnamic
acid derivatives are present in propolis [21,22]. In addition, our previous study showed that an ethanol
extract of Brazilian green propolis (EBGP) and kaempferol contributed to the clearance of SOD1mut

aggregations via the activation of the autophagic pathway and that EBGP and kaempferol have a
neuroprotective effect against SOD1mut-induced neurotoxicity [23]. However, the effect of other active
ingredients of EBGP against SOD1mut-related toxicity has not yet been investigated.

Among the active ingredients of EBGP, p-coumaric acid (p-CA), a phenolic class compound, is also
widely included in vegetation and many human foods. Many researchers have explained the versatile
medicinal activities of p-CA, including antioxidant, cardioprotective, antimelanogenic, antimutagenic,
antiplatelet, anti-inflammatory, and immunomodulatory actions [24–30]. A recent study showed that
p-CA induces autophagy activation, although the mechanism remains unclear [31,32]. Therefore,
because autophagy is well known as a characteristic event in ALS, we chose p-CA among these active
components in EBGP and examined the effects of p-CA against SOD1mut-related toxicity from the
viewpoint of autophagy.

2. Results

2.1. p-CA Reduced Cytoplasmic Aggregation of SOD1mut and Protected against
SOD1mut-Associated Neurotoxicity

Currently, over 160 types of SOD1 pathogenic mutations have been identified in ALS
patients [33,34]. Among those, pathogenic SOD1G85R has been studied frequently [34,35]. Based on our
previous studies, we know that SOD1G85R-transfected Neuro2a cells (N2a cells) form subcellular
aggregates and have neurotoxicity [23,36]. To examine the protective effect of p-CA against
SOD1G85R aggregates, we automatically counted the number of SOD1G85R aggregates using an IN Cell
Analyzer 2200. p-CA was found to significantly decrease these SOD1G85R aggregates (Figure 1A,B).
In addition, separation of the protein fraction using Triton X-100 was performed according to the
method in our previous studies [23,36]. Western blot analysis showed that the quantity of 1%
Triton X-100-insoluble SOD1 aggregates was reduced by p-CA (Figure 1C,D). Next, to investigate
the effect of p-CA against SOD1G85R-induced neurotoxicity, we investigated the cell viability by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay (MTT assay). The cell viability
increased in the 100 nM and 1 µM, but not 1 nM, p-CA-treated groups as compared with the non-treated
group (Figure 1E). These results were further supported by cell toxicity assay. SOD1G85R induced an
increase of cell toxicity, while p-CA treatment effectively attenuated the neurotoxicity, similar to the
result of the MTT assay (Figure 1F). From these results, p-CA has a neuroprotective effect against
SOD1G85R-associated neurotoxicity.
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dismutase 1 (SOD1mut) and protected against SOD1mut-induced neurotoxicity. (A) Imaging of 

cytoplasmic mCherry–SOD1 aggregates (white arrowheads) in the presence or absence of p-CA in 

N2a cells. (B) Quantified analysis of imaging. (C) Immunoblot analysis of mCherry with a 1% Triton 

X-100 insoluble fraction. (D) Densitometric quantification of mCherry. (E) Cell viability was measured 

by MTT assay. (F) Cell toxicity was measured by LDH assay. Differences were evaluated by one-way 

ANOVA (mean ± SEM, n = 3) *** p < 0.001 vs. SOD1WT, ††† p < 0.001, † p < 0.05 vs. SOD1G85R. p-CA: p-

coumaric acid. Scale bar: 10 µm. 
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fluorescence (Figure 2C,D). To reveal that p-CA directly scavenged ROS, we measured the hydroxy 

Figure 1. p-Coumaric acid (p-CA) reduced subcellular aggregation of mutant copper–zinc superoxide
dismutase 1 (SOD1mut) and protected against SOD1mut-induced neurotoxicity. (A) Imaging of
cytoplasmic mCherry–SOD1 aggregates (white arrowheads) in the presence or absence of p-CA
in N2a cells. (B) Quantified analysis of imaging. (C) Immunoblot analysis of mCherry with a 1% Triton
X-100 insoluble fraction. (D) Densitometric quantification of mCherry. (E) Cell viability was measured
by MTT assay. (F) Cell toxicity was measured by LDH assay. Differences were evaluated by one-way
ANOVA (mean ± SEM, n = 3). *** p < 0.001 vs. SOD1WT, ††† p < 0.001, † p < 0.05 vs. SOD1G85R. p-CA:
p-coumaric acid. Scale bar: 10 µm.

2.2. p-CA Attenuated SOD1G85R-Associated Oxidative and Endoplasmic Reticulum (ER) Stress

It was previously reported that p-CA has antioxidative capacity [30]. As excess oxidative stress
is present in the motor neurons of ALS patients, the amount of ROS was detected in SOD1G85R cells
treated with p-CA using CellROX Green, a fluorescent probe used to investigate oxidative stress, and
MitoSOX Red, a fluorescent probe used to measure superoxide in mitochondria [37]. The increase in
the CellROX Green fluorescence level in transfected SOD1G85R cells was significantly decreased by
p-CA treatment (Figure 2A,B). p-CA treatment also obviously decreased the level of MitoSOX Red
fluorescence (Figure 2C,D). To reveal that p-CA directly scavenged ROS, we measured the hydroxy
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radical spin by ESR assay. p-CA significantly attenuated the signal intensity of hydroxy radicals
(Figure 2E,F).
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Figure 2. p-CA reduced mutant-SOD1-related oxidative stress. (A) Confocal imaging of CellROX in
N2a cells transfected with mCherry–SOD1G85R with p-CA for 24 h. (B) Quantified analysis of CellROX
using Image J. (C) Confocal imaging of MitoSOX in N2a cells transfected with mCherry–SOD1G85R with
p-CA for 24 h. (D) Quantified analysis of MitoSOX using Image J. (E) Typical spectra of DMPO-OH
spin generated from H2O2 plus Fe2+ in the absence (control) or presence of p-CA. (F) The amount of
hydroxy radicals was semi-quantitatively measured as the formation of DMPO-OH spin adducts by
ESR spectrometry. Differences were evaluated by one-way ANOVA (mean ± SEM, n = 3). *** p < 0.001
vs. SOD1WT, †† p < 0.01, † p < 0.05 vs. SOD1G85R. Scale bar: 10 µm. p-CA: p-coumaric acid.
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ER stress is an exacerbating mechanism of ALS and has been proposed as a major pathological
reaction in various experimental models of the disease [38]. To examine the effect of p-CA against
SOD1G85R-induced ER stress, Western blot analysis was performed with immunoglobulin heavy
chain-binding protein (BiP) and transcription factor C/EBP homologous protein (CHOP) antibodies.
Treatment with p-CA significantly inhibited the induction of the ER stress markers, BiP and CHOP,
by SOD1G85R (Figure 3A,B,C).
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 12 

 

 

Figure 3. p-CA reduced SOD1mut-related ER stress. (A) Immunoblot analysis of BiP and CHOP 

relating to ER stress. (B,C) Densitometric quantification of BiP (B) and CHOP (C). Differences were 

evaluated by one-way ANOVA (mean ± SEM, n = 3). *** p < 0.001 vs. SOD1WT, ††† p < 0.001, † p < 0.05 

vs. SOD1G85R. p-CA: p-coumaric acid. 

2.3. p-CA Exerted a Neuroprotective Effect against SOD1G85R Aggregates via the Activation of Autophagy 

To analyze the mechanism of the neuroprotective effect of p-CA against SOD1G85R-associated 

neurotoxicity in this experiment, we focused on autophagy, one of the protein degradation pathways. 

Previous studies have reported that p-CA induces autophagy [31,32]. Therefore, we performed a 

neurochemical analysis using the LC3 antibody, which is the most famous autophagy marker. 

Western blot analysis showed that p-CA increased the formation of LC3-II (Figure 4A,B). We also 

examined the protein level of p62, another selective marker of autophagy. Western blot analysis 

showed that p-CA decreased the protein level of p62 (Figure 4A,B). In addition, p-CA increased the 

level of LC3-II and decreased the protein level of p62 with N2a cells transfected with SOD1mut (Figure 

4C,D). Chloroquine (CQ), an autophagy inhibitor, prevented the reduction of cytoplasmic 

aggregation of SOD1G85R caused by p-CA (Figure 4E,F). To investigate whether the neuroprotective 

effects of p-CA are associated with autophagy, we performed the MTT assay and LDH release assay 

in the presence of CQ. The protective effect of p-CA was significantly prevented by CQ treatment 

(Figure 4G,H). From these results, p-CA reduced the quantity of subcellular aggregates through the 

upregulation of autophagy, which then prevented SOD1G85R-associated neurotoxicity. 

Figure 3. p-CA reduced SOD1mut-related ER stress. (A) Immunoblot analysis of BiP and CHOP relating
to ER stress. (B,C) Densitometric quantification of BiP (B) and CHOP (C). Differences were evaluated
by one-way ANOVA (mean ± SEM, n = 3). *** p < 0.001 vs. SOD1WT, ††† p < 0.001, † p < 0.05 vs.
SOD1G85R. p-CA: p-coumaric acid.

2.3. p-CA Exerted a Neuroprotective Effect against SOD1G85R Aggregates via the Activation of Autophagy

To analyze the mechanism of the neuroprotective effect of p-CA against SOD1G85R-associated
neurotoxicity in this experiment, we focused on autophagy, one of the protein degradation pathways.
Previous studies have reported that p-CA induces autophagy [31,32]. Therefore, we performed a
neurochemical analysis using the LC3 antibody, which is the most famous autophagy marker. Western
blot analysis showed that p-CA increased the formation of LC3-II (Figure 4A,B). We also examined
the protein level of p62, another selective marker of autophagy. Western blot analysis showed that
p-CA decreased the protein level of p62 (Figure 4A,B). In addition, p-CA increased the level of
LC3-II and decreased the protein level of p62 with N2a cells transfected with SOD1mut (Figure 4C,D).
Chloroquine (CQ), an autophagy inhibitor, prevented the reduction of cytoplasmic aggregation of
SOD1G85R caused by p-CA (Figure 4E,F). To investigate whether the neuroprotective effects of p-CA are
associated with autophagy, we performed the MTT assay and LDH release assay in the presence of CQ.
The protective effect of p-CA was significantly prevented by CQ treatment (Figure 4G,H). From these
results, p-CA reduced the quantity of subcellular aggregates through the upregulation of autophagy,
which then prevented SOD1G85R-associated neurotoxicity.
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Figure 4. p-CA prevented SOD1mut-associated neurotoxicity through autophagy. (A) Immunoblot
analysis of LC3 and p62 relating to autophagy. (B) Densitometric quantification of LC3 and p62.
††† p < 0.001 vs. control. (C) Immunoblot analysis of LC3 and p62 relating to autophagy with
SOD1G85R-expressing cells. (D) Densitometric quantification of LC3 and p62. ††† p < 0.001 vs. control.
(E) Imaging of cytoplasmic mCherry–SOD1 aggregates (white arrowheads) in the N2a cells with CQ
(1 nM) before p-CA (100 nM) treatment. (F) Quantified analysis of imaging. (G) Cell viability was
measured by MTT assay. (H) Cell toxicity was measured by LDH assay. Differences were evaluated by
one-way ANOVA (mean ± SEM, n = 3). *** p < 0.001 vs. SOD1WT, ††† p < 0.001, †† p < 0.01, † p < 0.05.
vs. SOD1G85R, ### p < 0.001, # p < 0.05. vs. SOD1G85R + p-CA. Scale bar: 10 µm. p-CA: p-coumaric acid,
CQ: chloroquine.

3. Discussion

Several studies have been reported the usefulness of p-CA to human health and the effects of p-CA,
such as its anti-inflammation, anticancer, and antioxidant properties [24,29,32]. However, little study
on p-CA in association with neurodegenerative disorders such as ALS has been reported. Dominant
mutations in SOD1 are frequently the cause of the inherited form of ALS [1]. Although the pathological
mechanism of ALS is unclear, misfolded SOD1 accumulates in the motor neurons of both sALS and
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fALS patients [39,40]. It is quite possible that reducing the number of misfolded SOD1 can prevent the
onset and progression of ALS [41]. This study aimed to investigate the relation between p-CA and
SOD1G85R-associated neurotoxicity in a cellular model of ALS.

In this study, consistent with previous reports, we showed that p-CA induced autophagy.
In general, AMP-activated protein kinase (AMPK) inhibits the activation of the mammalian target of
rapamycin (mTOR), which negatively regulates autophagy. In our previous study, we showed that
the kaempferol contained in EBGP potentially induced autophagy via AMPK phosphorylation [23].
Other reports have shown that p-CA activates AMPK [42,43]. From these reports, p-CA may induce
autophagy via the AMPK–mTOR pathway. In addition, we previously found that kaempferol did not
activate autophagy via the Protein Kinase B (AKT)–mTOR pathway [23]. The AKT signal induced
mTOR activity and then inhibited autophagy [44]. In our study, unfortunately, we did not examine
whether p-CA inhibited the AKT signal. However, p-CA is known to inhibit the AKT signal [45]. Thus,
we can infer that p-CA may induce autophagy via not only the AMPK–mTOR pathway but also the
AKT–mTOR pathway.

AMPK is inactivated in models of SOD1mut [46–48]. Moreover, cystatin C restores the inactivation of
AMPK to control levels and has neuroprotective effects against SOD1mut-associated neurotoxicity [47,48].
From these reports, we suggest that the activation of AMPK plays a very important role in preventing
the progression of ALS. Therefore, we propose that p-CA is a very useful compound in the search for
new drugs.

Autophagy contributes to reducing the quantity of SOD1mut aggregates [23,49]. Preventing
degenerated protein accumulation represents an important step to achieving neuroprotection.
In addition, reducing the occurrence of misfolded proteins, including SOD1mut, is also important,
and whether p-CA activates the UPS will need to be investigated in the future [50,51]. If p-CA can
activate the UPS, p-CA would then reduce the amount of SOD1mut intracellular aggregates through
both autophagy and the UPS.

In fALS and sALS, mutation of the sequestosome 1 / p62 protein encoded by SQSTM1 has been
identified. p62 is a multifunctional protein and is known to be particularly involved in degradation
systems. p62 is an adapter protein that connects autophagosomes to substances that are selectively
degraded. Therefore, it is thought that there is a problem in the degradation mechanism in ALS
patients who have mutated p62 protein. In addition, p62 protein is known as a marker of autophagy
and is degraded with the activation of autophagy. A previous study showed that the protein level
of p62 decreases with increasing protein levels of LC3, which is an activation marker of autophagy
in vivo and in vitro. In this study, p-CA upregulated LC3 and downregulated p62; therefore, p-CA
induces autophagy.

Several studies have reported that the excessive oxidative stress is caused by the accumulation of
misfolded SOD1 [12]. Then, oxidative stress results in a further increase of the formation of cytoplasmic
aggregates of SOD1mut [10,11]. This impaired protein quality control situation causes a vicious cycle
in the motor neurons of ALS patients. Therefore, reducing excessive oxidative stress represents a
potential therapeutic approach. Only riluzole and edaravone are widely known as approved drugs
for ALS [52]. Edaravone is a scavenger of ROS, especially of the hydroxyl radicals [53]. From these
results, both autophagy and antioxidative effects reduced the intracellular aggregation of SOD1mut

and prevented SOD1mut-associated neurotoxicity.
Many studies have showed serious mitochondrial disorder in SOD1mut-related ALS

models [37,54,55]. Insoluble SOD1mut aggregation is localized in mitochondria, especially in the
outer membrane. Thus, SOD1mut directly affects mitochondrial function [56,57]. The relation of ROS
produced from mitochondria to mitochondrial oxidative injury is provided by this study. The ROS
produced from mitochondria in SOD1mut-induced mitochondrial dysfunction cause a vicious cycle
of injury.

In our results, p-CA degraded SOD1 aggregates and suppressed their formation via the activation
of autophagy. In addition, several studies have reported that SOD1mut aggregates accumulate in
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organelles such as mitochondria and the ER, causing excessive oxidative stress and ER stress and
leading to neuronal cell death. Therefore, we suggest that p-CA has a neuroprotective effect against
SOD1mut-induced neurotoxicity by suppressing oxidative stress and ER stress via autophagy.

In conclusion, to the best of our knowledge, this is the first study to investigate how p-CA
prevents SOD1mut-associated neurotoxicity in ALS cell models. Although p-CA has many beneficial
physiological activities, its effect on ALS pathogenesis—particularly SOD1 toxicity—was previously
still unknown. This study shows that p-CA has neuroprotective effects against SOD1mut-associated
neurotoxicity through the activation of autophagy. p-CA is an active component of Brazilian green
propolis. Brazilian green propolis and its ingredient, p-CA, have the potential to delay the onset and/or
the progression of ALS. p-CA will be very promising as a component of combination therapy for ALS
in the future. This study provides an important contribution because the usefulness of p-CA against
SOD1mut-induced neurotoxicity has been newly made clear.

4. Materials and Methods

4.1. Culture, Construct, and Transfection Cell Lines

We used the same procedures as those used in our previous study [23,36]. Briefly stated, expression
plasmids (pmCherry-N1, Clontech Laboratories Inc (Mountain View, CA, USA) harboring variants
of human SOD1 (wild-type (WT) or mutant (G85R)) were prepared as reported previously [23,36].
The mouse neuroblastoma Neuro2a (N2a) cell line was obtained from Public Health England (London,
UK). For culturing, N2a culture cells were kept in a humidified atmosphere of 5% CO2 at 37 ◦C and
maintained in Dulbecco’s modified Eagle medium (DMEM, Wako Pure Chemical Industries Ltd.,
Osaka, Japan) containing 10% (v/v) fetal bovine serum (FBS, Thermo Fisher Scientific Inc., Waltham,
MA, USA). N2a cells were passaged by trypsinization every 3–4 days. The transfection of mCherry,
SOD1WT–mCherry, and SOD1G85R–mCherry in N2a cells was performed using Lipofectamine 2000
according to the manufacturer’s instructions (Thermo Fisher Scientific Inc., Waltham, MA, USA).

4.2. Antibodies

For biochemical analysis, mouse monoclonal anti-CHOP (1:1000), rabbit polyclonal anti-LC-3
(1:1000), rabbit polyclonal anti-p62 (1:1000), and rabbit polyclonal anti-BiP (1:1000) were purchased
from Cell Signaling Technology (Danvers, MA, USA). Mouse monoclonal anti-β-actin (1:2000) was
purchased from Santa Cruz Biotechnology. Mouse monoclonal anti-mCherry (1:2000) was purchased
from Clontech Laboratories Inc.

4.3. Thiazolyl Blue Tetrazolium Bromide (MTT) Assay and Lactate Dehydrogenase (LDH) Release Assay

We used the same procedures as those used in our previous study [23,36]. In short, the N2a cells
were transfected with each plasmid. After 24 h, for differentiation, the culture medium was replaced
for 48 h with differentiation medium [23,36] and incubated with or without p-CA (1 nM, 100 nM,
or 1 µM). Cell viability was measured using a Cell Counting Kit-8, following the protocol (Wako Pure
Chemical Industries Ltd., Osaka, Japan). After culturing N2a cells in differentiation medium for 48 h
with or without p-CA, the amount of LDH was measured in the culture supernatant. Cell toxicity
was measured using an LDH assay kit, following the protocol (Wako Pure Chemical Industries Ltd.,
Osaka, Japan).

4.4. Measurement of the Aggregation Rate

As stated above, N2a cells were transfected with each plasmid. After 24 h, the cells were treated
with or without p-CA (1 nM, 100 nM, or 1 µM) for 24 h. After fixation with 4% paraformaldehyde,
subcellular aggregation images were acquired using an IN Cell Analyzer 2200 high-content imaging
cytometer (GE Healthcare, Buckinghamshire, UK). For measuring the number of aggregates, we used
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IN Cell Investigator (GE Healthcare, Buckinghamshire, UK). In each experiment, at least 3000 cells
were counted.

4.5. Biochemical Analysis of Cell Culture Lysates

Regarding protein extraction from cells and Western blot protocol, we used the same procedures
as those used in our previous study [23,36]. Briefly, the cells were lysed with TNE lysis buffer (50 mM
Tris-HCl (pH. 7.4), 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid, protease inhibitor cocktail)
containing 1% Triton X-100 and were then centrifuged at 15,000 g for 5 min at 4 ◦C. The lysate
supernatant was defined as the Triton-soluble fraction. Following centrifugation, the remaining
deposition was resuspended with TNE lysis buffer containing 2% sodium dodecyl sulfate (SDS)
(and defined as the Triton-insoluble fraction) [23,36,47]. Cell lysates were resolved by SDS-PAGE and
transferred to a PVDF membrane. The proteins were detected by using an ECL system (GE Healthcare,
Buckinghamshire, UK). The chemiluminescence was detected using LAS3000 mini films (Fuji film,
Tokyo, Japan). ImageJ software (version 1.48, NIH, New York, NY, USA) was used to measure the
band density.

4.6. Reactive Oxygen Species (ROS) Production

We performed the CellROX and MitoSOX assay based on previous studies [23,36]. Briefly stated,
to detect SOD1mut-induced reactive ROS production, we used CellROX® Green (Thermo Fisher
Scientific Inc., Waltham, MA, USA), a fluorogenic probe designed to reliably measure ROS,
and MitoSOX® Red (Thermo Fisher Scientific Inc., Waltham, MA, USA), a fluorogenic probe designed
to reliably measure ROS, especially superoxide anion in mitochondria, according to the protocols.

4.7. ESR Analysis

We performed ESR analysis based on previous studies [23,36]. Briefly stated, to detect the typical
spectra of DMPO-OH spin, we generated the hydroxyl radicals via the Fenton reaction. The hydroxyl
radicals was generated by mixing 72 mM DMPO (50 µL), 2 mM H2O2 (50 µL), and 0.2 mM FeSO4

(50 µL). The solution was transferred into an ESR spectrometry cell.

4.8. Statistical Analysis

The experimental results were analyzed by one-way ANOVA and Bonferroni/Dunn testing
(StatView, Abacus, Baltimore, MD, USA). In this study, p < 0.05 was considered significant.
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Abbreviations

ALS amyotrophic lateral sclerosis
SALS sporadic amyotrophic lateral sclerosis
FALS familial amyotrophic lateral sclerosis
SOD1 superoxide dismutase 1
UPS ubiquitin proteasome system
EBGP ethanol extract of Brazilian green propolis
p-CA p-coumaric acid
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ER endoplasmic reticulum
N2a cells Neuro2a cells
MTT assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay
DMPO 5,5-Dimethyl-1-pyrroline N-Oxide
BiP immunoglobulin heavy chain-binding protein
CHOP transcription factor C/EBP homologous protein
CQ chloroquine
AMPK AMP-activated protein kinase
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